Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27. https://doi.org/10.1016/j.biocon.2019.01.020
Article
Google Scholar
Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D (2021) Insect decline in the anthropocene: death by a thousand cuts. PNAS 118:e2023989118. https://doi.org/10.1073/pnas.2023989118
Article
CAS
Google Scholar
Blakemore RJ (2018) Critical decline of earthworms from organic origins under intensive humic SOM depleting agriculture. Soil Syst 2(2):33. https://doi.org/10.3390/soilsystems2020033
Article
CAS
Google Scholar
Stanton RL, Morrissey CA, Clark RG (2018) Analysis of trends and agricultural drivers of farmland bird declines in North America: a review. Agric Ecosyst Env 254:244–254. https://doi.org/10.1016/j.agee.2017.11.028
Article
Google Scholar
IPBES (2017) The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. Bonn, Germany. https://doi.org/10.5281/zenodo.3402856. Accessed 24 Dec 2019
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. TREE 25:345–353. https://doi.org/10.1016/j.tree.2010.01.007
Article
Google Scholar
Seibold S et al (2019) Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574:671–674. https://doi.org/10.1038/s41586-019-1684-3
Article
CAS
Google Scholar
Anton C, Mengel J, Mupepele AC, Steinicke H (2020) Biodiversität und Management von Agrarlandschaften: Umfassendes Handeln ist jetzt wichtig. Statement. Deutsche Akademie der Naturforscher Leopoldina e. V. - Nationale Akademie der Wissenschaften; acatech - Deutsche Akademie der Technikwissenschaften e. V.; Union der deutschen Akademien der Wissenschaften e.V. http://nbn-resolving.org/urn:nbn:de:gbv:3:2-127275. Accessed 4 June 2021
FAO, ITPS (2017) Global Assessment of the Impact of Plant Protection Products on Soil Functions and Soil Ecosystems. Food and Agriculture Organization of the United Nations, Rome. https://www.fao.org/documents/card/fr/c/I8168EN/. Accessed 25 Apr 2022
Geiger F et al (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105
Article
CAS
Google Scholar
Mineau P, Whiteside M (2013) Pesticide acute toxicity is a better correlate of U.S. Grassland bird declines than agricultural intensification. PLoS ONE 8:e57457. https://doi.org/10.1371/journal.pone.0057457
Article
CAS
Google Scholar
Mostafalou S, Abdollahi M (2017) Pesticides: an update of human exposure and toxicity. Arch Toxicol 91:549–599. https://doi.org/10.1007/s00204-016-1849-x
Article
CAS
Google Scholar
Thundiyil JG, Stober J, Besbelli N, Pronczuk J (2008) Acute pesticide poisoning: a proposed classification tool. Bull World Health Organ 86:205–209. https://doi.org/10.2471/BLT.08.041814
Article
Google Scholar
Sharma A et al (2019) Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci 1:1446. https://doi.org/10.1007/s42452-019-1485-1
Article
CAS
Google Scholar
Zaller JG (2020) Daily Poison. Pesticides—an Underestimated Danger. Springer Nature, Cham, Switzerland. https://doi.org/10.1007/978-3-030-50530-1
Köhler HR, Triebskorn R (2013) Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 341:759–765. https://doi.org/10.1126/science.1237591
Article
CAS
Google Scholar
Mesnage R, Zaller JG (2021) Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts. In: Thomas BF (ed) Emerging Issues in Analytical Chemistry. Elsevier, Amsterdam, p 366
Google Scholar
Mesnage R, Szekács A, Zaller JG (2021) Herbicides: Brief history, agricultural use, and potential alternatives for weed control. In: Mesnage R, Zaller J (eds) Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts Emerging Issues in Analytical Chemistry. Elsevier, Amsterdam, pp 1–20
Google Scholar
EC (2021) Organic production and products. European Commission. https://ec.europa.eu/info/food-farming-fisheries/farming/organic-farming/organic-production-and-products_en. Accessed 25 Apr 2022
Antier C, Kudsk P, Reboud X, Ulber L, Baret PV, Messéan A (2020) Glyphosate use in the European agricultural sector and a framework for its further monitoring. Sustainabil 12:5682
Article
CAS
Google Scholar
Kruse-Plaß M, Hofmann F, Wosniok W, Schlechtriemen U, Kohlschütter N (2021) Pesticides and pesticide-related products in ambient air in Germany. Env Sci Eur 33:114. https://doi.org/10.1186/s12302-021-00553-4
Article
CAS
Google Scholar
Brühl CA et al (2021) Direct pesticide exposure of insects in nature conservation areas in Germany. Sci Rep 11:24144. https://doi.org/10.1038/s41598-021-03366-w
Article
CAS
Google Scholar
Linhart C et al (2019) Pesticide contamination and associated risk factors at public playgrounds near intensively managed apple and wine orchards. Env Sci Eur 31:28. https://doi.org/10.1186/s12302-019-0206-0
Article
CAS
Google Scholar
Linhart C, Panzacchi S, Belpoggi F, Clausing P, Zaller JG, Hertoge K (2021) Year-round pesticide contamination of public sites near intensively managed agricultural areas in South Tyrol. Env Sci Eur 33:1. https://doi.org/10.1186/s12302-020-00446-y
Article
CAS
Google Scholar
Zaller JG, Brühl CA (2021) Direct herbicide effects on terrestrial nontarget organisms belowground and aboveground. In: Mesnage R, Zaller JG (eds) Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts Emerging Issues in Analytical Chemistry. Elsevier, Amsterdam, pp 181–230
Chapter
Google Scholar
Brühl CA, Zaller JG (2021) Indirect herbicide effects on biodiversity, ecosystem functions, and interactions with global changes. In: Mesnage R, Zaller JG (eds) Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts Emerging Issues in Analytical Chemistry. Elsevier, Amsterdam, pp 231–272
Chapter
Google Scholar
Cullen MG, Thompson LJ, Carolan JC, Stout JC, Stanley DA (2019) Fungicides, herbicides and bees: a systematic review of existing research and methods. PLoS ONE 14(12):e0225743. https://doi.org/10.1371/journal.pone.0225743
Article
CAS
Google Scholar
Motta EVS, Raymann K, Moran NA (2018) Glyphosate perturbs the gut microbiota of honey bees. PNAS 115:10305–10310. https://doi.org/10.1073/pnas.1803880115
Article
CAS
Google Scholar
Straw EA, Carpentier EN, Brown MJF (2021) Roundup causes high levels of mortality following contact exposure in bumble bees. J Appl Ecol 58:1167–1176. https://doi.org/10.1111/1365-2664.13867
Article
Google Scholar
Correia FV, Moreira JC (2010) Effects of glyphosate and 2,4-D on earthworms (Eisenia foetida) in laboratory tests. Bull Environ Contam Toxicol 85:264–268
Article
CAS
Google Scholar
Gaupp-Berghausen M, Hofer M, Rewald B, Zaller JG (2015) Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Sci Rep 5:12886. https://doi.org/10.1038/srep12886
Article
CAS
Google Scholar
Zaller JG et al (2021) Effects of glyphosate-based herbicides and their active ingredients on earthworms, water infiltration and glyphosate leaching are influenced by soil properties. Environ Sci Eur 33:51. https://doi.org/10.1186/s12302-021-00492-0
Article
CAS
Google Scholar
Gill JPK, Sethi N, Mohan A, Datta S, Girdhar M (2018) Glyphosate toxicity for animals. Env Chem Lett 16:401–426. https://doi.org/10.1007/s10311-017-0689-0
Article
CAS
Google Scholar
Mesnage R, Antoniou M (2021) Mammalian toxicity of herbicides used in intensive GM crop farming. In: Mesnage R, Zaller J (eds) Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts Emerging Issues in Analytical Chemistry. Elsevier, Amsterdam, pp 143–180
Chapter
Google Scholar
Rani L et al (2021) An extensive review on the consequences of chemical pesticides on human health and environment. J Clean Prod 283:124657. https://doi.org/10.1016/j.jclepro.2020.124657
Article
CAS
Google Scholar
Caiati C, Pollice P, Favale S, Lepera ME (2020) The herbicide glyphosate and its apparently controversial effect on human health: an updated clinical perspective. Endocr Metab Immune Disord Drug Targets 20:489–505. https://doi.org/10.2174/1871530319666191015191614
Article
CAS
Google Scholar
Landrigan PJ, Belpoggi F (2018) The need for independent research on the health effects of glyphosate-based herbicides. Env Health 17:51. https://doi.org/10.1186/s12940-018-0392-z
Article
Google Scholar
McCurdy JD, Held DW, Gunn JM, Barickman TC (2017) Dew from warm-season turfgrasses as a possible route for pollinator exposure to lawn-applied imidacloprid. Crop, Forage Turfgrass Manag. https://doi.org/10.2134/cftm2016.09.0063
Article
Google Scholar
Böhme F, Bischoff G, Zebitz CPW, Rosenkranz P, Wallner K (2018) Pesticide residue survey of pollen loads collected by honeybees (Apis mellifera) in daily intervals at three agricultural sites in South Germany. PLoS ONE 13:e0199995. https://doi.org/10.1371/journal.pone.0199995
Article
CAS
Google Scholar
Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 7:e29268. https://doi.org/10.1371/journal.pone.0029268
Article
CAS
Google Scholar
Gradish AE et al (2018) Comparison of pesticide exposure in honey bees (Hymenoptera: Apidae) and bumble bees (Hymenoptera: Apidae): implications for risk assessments. Env Entomol 48:12–21. https://doi.org/10.1093/ee/nvy168
Article
Google Scholar
Sgolastra F et al (2018) Pesticide exposure assessment paradigm for solitary bees. Env Entomol 48:22–35. https://doi.org/10.1093/ee/nvy105
Article
Google Scholar
Crailsheim K et al (2018) Zukunft Biene –Grundlagenforschungsprojekt zur Förderung des Bienenschutzes und der Bienengesundheit. Final report 539pp. http://bienenstand.at/wp-content/uploads/2018/09/Endbericht_29Juni2018.pdf. Accessed 25 Apr 2022
Hladik ML, Vandever M, Smalling KL (2016) Exposure of native bees foraging in an agricultural landscape to current-use pesticides. Sci Tot Environ 542:469–477. https://doi.org/10.1016/j.scitotenv.2015.10.077
Article
CAS
Google Scholar
Katagi T, Ose K (2015) Toxicity, bioaccumulation and metabolism of pesticides in the earthworm. J Pestic Sci 40:69–81. https://doi.org/10.1584/jpestics.D1515-1003
Article
CAS
Google Scholar
Yu YL, Wu XM, Li SN, Fang H, Zhan HY, Yu JQ (2006) An exploration of the relationship between adsorption and bioavailability of pesticides in soil to earthworm. Environ Pollut 141:428–433. https://doi.org/10.1016/j.envpol.2005.08.058
Article
CAS
Google Scholar
Pelosi C et al (2021) Residues of currently used pesticides in soils and earthworms: a silent threat? Agric Ecosyst Env 305:107167. https://doi.org/10.1016/j.agee.2020.107167
Article
Google Scholar
Bro E, Millot F, Decors A, Devillers J (2015) Quantification of potential exposure of gray partridge (Perdix perdix) to pesticide active substances in farmlands. Sci Tot Environ 521–522:315–325. https://doi.org/10.1016/j.scitotenv.2015.03.073
Article
CAS
Google Scholar
Moore DR, Fischer DL, Teed RS, Rodney SI (2010) Probabilistic risk-assessment model for birds exposed to granular pesticides. Integr Environ Assess Manag 6:260–272. https://doi.org/10.1897/ieam_2009-021.1
Article
CAS
Google Scholar
Driver CJ, Drown DB, Ligotke MW, Van Voris P, McVeety BD, Greenspan BJ (1991) Routes of uptake and their relative contribution to the toxicologic response of Northern bobwhite (Colinus virginianus) to an organophosphate pesticide. Env Toxicol Chem 10:21–33. https://doi.org/10.1002/etc.5620100104
Article
CAS
Google Scholar
Mineau P (2012) A comprehensive re-analysis of pesticide dermal toxicity data in birds and comparison with the rat. Env Toxicol Pharm 34:416–427. https://doi.org/10.1016/j.etap.2012.05.010
Article
CAS
Google Scholar
Haroune L et al (2015) Liquid chromatography-tandem mass spectrometry determination for multiclass pesticides from insect samples by microwave-assisted solvent extraction followed by a salt-out effect and micro-dispersion purification. Anal Chim Acta 891:160–170. https://doi.org/10.1016/j.aca.2015.07.031
Article
CAS
Google Scholar
Millot F, Berny P, Decors A, Bro E (2015) Little field evidence of direct acute and short-term effects of current pesticides on the grey partridge. Ecotoxicol Environ Saf 117:41–61. https://doi.org/10.1016/j.ecoenv.2015.03.017
Article
CAS
Google Scholar
Hamilton D, Crossley S (eds) (2004) Pesticide Residues in Food and Drinking Water: Human Exposure and Risks. Wiley Series in Agrochemicals and Plant Protection, NY
Hill RH Jr, To T, Holler JS, Fast DM, Smith SJ, Needham LL, Binder S (1989) Residues of chlorinated phenols and phenoxy acid herbicides in the urine of Arkansas children. Arch Environ Contam Toxicol 18:469–474. https://doi.org/10.1007/bf01055011
Article
CAS
Google Scholar
Niemann L, Sieke C, Pfeil R, Solecki R (2015) A critical review of glyphosate findings in human urine samples and comparison with the exposure of operators and consumers. J Verbr Lebensm 10:3–12. https://doi.org/10.1007/s00003-014-0927-3
Article
CAS
Google Scholar
Silva Pinto BG, Marques Soares TK, Azevedo Linhares M, Castilhos Ghisi N (2020) Occupational exposure to pesticides: genetic danger to farmworkers and manufacturing workers—a meta-analytical review. Sci Tot Environ 748:141382. https://doi.org/10.1016/j.scitotenv.2020.141382
Article
CAS
Google Scholar
Teysseire R, Manangama G, Baldi I, Carles C, Brochard P, Bedos C, Delva F (2021) Determinants of non-dietary exposure to agricultural pesticides in populations living close to fields: a systematic review. Sci Tot Environ 761:143294. https://doi.org/10.1016/j.scitotenv.2020.143294
Article
CAS
Google Scholar
Goulson D, Thompson J, Croombs A (2018) Rapid rise in toxic load for bees revealed by analysis of pesticide use in Great Britain. PeerJ 6:e5255. https://doi.org/10.7717/peerj.5255
Article
Google Scholar
Kudsk P, Jørgensen LN, Ørum JE (2018) Pesticide load—a new Danish pesticide risk indicator with multiple applications. Land Use Policy 70:384–393. https://doi.org/10.1016/j.landusepol.2017.11.010
Article
Google Scholar
Schulz R, Bub S, Petschick LL, Stehle S, Wolfram J (2021) Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science 372:81–84. https://doi.org/10.1126/science.abe1148
Article
CAS
Google Scholar
Douglas MR, Sponsler DB, Lonsdorf EV, Grozinger CM (2020) County-level analysis reveals a rapidly shifting landscape of insecticide hazard to honey bees (Apis mellifera) on US farmland. Sci Rep 10:797. https://doi.org/10.1038/s41598-019-57225-w
Article
CAS
Google Scholar
DiBartolomeis M, Kegley S, Mineau P, Radford R, Klein K (2019) An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States. PLoS ONE 14:e0220029. https://doi.org/10.1371/journal.pone.0220029
Article
CAS
Google Scholar
Tassin de Montaigu C, Goulson D (2020) Identifying agricultural pesticides that may pose a risk for birds. PeerJ 8:e9526. https://doi.org/10.7717/peerj.9526
Article
CAS
Google Scholar
UN (2019) The United Nations General Assembly declare 2021–2030 the UN Decade on Ecosystem Restoration.
Clausing P (2020) Wertlose Werte. In: Forster M, Schümann C (eds) Das Gift und Wir. Westend Verlag, Frankfurt/Main, pp 98–106
Google Scholar
Demeneix B, Slama RM (2019) Endocrine disruptors: from scientific evidence to human health protection. Research paper requested by the European Parliament's Committee on Petitions. pp 132. https://www.europarl.europa.eu/RegData/etudes/STUD/2019/608866/IPOL_STU(2019)608866_EN.pdf. Accessed 25 Apr 2022
EC (2020) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system. https://www.eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52020DC0381&from=ES"\t"_top". Accessed 19 Apr 2021
FiBL (2021) FiBL statistics. Organic area share of total farmland (%). Forschungsinstitut für biologischen Landbau. https://www.statistics.fibl.org/europe/key-indicators.html?tx_statisticdata_pi1%5Bcontroller%5D=Element2Item&cHash=511759e872156740d7cfcbda7f290481. Accessed 02 Dec 2021.
Bertrand M, Barot S, Blouin M, Whalen J, de Oliveira T, Roger-Estrade J (2015) Earthworm services for cropping systems. A Rev Agron Sustain Developm 35:553–567. https://doi.org/10.1007/s13593-014-0269-7
Article
CAS
Google Scholar
Goulson D (2003) Conserving wild bees for crop pollination. J Food Agric Environ 1:142–144
Google Scholar
Mäntylä E, Klemola T, Laaksonen T (2011) Birds help plants: a meta-analysis of top-down trophic cascades caused by avian predators. Oecologia 165:143–151. https://doi.org/10.1007/s00442-010-1774-2
Article
Google Scholar
Kluser S et al (2010) Global honey bee colony disorders and other threats to insect pollinators. Report. https://archive-ouverte.unige.ch/unige:32251. Accessed 25 Apr 2022
van Groenigen JW, Lubbers IM, Vos HMJ, Brown GG, De Deyn GB, van Groenigen KJ (2014) Earthworms increase plant production: a meta-analysis. Sci Rep 4:6365. https://doi.org/10.6310/1038/srep06365
Article
Google Scholar
Maggi F, Tang FHM (2021) Estimated decline in global earthworm population size caused by pesticide residue in soil. Soil Security 5:100014. https://doi.org/10.1016/j.soisec.2021.100014
Article
Google Scholar
van Hoesel W et al (2017) Single and combined effects of pesticide seed dressings and herbicides on earthworms, soil microorganisms, and litter decomposition. Front Plant Sci 8:215. https://doi.org/10.3389/fpls.2017.00215
Article
Google Scholar
Teufelbauer N, Seaman B (2020) Farmland Bird Index für Österreich: Indikatorenermittlung 2015 bis 2020 - Teilbericht 5: Farmland Bird Index 2019 Im Auftrag des Bundesministeriums für Landwirtschaft, Regionen und Tourismus.Index 2019. BirdLife Österreich. https://www.birdlife.at/page/monitoring-der-brutvogel. Accessed 4 Nov 2020
Neumeister L (2020) Pestizideinsatz in Deutschland 2005–2017. Auswertung des wirkstoffspezifischen Inlandsabsatzes und der PAPA Daten des Julius Kühn-Instituts (JKI). https://www.pestizidexperte.de/Publikationen/Pestizideinsatz_DE_2005_2017.pdf. Accessed 25 Apr 2022
BAES (2021) Pflanzenschutzmittel-Register—Verzeichnis der in Österreich zugelassenen/genehmigten Pflanzenschutzmittel. Bundesamt für Ernährungssicherheit. Fachbereich Pflanzenschutzmittel. https://psmregister.baes.gv.at/psmregister/faces/main;jsessionid=M3ZhN36hCNUDfCFXQigL5DByyB3DHYsLUV9CgyRYK0lg8yGZl2Kz!264007773?_adf.ctrl-state=begqx7oro_4. Accessed 25 Apr 2022
BLW (2021) Pflanzenschutzmittelverzeichnis Bundesamt für Landwirtschaft Schweiz: Wirkstoffe. Bundesamt für Landwirtschaft. https://www.psm.admin.ch/de/wirkstoffe. Accessed 19 Apr 2021
BVL (2021) Verzeichnis zugelassener Pflanzenschutzmittel Deutschland. https://www.apps2.bvl.bund.de/psm/jsp/index.jsp. Accessed 19 Apr 2021
Raiffeisen (2021) Pflanzenschutzmittel - Zulassung, Anwendung, Auflagen, Hinweise: Alle Pflanzenschutzmittel in einer Datenbank. Raiffeisen. https://www.raiffeisen.com/pflanzenschutzmittel. Accessed 19 Apr 2021
OECD (1984) Test No. 207: earthworm, acute toxicity tests. https://doi.org/10.1787/9789264070042-en
OECD (1998) Test No. 213: honeybees, acute oral toxicity test. https://doi.org/10.1787/9789264070165-en
OECD (1998) Test No. 214: honeybees, acute contact toxicity test. https://doi.org/10.1787/9789264070189-en
OECD (2016) Test No. 223: avian acute oral toxicity test. https://doi.org/10.1787/9789264264519-en
OECD (2016) Test No. 222: earthworm reproduction test (Eisenia fetida/Eisenia andrei). https://doi.org/10.1787/9789264264496-en
OECD (2018) Avian reproduction test (OECD TG 206). https://doi.org/10.1787/9789264304741-16-en
ChemSafetyPro (2019) What are EC10, NOEC, LOEC and MATC and how to use them in environmental risk assessment. https://www.chemsafetypro.com/Topics/CRA/What_Are_EC10,_NOEC,_LOEC_and_MATC_in_Ecotoxicity_and_How_to_Use_Them_in_Risk_Assessment.html. Accessed 14 Jun 2021
Corbin M et al. (2006) NAFTA guidance document for conducting terrestrial field dissipation studies. United States Environmental Protection Agency, Health Canada. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/nafta-guidance-document-conducting-terrestrial-field Accessed 17 Apr 2021
Lewis KA, Tzilivakis J, Warner DJ, Green A (2016) An international database for pesticide risk assessments and management. Hum Ecol Risk Assess Int J 22:1050–1064. https://doi.org/10.1080/10807039.2015.1133242
Article
CAS
Google Scholar
Chlorotoluron Environmental Fate/Exposure Summary (2021) National Center for Biotechnology Information. https://www.pubchem.ncbi.nlm.nih.gov/compound/Chlorotoluron#section=Environmental-Fate-Exposure-Summary. Accessed 19 Apr 2021
Dimethenamid Ecotoxicity Values (2021) National center for biotechnology information. https://www.pubchem.ncbi.nlm.nih.gov/compound/Dimethenamid#section=Ecotoxicity-Values Accessed 19 Apr 2021
OPP Pesticide Ecotoxicity Database (2021) United States Environmental Protection Agency—ecological fate and effects division office of pesticide programs. https://www.ecotox.ipmcenters.org/index.cfm?menuid=5. Accessed 19 Apr 2021
EFSA (2010) Conclusion on the peer review of the pesticide risk assessment of the active substance metosulam. EFSA J 8:1592. https://doi.org/10.2903/j.efsa.2010.1592
Article
CAS
Google Scholar
APVMA (2003) Public Release Summary—Evaluation of the new active TEPRALOXYDIM in the product Aramo Herbicide. Australian pesticides and veterinary medicines authority. https://www.apvma.gov.au/sites/default/files/publication/14056-prs-tepraloxydim.pdf. Accessed 20 Apr 2021
Euteneuer P, Wagentristl H, Steinkellner S, Fuchs M, Zaller JG, Piepho H-P, Butt KR (2020) Contrasting effects of cover crops on earthworms: Results from field monitoring and laboratory experiments on growth, reproduction and food choice. Europ J Soil Biol 100:103225. https://doi.org/10.1016/j.ejsobi.2020.103225
Article
CAS
Google Scholar
Euteneuer P, Wagentristl H, Steinkellner S, Scheibreithner C, Zaller JG (2019) Earthworms affect decomposition of soil-borne plant pathogen Sclerotinia sclerotiorum in a cover crop field experiment. Appl Soil Ecol 138:88–93. https://doi.org/10.1016/j.apsoil.2019.02.020
Article
Google Scholar
Vogelwarte (2021) Vögel der Schweiz—Informationen Girlitz. Vogelwarte. https://www.vogelwarte.ch/de/voegel/voegel-der-schweiz/girlitz. Accessed 5 Oct 2021
Zok S (2003) XDE-742/BAS 770 H—Avian Single-Dose LD50 on the Bobwhite Quail (Colinus virginianus). BASF Aktiengesellschaft, 67056 Ludwigshafen/Rhein, Germany. Dow AgroSciences, unpublished report, BASF Study No. 1 1 W0298/035027. https://www.archive.epa.gov/pesticides/chemicalsearch/chemical/foia/web/pdf/108702/108702-2008-05-03z17.pdf. Accessed 25 Apr 2022
McGowan PJK, Kirwan GM (2020) Japanese Quail (Coturnix japonica), Version 10. In: Keeney BK, Rodewald PG, Schulenberg TS, Billerman SM (eds) Birds of the World. Cornell Lab of Ornithology, Ithaca
Google Scholar
Drilling N, Titman RD, McKinney F (2020) Mallard (Anas platyrhynchos),version 1 0. In: Billerman SM (ed) Birds of the World. Cornell Lab of Ornithology, Ithaca
Google Scholar
Mineau P, Baril A, Collins BT, Duffe J, Joerman G, Luttik R (2001) Pesticide acute toxicity reference values for birds. Rev Environ Contam Toxicol 170:13–74
CAS
Google Scholar
PAN International List of Highly Hazardous Pesticides (HHPs) (2021) Pesticide Action Network International. http://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed 25 Apr 2022
EC (2021) EU Pesticides Database: candidate for substitution. https://www.eceuropaeu/food/plant/pesticides/eu-pesticides-database/active-substances/indexcfm?event=searchas&t=3&a=AT&a_from=&a_to=&e_from=&e_to=&additionalfilter__class_p1=&additionalfilter__class_p2=&string_tox_1=&string_tox_1=&string_tox_2=&string_tox_2=&string_tox_3=&string_tox_3=&string_tox_4=&string_tox_4. Accessed 14 Dec2021
UN (2019) Globally harmonized system of classification and labelling of chemicals (GHS) (Eighth revised edition). United Nations publication. https://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev08/ST-SG-AC10-30-Rev8e.pdf. Accessed 10 Nov 2021
EC (2021) EU pesticides database. https://www.eceuropaeu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=EN. Accessed 21 May 2021
EC (2021) Farm to Fork strategy for a fair, healthy and environmentally-friendly food system. https://ec.europa.eu/food/horizontal-topics/farm-fork-strategy_de. Accessed 25 Apr 2022
Österr. Nationalrat (2013) Bundesgesetzblatt für die Republik Österreich - 143. Bundesgesetz: Änderung des Pflanzenschutzmittelgesetzes (NR: GP XXIV IA 2370/A AB 2576 S. 216. BR: AB 9106 S. 823.). https://www.ris.bka.gv.at/Dokumente/BgblAuth/BGBLA_2013_I_143/BGBLA_2013_I_143.html. Accessed 20 Apr 2021
Benbrook C, Kegley S, Baker B (2021) Organic farming lessens reliance on pesticides and promotes public health by lowering dietary risks. Agronomy 11:1266
Article
CAS
Google Scholar
EFSA, Alvarez F, Arena M, Auteri D, Borroto J, Brancato A, Carrasco Cabrera L, Castoldi AF, Chiusolo A, Colagiorgi A, Colas M et al (2021) Peer review of the pesticide risk assessment of the active substance pelargonic acid (nonanoic acid). EFSA J 19:e06813. https://doi.org/10.2903/j.efsa.2021.6813
Article
CAS
Google Scholar
Eurostat (2021) Agri-environmental indicator—consumption of pesticides. https://www.eceuropaeu/eurostat/statistics-explained/indexphp?title=Agri-environmental_indicator_-_consumption_of_pesticides#Data_sources. Accessed 25 Apr 2022
JKI (2012) Statistische Erhebungen zur Anwendung von Pflanzenschutzmitteln in der Praxis. Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen, Kleinmachnow, Germany. https://papa.julius-kuehn.de. Accessed 25 Apr 2022
Benbrook CM, Benbrook R (2021) A minimum data set for tracking changes in pesticide use. In: Mesnage R, Zaller JG (eds) Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts. Emerging Issues in Analytical Chemistry, Elsevier, Amsterdam, pp 21–40
Chapter
Google Scholar
ISTAT (2022) Fitosanitari: Principi attivi contenuti. http://www.datiistatit/Indexaspx?DataSetCode=DCSPFITOSANITARI. Accessed 03 Apr 2022
Benbrook CM (2016) Trends in glyphosate herbicide use in the United States and globally. Env Sci Eur 28:3. https://doi.org/10.1186/s12302-016-0070-0
Article
CAS
Google Scholar
Belsky J, Joshi NK (2020) Effects of fungicide and herbicide chemical exposure on Apis and Non-Apis bees in agricultural landscape. Front Environ Sci 8:81. https://doi.org/10.3389/fenvs.2020.00081doi:10.3389/fenvs.2020.00081
Article
Google Scholar
Ruuskanen S, Rainio MJ, Uusitalo M, Saikkonen K, Helander M (2020) Effects of parental exposure to glyphosate-based herbicides on embryonic development and oxidative status: a long-term experiment in a bird model. Sci Rep. https://doi.org/10.1038/s41598-020-63365-1
Article
Google Scholar
Neumeister L (2017) Toxic Load Indicator: a new tool for analyzing and evaluating pesticide use. Report 34pp. https://www.pestizidexpertede/Publikationen/Neumeister_17_Toxic_Load_Indicator_Documentationpdf. Accessed 25 Apr 2022
Hartnik T, Sverdrup LE, Jensen J (2008) Toxicity of the pesticide alpha-cypermethrin to four soil nontarget invertebrates and implications for risk assessment. Env Toxicol Chem 27:1408–1415. https://doi.org/10.1897/07-385.1
Article
CAS
Google Scholar
Maderthaner M et al (2020) Commercial glyphosate-based herbicides effects on springtails (Collembola) differ from those of their respective active ingredients and vary with soil organic matter content. Env Sci Poll Res 27:17280–17289. https://doi.org/10.1007/s11356-020-08213-5
Article
CAS
Google Scholar
Pereira JL, Antunes SC, Castro BB, Marques CR, Goncalves AMM, Goncalves F, Pereira R (2009) Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicol 18:455–463. https://doi.org/10.1007/s10646-009-0300-y
Article
CAS
Google Scholar
EFSA (2015) Conclusion on the peer review of the pesticide risk assessment of the active substance diquat. EFSA J 13:4308
Google Scholar
EPA et al. (2014) Guidance for Assessing Pesticide Risks to Bees. United States Environmental Protection Agency, Health Canada Pest Management Regulatory Agency, California Department of Pesticide Regulation.
Hooven L, Sagili R, Johansen E (2013) How to reduce bee poisoning from pesticides. A Pacific Northwest Extension Publication, PNW 59. Oregon State University, University of Idaho, Washington State University. https://www.catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/pnw591.pdf. Accessed 25 Apr 2022
Palta RK, Srivastava YN (2007) Effect of granular insecticides on earthworms (Eisenia fetida). Pestic Res J 19:82–85
CAS
Google Scholar
Devillers J, Pham-Delègue MH (2002) Honey bees: estimating the environmental impact of chemicals. Taylor & Francis, New York
Book
Google Scholar
Pelosi C, Barot S, Capowiez Y, Hedde M, Vandenbulcke F (2014) Pesticides and earthworms. Review Agron Sustain Developm 34:199–228
Article
CAS
Google Scholar
Marques JMG, Silva MVd (2021) Estimation of chronic dietary intake of pesticide residues. Rev Saude Publica 55:36–36. https://doi.org/10.11606/s1518-8787.2021055002197
Article
Google Scholar
Vicini JL, Jensen PK, Young BM, Swarthout JT (2021) Residues of glyphosate in food and dietary exposure. Compr Rev Food Sci Food Saf 20:5226–5257. https://doi.org/10.1111/1541-4337.12822
Article
CAS
Google Scholar
Chen M, Collins EM, Tao L, Lu C (2013) Simultaneous determination of residues in pollen and high-fructose corn syrup from eight neonicotinoid insecticides by liquid chromatography–tandem mass spectrometry. Analyt Bioanalyt Chem 405:9251–9264. https://doi.org/10.1007/s00216-013-7338-7
Article
CAS
Google Scholar
Concenço G et al (2020) Herbicide residues of pre-harvest burndown in cowpea bean (Vigna unguiculata) grains. Exp Agric 56:781–793. https://doi.org/10.1017/S0014479720000290
Article
Google Scholar
Myers JP et al (2016) Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Env Health 15:1–13. https://doi.org/10.1186/s12940-12016-10117-12940
Article
Google Scholar
Clausing P, Robinson C, Burtscher-Schaden H (2018) Pesticides and public health: an analysis of the regulatory approach to assessing the carcinogenicity of glyphosate in the European Union. J Epidem Comm Health 72:668–672. https://doi.org/10.1136/jech-2017-209776
Article
Google Scholar
Sadeleer Nd (2021) Glyphosate as an active substance authorized under EU pesticide regulations: regulatory principles and procedures. In: Mesnage R, Zaller JG (eds) Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts Emerging Issues in Analytical Chemistry. Elsevier, Amsterdam, pp 291–320
Chapter
Google Scholar
Benbrook CM (2019) How did the US EPA and IARC reach diametrically opposed conclusions on the genotoxicity of glyphosate-based herbicides? Env Sci Eur 31:2. https://doi.org/10.1186/s12302-018-0184-7
Article
CAS
Google Scholar
Pouchieu C et al (2017) Pesticide use in agriculture and Parkinson’s disease in the AGRICAN cohort study. Int J Epidemiol 47:299–310. https://doi.org/10.1093/ije/dyx225
Article
Google Scholar
Konradsen F (2007) Acute pesticide poisoning—a global public health problem. Dan Med Bull 54:58–59
Google Scholar
Lagarde F, Beausoleil C, Belcher SM, Belzunces LP, Emond C, Guerbet M, Rousselle C (2015) Non-monotonic dose-response relationships and endocrine disruptors: a qualitative method of assessment. Env Health 14:13. https://doi.org/10.1186/1476-069X-14-13
Article
CAS
Google Scholar
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33:378–455. https://doi.org/10.1210/er.2011-1050
Article
CAS
Google Scholar
Schulte-Oehlmann U, Oehlmann J, Keil F (2011) Before the curtain falls: endocrine-active pesticides–a German contamination legacy. Rev Environ Contam Toxicol 213:137–159. https://doi.org/10.1007/978-1-4419-9860-6_5
Article
CAS
Google Scholar
Khan MA, Costa FB, Fenton O, Jordan P, Fennell C, Mellander P-E (2020) Using a multi-dimensional approach for catchment scale herbicide pollution assessments. Sci Tot Environ 747:141232. https://doi.org/10.1016/j.scitotenv.2020.141232
Article
CAS
Google Scholar
Ji C et al (2020) The potential endocrine disruption of pesticide transformation products (TPs): the blind spot of pesticide risk assessment. Env Int 137:105490. https://doi.org/10.1016/j.envint.2020.105490
Article
CAS
Google Scholar
Topping CJ, Aldrich A, Berny P (2020) Overhaul environmental risk assessment for pesticides. Science 367:360–363
Article
CAS
Google Scholar
Brühl CA, Zaller JG (2019) Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front Environ Sci 7:177. https://doi.org/10.3389/fenvs.2019.00177
Article
Google Scholar
Lewis K, Rainford J, Tzilivakis J, Garthwaite D (2021) Application of the Danish pesticide load indicator to arable agriculture in the United Kingdom. J Environ Qual 50:1110–1122. https://doi.org/10.1110/1002/jeq1112.20262
Article
CAS
Google Scholar
Möhring N, Gaba S, Finger R (2019) Quantity based indicators fail to identify extreme pesticide risks. Sci Tot Environ 646:503–523. https://doi.org/10.1016/j.scitotenv.2018.07.287
Article
CAS
Google Scholar
Reganold JP, Wachter JM (2016) Organic agriculture in the twenty-first century. Nat Plants 2:15221
Article
Google Scholar
Brühl CA, Zaller JG, Liess M, Wogram J (2022) The rejection of synthetic pesticides in organic farming has multiple benefits. Tree 37:113–114. https://doi.org/10.1016/j.tree.2021.11.001
Article
Google Scholar
Mesnage R et al (2021) Improving pesticide-use data for the EU. Nat Ecol Evol. https://doi.org/10.1038/s41559-021-01574-1
Article
Google Scholar