He LY, Ying GG, Liu YS, Su HC, Chen J, Liu SS, Zhao JL (2016) Discharge of swine wastes risks water quality and food safety: antibiotics and antibiotic resistance genes from swine sources to the receiving environments. Environ Int 92–93:210–219. https://doi.org/10.1016/j.envint.2016.03.023
Article
CAS
Google Scholar
Zhu Y, Johnson TA, Su JQ, Qiao M, Guo G, Stedtfeld RDSA, Tiedje JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA 110:3435–3440. https://doi.org/10.1073/pnas.1222743110
Article
Google Scholar
Gao P, Mao D, Luo Y, Wang L, Xu B, Xu L (2012) Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Res 46:2355–2364. https://doi.org/10.1016/j.watres.2012.02.004
Article
CAS
Google Scholar
Han XM, Hu HW, Chen QL, Yang LY, Li HL, Zhu YG, Li XZ, Ma YB (2018) Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures. Soil Biol Biochem 126:91–102. https://doi.org/10.1016/j.soilbio.2018.08.018
Article
CAS
Google Scholar
Wolters B, Widyasari-Mehta A, Kreuzig R, Smalla K (2016) Contaminations of organic fertilizers with antibiotic residues, resistance genes, and mobile genetic elements mirroring antibiotic use in livestock? Appl Microbiol Biotechnol 100:9343–9353. https://doi.org/10.1007/s00253-016-7742-y
Article
CAS
Google Scholar
Li N, Zhu C, Liu C, Zhang X, Ding J, Zandi P, Li H (2019) The persistence of antibiotic resistance and related environmental factors in abandoned and working swine feedlots. Environ Pollut 255:113116. https://doi.org/10.1016/j.envpol.2019.113116
Article
CAS
Google Scholar
Chen Q, An X, Zheng BX, Ma YB, Su JQ (2018) Long-term organic fertilization increased antibiotic resistome in phyllosphere of maize. Sci Total Environ 645:1230–1237. https://doi.org/10.1016/j.scitotenv.2018.07.260
Article
CAS
Google Scholar
Fu J, Lv H, Chen F (2016) Diversity and variation of bacterial community revealed by MiSeq sequencing in Chinese dark teas. PLoS ONE 11:e0162719. https://doi.org/10.1371/journal.pone.0162719
Article
CAS
Google Scholar
R Core Team (2018) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
Oksanen J, Blanchet FG, Friendly M, Roeland K, Pierre L, Dan M, Peter RM, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) vegan: community ecology package. R package version 2.5-2
Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695. http://igraph.org
Rohart F, Gautier B, Singh A, Le Cao KA (2017) mixOmics: an R package for ’omics feature selection and multiple data integration. PLOS Comput Biol 13:e1005752. https://doi.org/10.1371/journal.pcbi.1005752
Article
CAS
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303
Article
CAS
Google Scholar
Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203. https://doi.org/10.1016/j.femsle.2005.02.034
Article
CAS
Google Scholar
Sáenz JS, Marques TV, Barone RSC, Cyrino J, Kublik S, Nesme J, Schloter M, Susanne R, Vestergaard G (2019) Oral administration of antibiotics increased the potential mobility of bacterial resistance genes in the gut of the fish piaractus mesopotamicus. Microbiome 7(1):24. https://doi.org/10.1186/s40168-019-0632-7
Article
Google Scholar
Cafini F, Nguyen LTT, Higashide M, Roman F, Prieto J, Morikawa K (2016) Horizontal gene transmission of the cfr gene to MRSA and Enterococcus: role of Staphylococcus epidermidis as a reservoir and alternative pathway for the spread of linezolid resistance. J Antimicrob Chemother 71:587–592. https://doi.org/10.1093/jac/dkv391
Article
CAS
Google Scholar
Van Hoek AH, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJ (2011) Acquired antibiotic resistance genes: an overview. Front Microbiol 2:203. https://doi.org/10.3389/fmicb.2011.00203
Article
Google Scholar
Ardanuy C, Tubau F, Linares J, Dominguez MA, Pallares R, Martin R (2005) Spanish Pneumococcal Infection Study Network. Distribution of subclasses mefA and mefE of the mefA gene among clinical isolates of macrolide-resistant (M-phenotype) Streptococcus pneumoniae, viridans group streptococci, and Streptococcus pyogenes. Antimicrob Agents Chemother 49:827–829. https://doi.org/10.1128/AAC.49.2.827-829.2005
Article
CAS
Google Scholar
Lu J, Zhang J, Xu L, Liu Y, Li P, Zhu T, Cheng C, Lu S, Xu T, Yi H, Li K, Zhou W, Li P, Ni L, Bao Q (2018) Spread of the florfenicol resistance floR gene among clinical Klebsiella pneumoniae isolates in China. Antimicrob Resist Infect Control 7:127. https://doi.org/10.1186/s13756-018-0415-0
Article
Google Scholar
Hansson K, Sundström L, Pelletier A, Roy PH (2002) IntI2 integron integrase in Tn7. J bacteriol 184:1712–1721. https://doi.org/10.1128/JB.184.6.1712-1721.2002
Article
CAS
Google Scholar
Cheng W, Chen H, Su C, Yan S (2013) Abundance and persistence of antibiotic resistance genes in livestock farms: a comprehensive investigation in eastern China. Environ Int 61:1–7. https://doi.org/10.1016/j.envint.2013.08.023
Article
CAS
Google Scholar
Huang X, Liu C, Li K, Liu F, Liao D, Liu L, Zhu G, Liao J (2013) Occurrence and distribution of veterinary antibiotics and tetracycline resistance genes in farmland soils around swine feedlots in Fujian Province, China. Environ Sci Pollut Res Int 20:9066–9074. https://doi.org/10.1007/s11356-013-1905-5
Article
CAS
Google Scholar
Wu N, Qiao M, Zhu Y (2009) Quantification of five tetracycline resistance genes in soil from a swine feedlot. Asian J Ecotoxicol 4:705–710 (in Chinese)
CAS
Google Scholar
Peng S, Wang Y, Zhou B, Lin X (2015) Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China. Sci Total Environ 506–507:279–286. https://doi.org/10.1016/j.scitotenv.2014.11.010
Article
CAS
Google Scholar
Fischer A, Kaspar H, Muriuki C, Fuxelius HH, Bongcam-Rudloff E, de Villiers EP, Huber CA, Frey J, Daubenberger C, Bishop R, Younan M, Jores J (2013) Camel Streptococcus agalactiae populations are associated with specific disease complexes and acquired the tetracycline resistance gene tetM via a Tn916-like element. Vet Res 44:1–10. https://doi.org/10.1186/1297-9716-44-86
Article
Google Scholar
Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260. https://doi.org/10.1128/MMBR.65.2.232-260.2001
Article
CAS
Google Scholar
Wang M, Xiong W, Liu P, Xie X, Zeng J, Sun Y, Zeng Z (2018) Metagenomic insights into the contribution of phages to antibiotic resistance in water samples related to swine feedlot wastewater treatment. Front Microbiol 9:2474. https://doi.org/10.3389/fmicb.2018.02474
Article
CAS
Google Scholar
Cruz-Martinez K, Rosling A, Zhang Y, Song M, Andersen GL, Banfield JF (2012) Effect of rainfall-induced soil geochemistry dynamics on grassland soil microbial communities. Appl Environ Microbiol 78:7587–7595. https://doi.org/10.1128/AEM.00203-12
Article
CAS
Google Scholar
Bouskill NJ, Lim HC, Borglin S, Salve R, Wood TE, Silver WL, Brodie EL (2012) Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J 7:384–394. https://doi.org/10.1038/ismej.2012.113
Article
CAS
Google Scholar
Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Front Plant Sci 8:1617. https://doi.org/10.3389/fpls.2017.01617
Article
Google Scholar
Duan M, Li H, Gu J, Tuo X, Sun W, Qian X, Wang X (2017) Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environ Pollut 224:787–795. https://doi.org/10.1016/j.envpol.2017.01.021
Article
CAS
Google Scholar
Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G (2014) Bacterial phylogeny structures soil resistomes across habitats. Nature 509:612–616. https://doi.org/10.1038/nature13377
Article
CAS
Google Scholar
Banerjee G, Ray AK, Kumar R (2016) Effect of temperature on lateral gene transfer efficiency of multi-antibiotics resistant bacterium, Alcaligenes faecalis. Sains Malays 45:909–914
CAS
Google Scholar
Jain R, Rivera MC, Moore JE, Lake JA (2003) Horizontal gene transfer accelerates genome innovation and evolution. Mol Biol Evol 20:1598–1602. https://doi.org/10.1093/molbev/msg154
Article
CAS
Google Scholar
McGough SF, MacFadden DR, Hattab MW, Mølbak K, Santillana M (2020) Rates of increase of antibiotic resistance and ambient temperature in Europe: a cross-national analysis of 28 countries between 2000–2016. Eurosurveillance 25(45):1900414. https://doi.org/10.2807/1560-7917.ES.2020.25.45.1900414
Article
CAS
Google Scholar
Walsh TR, Weeks J, Livermore DM, Toleman MA (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11:355–362. https://doi.org/10.1016/s1473-3099(11)70059-7
Article
Google Scholar
Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602
Article
CAS
Google Scholar
MacFadden DR, McGough SF, Fisman D, Santillana M, Brownstein JS (2018) Antibiotic resistance increases with local temperature. Nat Clim Change 8:510–514. https://doi.org/10.1038/s41558-018-0161-6
Article
CAS
Google Scholar
Warnes SL, Highmore CJ, Keevil CW (2012) Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: implications for public health. MBio 3(6):e0048912. https://doi.org/10.1128/mBio.00489-12
Article
CAS
Google Scholar
Zhao WJ, Wang YP, Liu SY, Huang JJ, Zhai ZX, He C, Ding JM, Wang J, Wang HJ, Fan WB, Zhao JG, Meng H (2015) The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS ONE 10:e0117441. https://doi.org/10.1371/journal.pone.0117441
Article
CAS
Google Scholar
Ben W, Wang J, Pan X, Qiang Z (2017) Dissemination of antibiotic resistance genes and their potential removal by on-farm treatment processes in nine swine feedlots in Shandong Province, China. Chemosphere 167:262–268. https://doi.org/10.1016/j.chemosphere.2016.10.013
Article
CAS
Google Scholar
Cui E, Wu Y, Zuo Y, Chen H (2016) Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting. Bioresour Technol 203:11–17. https://doi.org/10.1016/j.biortech.2015.12.030
Article
CAS
Google Scholar
Huerta B, Marti E, Gros M, Lopez P, Pompeo M, Armengol J, Barcelo D, Balcazar JL, Rodriguez-Mozaz S, Marce R (2013) Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs. Sci Total Environ 456–457:161–170. https://doi.org/10.1016/j.scitotenv.2013.03.071
Article
CAS
Google Scholar