Ye C, Li C, Deng T (2015) Structures and ecological functions of lake littoral zones. Res Environ Sci 28:171–181. https://doi.org/10.13198/j.issn.1001-6929.2015.02.02
Article
Google Scholar
Simmons B, Woog R, Dimitrov V (2007) Living on the edge: A Complexity-Informed exploration of the human–water relationship. World Futures 63(3–4):275–285. https://doi.org/10.1080/02604020601174927
Article
Google Scholar
Ye C, Li C, Chen X, Jiao X, Lu S (2012) Classification and ecological restoration modes for the littoral zone of Lake Taihu. Journal of Lake Sciences 24:822–828. https://doi.org/10.18307/2012.0603
Article
Google Scholar
Makarewicz JC, Lewis TW, Pennuto CM, Atkinson JF, Edwards WJ, Boyer GL, Howell ET, Thomas G (2012) Physical and chemical characteristics of the nearshore zone of Lake Ontario. J Great Lakes Res 38:21–31. https://doi.org/10.1016/j.jglr.2011.11.013
Article
CAS
Google Scholar
Bettez ND, Groffman PM (2012) Denitrification potential in stormwater control structures and natural riparian zones in an urban landscape. Environ Sci Technol 46:10909–10917
Article
CAS
Google Scholar
Nishihiro J, Washitani I (2007) Restoration of lakeshore vegetation using sediment seed banks; studies and practices in Lake Kasumigaura, Japan. Glob Environ Res 11:171–177
Google Scholar
Chen J, Kong D, Fan Y, Zhao L, Li J, Yang F (2012) Restoration project of embankment and substrata in Dianchi’s lakeshore. Environ Sci Technol (China) 35:157–179. https://doi.org/10.3969/j.issn.1003-6504.2012.06.034
Article
Google Scholar
Wang H, Song C, Liu X, Li K (2012) Lakeshore overview of lake chaohu and ecological rehabilitation schemes for shoreline and littoral zones. Resour Environ Yangtze Basin 21:63–64
CAS
Google Scholar
Chen F, Lu S, Hu X, He Q, Feng C, Xu Q, Chen N, Ngo H, Guo H (2019) Multi-dimensional habitat vegetation restoration mode for lake riparian zone, Taihu, China. Ecol Eng 134:56–64. https://doi.org/10.1016/j.ecoleng.2019.05.002
Article
Google Scholar
Yuan X, Zhang Y, Liu H, Xiong S, Li B, Deng W (2013) The littoral zone in the Three Gorges Reservoir, China: challenges and opportunities. Environ Sci Pollut Res 20:7092–7102. https://doi.org/10.1007/s11356-012-1404-0
Article
Google Scholar
Tao Y, Wu G, Zhang Y (2017) Dune-scale distribution pattern of herbaceous plants and their relationship with environmental factors in a saline–alkali desert in Central Asia. Sci Total Environ 576:473–480. https://doi.org/10.1016/j.scitotenv.2016.10.102
Article
CAS
Google Scholar
Liu Y, Ren W, Shu T, Xie C, Jiang J, Yang S (2015) Current status and the long-term change of riparian vegetation in last fifty years of Lake Honghu. Resour Environ Yangtze Basin 24:38–45
CAS
Google Scholar
Tölgyesi C, Körmöczi L (2012) Structural changes of a Pannonian grassland plant community in relation to the decrease of water availability. Acta Bot Hungar 54:413–431. https://doi.org/10.1556/ABot.54.2012.3-4.17
Article
Google Scholar
Sun R, Chen W, Song X, Luo Y, Liu L (2019) Distribution characteristics and edge effect of soil water and salt in silvopastoral system of the Yellow River Delta, China. Chin J Appl Ecol 30:2549–2557. https://doi.org/10.13287/j.1001-9332.201908.003
Article
Google Scholar
Hufkens K, Scheunders P, Ceulemans R (2009) Ecotones in vegetation ecology: methodologies and definitions revisited. Ecol Res 24:977–986. https://doi.org/10.1007/s11284-009-0584-7
Article
Google Scholar
Körmöczi L, Bátori Z, Erdős L, Tölgyesi C, Zalatnai M, Varró C (2016) The role of randomization tests in vegetation boundary detection with moving split-window analysis. J Veg Sci 27:1288–1296. https://doi.org/10.1111/jvs.12439
Article
Google Scholar
Ou X, Liu X, Zhang Z, Wang W, Shi W, Fang X (2011) Advances in ecotone width determination and its impact factors. Ecol Sci 30:88–96. https://doi.org/10.3969/j.issn.1008-8873.2011.01.016
Article
Google Scholar
Wang T, Ou X, Zhang Z, Liu X, Wang L, Sun Z, He B, Li F (2012) Measurement of ecotone width between agro-ecosystem and forest ecosystems after grain for green program. J Yunnan Univ Nat Sci Edn 34:604–612
CAS
Google Scholar
Xiong D, Ou X, Huang W, Yang J, Wang T, Guo J, Zhang Z (2014) Measurement of eco-tone width between agro-forest ecosystems based on soil nutrients. Ecol Sci 33:594–602. https://doi.org/10.3969/j.issn.1008-8873,2014.03.030
Article
Google Scholar
Su X, Wang Z (2017) Research on boundary definition and plant community diversity of wetland-grassland ecotone: a case ecotone: a Wetland in Ningxia. For Res Manage 1:63–69. https://doi.org/10.13466/j.cnki.lyzygl.2017.01.012
Article
Google Scholar
Li H, Liu X, Zhang K, Miao J, Siraj M (2016) Definition of wetland-dry grassland ecotone and vegetation stability in the Nanhaizi wetland in Yanchi, Ningxia. Pratacult Sci 33:170–176. https://doi.org/10.11829/j.issn.1001-0629.2016.0462
Article
Google Scholar
Li W, Xu Q, Li J, Li SL, Yu Q, Zhang Z (2017) Quantification of ecotone width of returned forest land from farmland based on specific leaf area. J West China For Sci 46:117–121. https://doi.org/10.16473/j.cnki.xblykx1972.2017.01.022
Article
CAS
Google Scholar
Humphries NE, Queiroz N, Dyer JR, Pade NG, Musyl MK, Schaefer KM, Fuller DW, Brunnschweiler JM, Doyle TK, Houghton JD, Hays GC (2010) Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465:1066–1069. https://doi.org/10.1038/nature09116
Article
CAS
Google Scholar
Pärn J, Remm K, Mander Ü (2010) Correspondence of vegetation boundaries to redox barriers in a Northern European moraine plain. Basic Appl Ecol 11:54–64. https://doi.org/10.1016/j.baae.2009.08.001
Article
Google Scholar
Pandita S, Dutt HC (2020) Land use induced blurring of forest-grassland transition in north-west Himalaya—A case study using Moving Split Window boundary detection technique. J Mt Sci 17:3085–3096
Article
Google Scholar
Xie Y, Qiu K, Xu D, Shi X, Qi T, Pott R (2015) Spatial heterogeneity of soil and vegetation characteristics and soil-vegetation relationships along an ecotone in Southern Mu Us Sandy Land, China. J Soils Sediments 15:1584–1601. https://doi.org/10.1007/s11368-015-1114-6
Article
CAS
Google Scholar
Figueiredo FO, Zuquim G, Tuomisto H, Moulatlet GM, Balslev H, Costa FR (2018) Beyond climate control on species range: the importance of soil data to predict distribution of Amazonian plant species. J Biogeogr 45:190–200. https://doi.org/10.1111/jbi.13104
Article
Google Scholar
Gong X, Brueck H, Giese KM, Zhang L, Sattelmacher B, Lin S (2008) Slope aspect has effects on productivity and species composition of hilly grassland in the Xilin River Basin, Inner Mongolia, China. J Arid Environ 72:483–493. https://doi.org/10.1016/j.jaridenv.2007.07.001
Article
Google Scholar
Torma A, Császár P (2013) Species richness and composition patterns across trophic levels of true bugs (Heteroptera) in the agricultural landscape of the lower reach of the Tisza River Basin. J Insect Conserv 17:35–51. https://doi.org/10.1007/s10841-012-9484-1
Article
Google Scholar
Calhoun AJ, Mushet DM, Bell KP, Boix D, Fitzsimons JA, Isselin-Nondedeu F (2017) Temporary wetlands: challenges and solutions to conserving a ‘disappearing’ ecosystem. Biol Cons 211:3–11. https://doi.org/10.1016/j.biocon.2016.11.024
Article
Google Scholar
Petersen JE, Brandt EC, Grossman JJ, Allen GA, Benzing DH (2015) A controlled experiment to assess relationships between plant diversity, ecosystem function and planting treatment over a nine year period in constructed freshwater wetlands. Ecol Eng 82:531–541. https://doi.org/10.1016/j.ecoleng.2015.05.002
Article
Google Scholar
Wang S, Dou H (eds) (1998) Records of China Lake. Science Press Beijing, Beijing
Google Scholar
Lin Q, Xu L, Hou J, Liu Z, Jeppesen E, Han B (2017) Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming. Water Res 124:618–629. https://doi.org/10.1016/j.watres.2017.07.078
Article
CAS
Google Scholar
Zhao W, Xiong D, Wen F, Wang X (2020) Lake area monitoring based on land surface temperature in the Tibetan Plateau from 2000 to 2018. Environ Res Lett 15:084033. https://doi.org/10.1088/1748-9326/ab9b41
Article
Google Scholar
Huang X, Sillanpää M, Gjessing ET, Peräniemi S, Vogt RD (2010) Environmental impact of mining activities on the surface water quality in Tibet: Gyama valley. Sci Total Environ 408:4177–4184
Article
CAS
Google Scholar
Wang X (2014) Sustainable development in Tibet requires control of agricultural nonpoint pollution. Environ Sci Technol 48:8944–8945. https://doi.org/10.1016/j.scitotenv.2010.05.015
Article
CAS
Google Scholar
Zhang H, Wang Z, Zhang Y, Hu Z (2012) The effects of the Qinghai-Tibet railway on heavy metals enrichment in soils. Sci Total Environ 439:240–248. https://doi.org/10.1016/j.scitotenv.2012.09.027
Article
CAS
Google Scholar
Tong K, Su F, Li C (2020) Modeling of Water Fluxes and Budget in Nam Co Basin during 1979–2013. J Hydrometeorol 21:829–844. https://doi.org/10.1175/JHM-D-19-0135.1
Article
Google Scholar
Li D, Li Y, Ma B, Dong G, Wang L, Zhao J (2009) Lake-level fluctuations since the Last Glaciation in Selin Co (lake), Central Tibet, investigated using optically stimulated luminescence dating of beach ridges. Environ Res Lett 4:045204. https://doi.org/10.1088/1748-9326/4/4/045204
Article
CAS
Google Scholar
Jia X, Wang D, Liu F, Dai Q (2020) Evaluation of highway construction impact on ecological environment of Qinghai-Tibet Plateau. EEMJ 19:1157–1166
Google Scholar
Wu Y, Wang S, Ni Z, Li H, May L, Pu J (2021) Emerging water pollution in the world’s least disturbed lakes on Qinghai-Tibetan Plateau. Environ Pollut 272:116032. https://doi.org/10.1016/j.envpol.2020.116032
Article
CAS
Google Scholar
Li K, Liu X, Herzschuh U, Wang Y (2016) Rapid climate fluctuations over the past millennium: evidence from a lacustrine record of Basomtso Lake, southeastern Tibetan Plateau. Sci Rep 6:1–9. https://doi.org/10.1038/srep24806
Article
CAS
Google Scholar
Zhang X, Sun R, Zhu L (2012) Lake water in the Yamzhog Yumco Basin in South Tibetan region: quality and evaluation. J Glaciol Geocryol 34:950–958. https://doi.org/10.1007/s11783-011-0280-z
Article
CAS
Google Scholar
Feng J, Chen F, Hu H (2017) Isotopic study of the source and cycle of sulfur in the Yamdrok Tso basin, Southern Tibet, China. Appl Geochem 85:61–72. https://doi.org/10.1016/j.apgeochem.2017.09.005
Article
CAS
Google Scholar
Yang K, Wang J, Lei Y, Chen Y, Zhu L, Ding B, Qin J (2016) Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau. J Geophys Res 121:7578–7591. https://doi.org/10.1002/2015JD024523
Article
Google Scholar
Wang J, Zhu L, Daut G, Ju J, Lin X, Wang Y, Zhen X (2009) Investigation of bathymetry and water quality of Lake Nam Co, the largest lake on the central Tibetan Plateau, China. Limnology 10:149–158. https://doi.org/10.1007/s10201-009-0266-8
Article
CAS
Google Scholar
Deng Y, Liu P, Conrad R (2019) Effect of temperature on the microbial community responsible for methane production in alkaline NamCo wetland soil. Soil Biol Biochem 132:69–79. https://doi.org/10.1016/j.soilbio.2019.01.024
Article
CAS
Google Scholar
Kou Q, Lin X, Wang J, Yu S, Kai J, Laug A, Zhu L (2021) Spatial distribution of n-alkanes in surface sediments of Selin Co Lake, central Tibetan Plateau, China. J Paleolimnol 65:53–67. https://doi.org/10.1007/s10933-020-00148-8
Article
Google Scholar
Guo Y, Zhang Y, Ma N, Xu J, Zhang T (2019) Long-term changes in evaporation over Siling Co Lake on the Tibetan Plateau and its impact on recent rapid lake expansion. Atmos Res 216:141–150. https://doi.org/10.1016/j.atmosres.2018.10.006
Article
Google Scholar
Chen Y (2001) Hydrographic features of Serling Co, North Tibetan Plateau. J Lake Sci 13:21–28. https://doi.org/10.18307/20010104
Article
CAS
Google Scholar
Erdős L, Zalatnai M, Bátori Z, Körmöczi L (2014) Transitions between community complexes: a case study analysing gradients through mountain ridges in South Hungary. Acta Bot Croat 73:63–77. https://doi.org/10.2478/botcro-2013-0009
Article
Google Scholar
Dale MR, Fortin MJ (2014) Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge, p 425p
Book
Google Scholar
Erdős L, Bátori Z, Tölgyesi C, Körmöczi L (2014) The moving split-window (MSW) analysis in vegetation science–an overview. Appl Ecol Environ Res 12(3):787–805. https://doi.org/10.15666/aeer/1203_787805
Article
Google Scholar
Zheng P, Shang X, Ye C, Li C, Zheng X, Dai W, Wei W (2021) Delimiting the radiant belt toward land of lake-terrestrial ecotone with natural-wetland type. Res Environ Sci 34:953–963. https://doi.org/10.13198/j.issn.1001-6929.2020.12.29
Article
Google Scholar
Schmugge TJ, Jackson TJ, McKim HL (1980) Survey of methods for soil moisture determination. Water Resour Res 16:961–979. https://doi.org/10.1029/WR016i006p00961
Article
Google Scholar
Wang QM, Huo ZL, Zhang LD, Wang JH, Zhao Y (2016) Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid region of China. Agric Water Manag 163:125–138. https://doi.org/10.1016/j.agwat.2015.09.012
Article
Google Scholar
Schofield RK, Taylor AW (1955) The measurement of soil pH. Soil Sci Soc Am J 19(2):164–167. https://doi.org/10.2136/sssaj1955.03615995001900020013x
Article
CAS
Google Scholar
Zhang B (2013) Study on Distribution characteristics and flux of organic matter, nitrogen and phosphorus in the soil of WLFZ of Three Gorges Reservoir. Chongqing University, Chongqing, p 124p
Google Scholar
Ruban V, López-Sánchez JF, Pardo P, Rauret G, Muntau H, Quevauviller P (1999) Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment. J Environ Monit 1:51–56. https://doi.org/10.1039/A807778I
Article
CAS
Google Scholar
Choesin D, Boerner REJ (2002) Vegetation boundary detection: a comparison of two approaches applied to field data. Plant Ecol 158:85–96. https://doi.org/10.1023/A:1014720508155
Article
Google Scholar
Kröger R, Khomo LM, Levick S, Rogers KH (2009) Moving window analysis and riparian boundary delineation on the Northern Plains of Kruger National Park, South Africa. Acta Oecologica 35:573–580. https://doi.org/10.1016/j.actao.2009.05.007
Article
Google Scholar
Lantman IMVS, Hertzog LR, Vandegehuchte ML, Martel A, Verheyen K, Lens L, Bonte D (2020) Forest edges, tree diversity and tree identity change leaf miner diversity in a temperate forest. Insect Conserv Diver 13:10–22. https://doi.org/10.1111/icad.12358
Article
Google Scholar
Rixen C, Wipf S (2017) Non-equilibrium in alpine plant assemblages: shifts in Europe’s summit floras. High Mountain Conserv Changing World 62:285–303. https://doi.org/10.1007/978-3-319-55982-7
Article
Google Scholar
Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453:216–219. https://doi.org/10.1038/nature06812
Article
CAS
Google Scholar
Shimono A, Zhou H, Shen H, Hirota M, Ohtsuka T, Tang Y (2010) Patterns of plant diversity at high altitudes on the Qinghai-Tibetan Plateau. Journal of Plant Ecology 3:1–7. https://doi.org/10.1093/jpe/rtq002
Article
Google Scholar
Huo J, Liu W, Liu J, Li H, Xu Y, Maria·N. (2017) Driving forces of desert plant characteristics in a desert oasis transitional zone in Driving forces of desert plant characteristics in a desert oasis transitional zone in FuKang, Xinjiang, China. Acta Ecol Sin 37:1–10. https://doi.org/10.5846/stxb201610282199
Article
CAS
Google Scholar
Long T, Wang J, Li J, Feng Y, Wu B, Lu Q (2017) Plant diversity and its environmental explanation in Gobi district of northern Qinghai-Tibet Plateau, northwestern China. J Beijing For Univ 39:17–24. https://doi.org/10.13332/j.1000-1522.20170395
Article
Google Scholar
Liu L (2016) The relationship between plant diversity and climate factors in different grassland types of Xinjiang. Xinjiang Agricultural University, Urumqi, p 68p
Google Scholar
Fayech D, Tarhouni J (2020) Climate variability and its effect on normalized difference vegetation index (NDVI) using remote sensing in semi-arid area. Model Earth Syst Environ. https://doi.org/10.1007/S40808-020-00896-6
Article
Google Scholar
Wang Z, Yang G, Yi S, Chen S, Wu Z, Guan J, Zhao C, Zhao Q, Ye B (2012) Effects of environmental factors on the distribution of plant communities in a semi-arid region of the Qinghai-Tibet Plateau. Ecol Res 27:667–675. https://doi.org/10.1007/s11284-012-0951-7
Article
Google Scholar
Qiao B, Huang W, He T, Su Z, Feng Y (2018) Analysis on the diversity of halophyte plant community and soil salinity in beach-wetland of Zhen-Lake of Ningxia. Acta Botan Boreali-Occiden Sin 38:324–331
Google Scholar
Tian L, Zhao L, Wu X, Fang H, Zhao Y, Yue G, Liu G, Chen H (2017) Vertical patterns and controls of soil nutrients in alpine grassland: Implications for nutrient uptake. Sci Total Environ 607:855–864. https://doi.org/10.1016/j.scitotenv.2017.07.080
Article
CAS
Google Scholar
Iqbal T (2018) Rice straw amendment ameliorates harmful effect of salinity and increases nitrogen availability in a saline paddy soil. J Saudi Soc Agric Sci 17:445–453. https://doi.org/10.1016/j.jssas.2016.11.002
Article
Google Scholar
Kou X, Li J, Liu H, Li B, Yu X, Cao X, Liu D, Wen L, Zhuo Y, Wang L (2020) Characteristics of bacterial biodiversity and community structure in non-rhizosphere soils along zonal distribution of plants within littoral wetlands in inner Mongolia, China. Glob Ecol Conserv. https://doi.org/10.1016/j.gecco.2020.e01310
Article
Google Scholar
Li J, Hussain T, Feng X, Guo K, Chen H, Yang C, Liu X (2019) Comparative study on the resistance of Suaeda glauca and Suaeda salsa to drought, salt, and alkali stresses. Ecol Eng 140:105593. https://doi.org/10.1016/j.ecoleng.2019.105593
Article
Google Scholar
Zhao M, Zhao R, Zhang L, Zhao H, Zhou Y (2019) Plant diversity and its relationship with soil factors in the middle reaches of the Heihe River based on the soil salinity gradient. Acta Ecol Sin 39:4116–4126. https://doi.org/10.5846/stxb201806231386
Article
Google Scholar
Närhi P, Middleton M, Hyvönen E, Piekkari M, Sutinen R (2010) Central boreal mire plant communities along soil nutrient potential and water content gradients. Plant Soil 331:257–264. https://doi.org/10.1007/s11104-009-0250-4
Article
CAS
Google Scholar
Zhao X, He X, Yang X, Zhang X, Lv G (2017) Effects of soil moisture and salt on desert plant biodiversity in Ebinur Lake Basin of Xinjiang, China. J Arid Land Res Environ 31:76–82. https://doi.org/10.13448/j.cnki.jalre.2017.182
Article
Google Scholar
Fang L, Li Y, Li F, Zhu HQ (2019) Analysis of spatial variation of soil moisture–salinity–nutrient in Ebinur Lake wetlands, China. J Agro Environ Sci 38:157–167. https://doi.org/10.11654/jaes.2018-0632
Article
Google Scholar
Osborne LL, Kovacic DA (1993) Riparian vegetated buffer strips in water-quality restoration and stream management. Freshw Biol 29:243–258. https://doi.org/10.1111/j.1365-2427.1993.tb00761.x
Article
Google Scholar
Casanova MT, Brock MA (2000) How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecol 147:237–250. https://doi.org/10.1023/A:1009875226637
Article
Google Scholar
Fu B, Wang Y, Xu P, Wang D (2009) Changes in overland flow and sediment during simulated rainfall events on cropland in hilly areas of the Sichuan Basin, China. Prog Nat Sci 19:1613–1618. https://doi.org/10.1016/j.pnsc.2009.07.001
Article
Google Scholar
Shen H, Tang Y, Washitani I (2009) Ecological responses of Primula nutans to centimeter-scale topographic and environmental variability in an alpine wetland. Ecol Res 24:75–81. https://doi.org/10.1007/s11284-008-0483-3
Article
Google Scholar
Niu Y, Yang S, Zhou J, Chu B, Ma S, Zhu H, Hua L (2019) Vegetation distribution along mountain environmental gradient predicts shifts in plant community response to climate change in alpine meadow on the Tibetan Plateau. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2018.08.390
Article
Google Scholar
Little CJ, Wheeler JA, Sedlacek J, Cortés AJ, Rixen C (2016) Small-scale drivers: the importance of nutrient availability and snowmelt timing on performance of the alpine shrub Salix herbacea. Oecologia 180:015–1024. https://doi.org/10.1007/s00442-015-3394-3
Article
Google Scholar
Liu H, Mi Z, Lin L, Wang Y, Zhang Z, Zhang F, Wang H, Liu L, Zhu B, Cao G, Zhao X (2018) Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc Natl Acad Sci 115:4051–4056. https://doi.org/10.1073/pnas.1700299114
Article
CAS
Google Scholar