Alexander P, Brown C, Arneth A, Finnigan J, Rounsevell MD (2016) Human appropriation of land for food: the role of diet. Glob Environ Chang 41:88–98. https://doi.org/10.1016/j.gloenvcha.2016.09.005
Article
Google Scholar
Allan JD (2004) Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annu Rev Ecol Evol Syst 35(1):257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122
Article
Google Scholar
Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723. https://doi.org/10.1109/TAC.1974.1100705
Article
Google Scholar
Anderson JC, Dubetz C, Palace VP (2015) Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Sci Total Environ 505:409–422. https://doi.org/10.1016/j.scitotenv.2014.09.090
Article
CAS
Google Scholar
Andert S, Bürger J, Gerowitt B (2015) On-farm pesticide use in four Northern German regions as influenced by farm and production conditions. Crop Prot 75:1–10. https://doi.org/10.1016/j.cropro.2015.05.002
Article
Google Scholar
Baattrup-Pedersen A, Göthe E, Riis T, O’Hare MT (2016) Functional trait composition of aquatic plants can serve to disentangle multiple interacting stressors in lowland streams. Sci Total Environ 543:230–238. https://doi.org/10.1016/j.scitotenv.2015.11.027
Article
CAS
Google Scholar
Baattrup-Pedersen A, Ovesen NB, Larsen SE, Andersen DK, Riis T, Kronvang B, Rasmus-sen JJ (2018) Evaluating effects of weed cutting on water level and ecological status in Danish lowland streams. Freshw Biol 63(7):652–661. https://doi.org/10.1111/fwb.13101
Article
Google Scholar
Borenstein M, Hedges LV, Higgins JP, Rothstein HR (2021) Introduction to meta-analysis. John Wiley & Sons, New York
Book
Google Scholar
Börschig C, Klein AM, von Wehrden H, Krauss J (2013) Traits of butterfly communities change from specialist to generalist characteristics with increasing land-use intensity. Basic Appl Ecol 14(7):547–554. https://doi.org/10.1016/j.baae.2013.09.002
Article
Google Scholar
Bączyk A, Wagner M, Okruszko T, Grygoruk M (2018) Influence of technical maintenance measures on ecological status of agricultural lowland rivers–systematic review and implications for river management. Sci Total Environ 627:189–199. https://doi.org/10.1016/j.scitotenv.2018.01.235
Article
CAS
Google Scholar
Bighiu MA, Gottschalk S, Arrhenius Å, Goedkoop W (2020) Pesticide mixtures cause short-term, reversible effects on the function of autotrophic periphyton assemblages. Environ Toxicol Chem 39(7):1367–1374. https://doi.org/10.1002/etc.4722
Article
CAS
Google Scholar
Blake WH, Ficken KJ, Taylor P, Russell MA, Walling DE (2012) Tracing crop-specific sediment sources in agricultural catchments. Geomorphology 139:322–329. https://doi.org/10.1016/j.geomorph.2011.10.036
Article
Google Scholar
Brock TCM, Lahr J, Van den Brink, PJ. (2000). Ecological risks of pesticides in freshwater ecosystems; Part 1: herbicides. (No 88). Alterra. Wageningen, The Netherlands, 142
Casatti L, Teresa FB, Zeni JDO, Ribeiro MD, Brejao GL, Ceneviva-Bastos M (2015) More of the same: high functional redundancy in stream fish assemblages from tropical agroecosystems. Environ Manage 55(6):1300–1314. https://doi.org/10.1007/s00267-015-0461-9
Article
Google Scholar
Chiu MC, Hunt L, Resh VH (2016) Response of macroinvertebrate communities to temporal dynamics of pesticide mixtures: a case study from the Sacramento River watershed, California. Environ Pollut 219:89–98. https://doi.org/10.1016/j.envpol.2016.09.048
Article
CAS
Google Scholar
Cohen, J. (1988). Stafisfical power analysis for the behavioural sciences. 2. Hillside.
Dahm V, Hering D, Nemitz D, Graf W, Schmidt-Kloiber A, Leitner P, Melcher A, Feld CK (2013) Effects of physico-chemistry, land use and hydromorphology on three riverine organism groups: a comparative analysis with monitoring data from Germany and Austria. Hydrobiologia 704(1):389–415. https://doi.org/10.1007/s10750-012-1431-3
Article
CAS
Google Scholar
Dala-Corte RB, Giam X, Olden JD, Becker FG, Guimarães TDF, Melo AS (2016) Revealing the pathways by which agricultural land-use affects stream fish communities in South Brazilian grasslands. Freshw Biol 61(11):1921–1934. https://doi.org/10.1111/fwb.12825
Article
Google Scholar
Dala-Corte RB, Melo AS, Siqueira T, Bini LM, Martins RT, Cunico AM, Pes AM, Magalhães AL, Godoy BS, Leal CG, Monteiro-Júnior CS (2020) Thresholds of freshwater biodiversity in response to riparian vegetation loss in the Neotropical region. J Appl Ecol 57(7):1391–1402. https://doi.org/10.1111/1365-2664.13657
Article
Google Scholar
Davis NG, Hodson R, Matthaei CD (2022) Long-term variability in deposited fine sediment and macroinvertebrate communities across different land-use intensities in a regional set of New Zealand rivers. NZ J Mar Freshwat Res 56(2):191–212. https://doi.org/10.1080/00288330.2021.1884097
Article
CAS
Google Scholar
Dobbie KE, Smith KA (2003) Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables. Glob Change Biol 9(2):204–218. https://doi.org/10.1046/j.1365-2486.2003.00563.x
Article
Google Scholar
Donald PF, Sanderson FJ, Burfield IJ, Van Bommel FP (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agr Ecosyst Environ 116(3–4):189–196. https://doi.org/10.1016/j.agee.2006.02.007
Article
Google Scholar
Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny ML, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81(2):163–182. https://doi.org/10.1017/S1464793105006950
Article
Google Scholar
Duval SJ (2005) The trim and fill method. In: Rothstein HR, Sutton AJ, Borenstein M (eds) Publication bias in meta-analysis: Prevention, assessment, and adjustments. Wiley, Chichester, pp 127–144
Google Scholar
Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634. https://doi.org/10.1136/bmj.315.7109.629
Article
CAS
Google Scholar
EUROSTAT (2022a): Crop production in EU standard humidity by NUTS 2 regions [apro_cpshr]. https://ec.europa.eu/eurostat/web/products-datasets/-/apro_cpshr Accessed 23 June 2022
EUROSTAT (2022b): Animal populations by NUTS 2 regions [agr_r_animal]. https://ec.europa.eu/eurostat/web/products-datasets/-/agr_r_animal Accessed 23 June 2022
Englert D, Bundschuh M, Schulz R (2012) Thiacloprid affects trophic interaction between gam-marids and mayflies. Environ Pollut 167:41–46. https://doi.org/10.1016/j.envpol.2012.03.024
Article
CAS
Google Scholar
Feld CK (2013) Response of three lotic assemblages to riparian and catchment-scale land use: implications for designing catchment monitoring programmes. Freshw Biol 58(4):715–729. https://doi.org/10.1111/fwb.12077
Article
Google Scholar
Feld CK, de Bello F, Dolédec S (2014) Biodiversity of traits and species both show weak responses to hydromorphological alteration in lowland river macroinvertebrates. Freshw Biol 59(2):233–248. https://doi.org/10.1111/fwb.12260
Article
Google Scholar
Fitzpatrick FA, Scudder BC, Lenz BN, Sullivan DJ (2001) Effects of multi-scale environmental characteristics on agricultural stream biota in eastern wisconsin 1. JAWRA J Am Water Resources Association 37(6):1489–1507. https://doi.org/10.1111/j.1752-1688.2001.tb03655.x
Article
Google Scholar
Gieswein A, Hering D, Lorenz AW (2019) Development and validation of a macroinvertebrate-based biomonitoring tool to assess fine sediment impact in small mountain streams. Sci Total Environ 652:1290–1301. https://doi.org/10.1016/j.scitotenv.2018.10.180
Article
CAS
Google Scholar
Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818. https://doi.org/10.1126/science.1185383
Article
CAS
Google Scholar
Grenouillet G, Pont D, Hérissé C (2004) Within-basin fish assemblage structure: the relative influence of habitat versus stream spatial position on local species richness. Can J Fish Aquat Sci 61(1):93–102. https://doi.org/10.1139/f03-145
Article
Google Scholar
Haidekker A, Hering D (2008) Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: a multivariate study. Aquat Ecol 42(3):463–481. https://doi.org/10.1007/s10452-007-9097-z
Article
Google Scholar
Harding JS, Benfield EF, Bolstad PV, Helfman GS, Jones Iii EBD (1998) Stream biodiversity: the ghost of land use past. Proc Natl Acad Sci 95(25):14843–14847. https://doi.org/10.1073/pnas.95.25.1484
Article
CAS
Google Scholar
Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. https://doi.org/10.1136/bmj.327.7414.557
Article
Google Scholar
Higgins JPT, Green S (editors). Cochrane handbook for systematic reviews of interventions, Chapter 7.7.3.2 Version 5.1.0. The Cochrane Collaboration, 2011. www.handbook.cochrane.org Accessed March 2011
Hilton J, O’Hare M, Bowes MJ, Jones JI (2006) How green is my river? A new paradigm of eutrophication in rivers. Sci Total Environ 365(1–3):66–83. https://doi.org/10.1016/j.scitotenv.2006.02.055
Article
CAS
Google Scholar
Janova E, Heroldova M (2016) Response of small mammals to variable agricultural landscapes in central Europe. Mamm Biol 81(5):488–493. https://doi.org/10.1016/j.mambio.2016.06.004
Article
Google Scholar
Jones JI, Douthwright TA, Arnold A, Duerdoth CP, Murphy JF, Edwards FK, Pretty JL (2017) Diatoms as indicators of fine sediment stress. Ecohydrology 10(5):e1832. https://doi.org/10.1002/eco.1832
Article
Google Scholar
Kaenel BR, Buehrer H, Uehlinger U (2000) Effects of aquatic plant management on stream metabolism and oxygen balance in streams. Freshw Biol 45(1):85–95. https://doi.org/10.1046/j.1365-2427.2000.00618.x
Article
Google Scholar
Kemp P, Sear D, Collins A, Naden P, Jones I (2011) The impacts of fine sediment on riverine fish. Hydrol Process 25(11):1800–1821. https://doi.org/10.1002/hyp.7940
Article
Google Scholar
King RS, Brain RA, Back JA, Becker C, Wright MV, Toteu Djomte V, Scott WC, Virgil SR, Brooks BW, Hosmer AJ, Chambliss CK (2016) Effects of pulsed atrazine exposures on autotrophic community structure, biomass, and production in field-based stream mesocosms. Environ Toxicol Chem 35(3):660–675. https://doi.org/10.1002/etc.3213
Article
CAS
Google Scholar
Lam S, Pham G, Nguyen-Viet H (2017) Emerging health risks from agricultural intensification in Southeast Asia: a systematic review. Int J Occup Environ Health 23(3):250–260. https://doi.org/10.1080/10773525.2018.1450923
Article
Google Scholar
Lange K, Townsend CR, Matthaei CD (2014) Can biological traits of stream invertebrates help disentangle the effects of multiple stressors in an agricultural catchment? Freshw Biol 59(12):2431–2446. https://doi.org/10.1111/fwb.12437
Article
Google Scholar
Levers C, Müller D, Erb K, Haberl H, Jepsen MR, Metzger MJ, Meyfroidt P, Plieninger T, Plutzar C, Stürck J, Verburg PH, Kuemmerle T (2018) Archetypical patterns and trajectories of land systems in Europe. Reg Environ Change 18(3):715–732. https://doi.org/10.1007/s10113-015-0907-x
Article
Google Scholar
Liess A, Le Gros A, Wagenhoff A, Townsend CR, Matthaei CD (2012) Landuse intensity in stream catchments affects the benthic food web: consequences for nutrient supply, periphyton C: nutrient ratios, and invertebrate richness and abundance. Freshwater Sci 31(3):813–824. https://doi.org/10.1899/11-019.1
Article
Google Scholar
Liess M, Schäfer RB, Schriever CA (2008) The footprint of pesticide stress in communities—species traits reveal community effects of toxicants. Sci Total Environ 406(3):484–490. https://doi.org/10.1016/j.scitotenv.2008.05.054
Article
CAS
Google Scholar
Liess M, Liebmann L, Vormeier P, Weisner O, Altenburger R, Borchardt D, Brack W, Chatzinotas A, Escher B, Foit K, Gunold R, Henz S, Hitzfeld KL, Schmitt-Jansen M, Kamjunke N, Kaske O, Knillmann S, Krauss M, Küster E, Link M, Lück M, Möder M, Müller A, Paschke A, Schäfer RB, Schneeweiss A, Schreiner AC, Schulze T, Schüürmann G, Tümpling Wv, Weitere M, Wogram J, Reemtsma T (2021) Pesticides are the dominant stressors for vulnerable insects in lowland streams. Water Res 201:117262. https://doi.org/10.1016/j.watres.2021.117262
Article
CAS
Google Scholar
Lusardi RA, Jeffres CA, Moyle PB (2018) Stream macrophytes increase invertebrate production and fish habitat utilization in a California stream. River Res Appl 34(8):1003–1012. https://doi.org/10.1002/rra.3331
Article
Google Scholar
Mebane CA, Simon NS, Maret TR (2014) Linking nutrient enrichment and streamflow to macrophytes in agricultural streams. Hydrobiologia 722(1):143–158. https://doi.org/10.1007/s10750-013-1693-4
Article
CAS
Google Scholar
Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Glob Ecol Biogeo 14(6):549–563. https://doi.org/10.1111/j.1466-822X.2005.00190.x
Article
Google Scholar
Mouri G, Aisaki N (2015) Using land-use management policies to reduce the environmental impacts of livestock farming. Ecol Complex 22:169–177. https://doi.org/10.1016/j.ecocom.2015.03.003
Article
Google Scholar
Mücher CA, Klijn JA, Wascher DM, Schaminée JHJ (2010) A new European Landscape Classification (LANMAP): A transparent flexible and user-oriented methodology to distinguish landscapes. Ecol Indic 10(1):87–103. https://doi.org/10.1016/j.ecolind.2009.03.018
Article
Google Scholar
Niyogi DK, Koren M, Arbuckle CJ, Townsend CR (2007) Stream communities along a catchment land-use gradient: subsidy-stress responses to pastoral development. Environ Manage 39(2):213–225. https://doi.org/10.1007/s00267-005-0310-3
Article
Google Scholar
Nowell LH, Moran PW, Schmidt TS, Norman JE, Nakagaki N, Shoda ME, Mahler BJ, Van Metre PC, Stone WW, Sandstorm MW, Hladik ML (2018) Complex mixtures of dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern US streams. Sci Total Environ 613:1469–1488. https://doi.org/10.1016/j.scitotenv.2017.06.156
Article
CAS
Google Scholar
O’Hare MT, Baattrup-Pedersen A, Baumgarte I, Freeman A, Gunn ID, Lázár AN, Sinclair R, Wade AJ, Bowes MJ (2018) Responses of aquatic plants to eutrophication in rivers: a revised conceptual model. Front Plant Sci 9:451. https://doi.org/10.3389/fpls.2018.00451
Article
Google Scholar
Pellegrini P, Fernández RJ (2018) Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc Natl Acad Sci 115(10):2335–2340. https://doi.org/10.1073/pnas.1717072115
Article
CAS
Google Scholar
Piggott JJ, Lange K, Townsend CR, Matthaei CD (2012) Multiple stressors in agricultural streams: a mesocosm study of interactions among raised water temperature, sediment addition and nutrient enrichment. PLoS ONE 7(11):e49873. https://doi.org/10.1371/journal.pone.0049873
Article
CAS
Google Scholar
Palt M, Le Gall M, Piffady J, Hering D, Kail J (2022) A metric-based analysis on the effects of riparian and catchment landuse on macroinvertebrates. Sci Total Environ 816:151590. https://doi.org/10.1016/j.scitotenv.2021.151590
Article
CAS
Google Scholar
Quinn JM, Cooper AB, Davies-Colley RJ, Rutherford JC, Williamson RB (1997) Land use effects on habitat, water quality, periphyton, and benthic invertebrates in Waikato, New Zealand, hill-country streams. NZ J Mar Freshwat Res 31(5):579–597. https://doi.org/10.1080/00288330.1997.9516791
Article
CAS
Google Scholar
Raitif J, Plantegenest M, Roussel JM (2019) From stream to land: ecosystem services provided by stream insects to agriculture. Agr Ecosyst Environ 270:32–40. https://doi.org/10.1016/j.agee.2018.10.013
Article
Google Scholar
Ritchie, H., & Roser, M. (2019). Land use. Our world in data. https://ourworldindata.org/landuse?fbclid=IwAR2ZHUKQViHe1cB1YszWkbdwJ8HxfaCpbOyOvHTk0mb5Lv_kv7oxdiXH4nM Accessed 15 Feb 2022
Sauvant D, Ponter A (2004) Tables of composition and nutritional value of feed materials. Pigs, poultry, cattle, sheep, goats, rabbits, horses and fish, Wageningen Acad. Publ; INRA Ed. http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10686757
Schäfer RB, Pettigrove V, Rose G, Allinson G, Wightwick A, Von Der Ohe PC, Kefford BJ (2011) Effects of pesticides monitored with three sampling methods in 24 sites on macroinvertebrates and microorganisms. Environ Sci Technol 45(4):1665–1672. https://doi.org/10.1021/es103227q
Article
CAS
Google Scholar
Schäfer RB, van den Brink PJ, Liess M (2011) Impacts of pesticides on freshwater ecosystems. Ecol Impacts Toxic Chem 2011:111–137. https://doi.org/10.2174/978160805121211101010111
Article
Google Scholar
Secchi S, Gassman PW, Jha M, Kurkalova L, Kling CL (2011) Potential water quality changes due to corn expansion in the Upper Mississippi River Basin. Ecol Appl 21(4):1068–1084. https://doi.org/10.1890/09-0619.1
Article
Google Scholar
Segurado P, Almeida C, Neves R, Ferreira MT, Branco P (2018) Understanding multiple stressors in a Mediterranean basin: Combined effects of land use water scarcity and nutrient enrichment. Sci Total Environ 624(1):1221–1233. https://doi.org/10.1016/j.scitotenv.2017.12.201
Article
CAS
Google Scholar
Senior AM, Grueber CE, Kamiya T, Lagisz M, Santos ES, Nakagawa S (2016) Heterogeneity in ecological and evolutionary meta-analyses: its magnitude and implications. Ecology 97(12):3293–3299. https://doi.org/10.1002/ecy.1591
Article
Google Scholar
Shoyama K, Braimoh AK, Avtar R, Saito O (2018) Land transition and intensity analysis of cropland expansion in Northern Ghana. Environ Manage 62(5):892–905. https://doi.org/10.1007/s00267-018-1085-7
Article
Google Scholar
Stehle S, Schulz R (2015) Agricultural insecticides threaten surface waters at the global scale. Proc Natl Acad Sci 112(18):5750–5755. https://doi.org/10.1073/pnas.1500232112
Article
CAS
Google Scholar
Strokal M, Ma L, Bai Z, Luan S, Kroeze C, Oenema O, Velthof G, Zhang F (2016) Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions. Environ Res Lett 11(2):024014. https://doi.org/10.1088/1748-9326/11/2/024014
Article
CAS
Google Scholar
Suriano MT, Fonseca-Gessner AA, Roque FO, Froehlich CG (2011) Choice of macroinvertebrate metrics to evaluate stream conditions in Atlantic Forest Brazil. Environ Monit Assess 175(1):87–101. https://doi.org/10.1007/s10661-010-1495-3
Article
Google Scholar
Trikalinos TA, Ioannidis JP (2005) Assessing the evolution of effect sizes over time. In: Rothstein HR, Sutton AJ, Borenstein M (eds) Publication bias in meta-analysis: prevention, assessment, and adjustments. Wiley, Chichester, pp 241–259
Google Scholar
Václavík T, Lautenbach S, Kuemmerle T, Seppelt R (2013) Mapping global land system archetypes. Glob Environ Chang 23(6):1637–1647. https://doi.org/10.1016/j.gloenvcha.2013.09.004
Article
Google Scholar
Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Soft 36(3):1–48. https://doi.org/10.1863/jss.v036.i03
Article
Google Scholar
Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561. https://doi.org/10.1038/nature09440
Article
CAS
Google Scholar
Wahl CM, Neils A, Hooper D (2013) Impacts of land use at the catchment scale constrain the habitat benefits of stream riparian buffers. Freshw Biol 58(11):2310–2324. https://doi.org/10.1111/fwb.12211
Article
CAS
Google Scholar
Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14(1):1–13. https://doi.org/10.1186/1471-2288-14-135
Article
Google Scholar
Wang HH, Tan TK, Schotzko RT (2007) Interaction of potato production systems and the environment: a case of waste water irrigation in central Washington. Waste Manage Res 25(1):14–23. https://doi.org/10.1177/0734242X07066337
Article
CAS
Google Scholar
Weijters MJ, Janse JH, Alkemade R, Verhoeven JT (2009) Quantifying the effect of catchment land use and water nutrient concentrations on freshwater river and stream biodiversity. Aquat Conserv Mar Freshwat Ecosyst 19(1):104–112. https://doi.org/10.1002/aqc.989
Article
Google Scholar
Wirsenius S, Azar C, Berndes G (2010) How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agric Syst 103(9):621–638. https://doi.org/10.1016/j.agsy.2010.07.005
Article
Google Scholar
Woodward G, Gessner MO, Giller PS, Gulis V, Hladyz S, Lecerf A, Malmqvist B, Mickie BG, Tiegs SD, Cariss H, Dobson M, Elosegi A, Ferreira V, Graca MAS, Fleituch T, Lacoursiére JO, Nistorescu M, Pozo J, Risnoveanu G, Schindler M, Vadineanu A, Vought LB-M, Chauvet E (2012) Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336(6087):1438–1440. https://doi.org/10.1126/science.1219534
Article
CAS
Google Scholar
Zheng L, Gerritsen J, Beckman J, Ludwig J, Wilkes S (2008) Land use, geology, enrichment, and stream Biota in the Eastern Ridge and Valley Ecoregion: implications for nutrient criteria development 1. JAWRA Journal of the American Water Resources Association 44(6):1521–1536. https://doi.org/10.1111/j.1752-1688.2008.00257.x
Article
CAS
Google Scholar