Rowlands JC, Sander M, Bus JS, FutureTox Organizing C (2014) FutureTox: building the road for 21st century toxicology and risk assessment practices. Toxicol Sci 137:269–277. https://doi.org/10.1093/toxsci/kft252
Article
CAS
Google Scholar
Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392. https://doi.org/10.1016/j.aquatox.2004.03.016
Article
CAS
Google Scholar
Jonker MJ, Svendsen C, Bedaux JJM, Bongers M, Kammenga JE (2005) Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis. Environ Toxicol Chem 24:2701–2713. https://doi.org/10.1897/04-431r.1
Article
CAS
Google Scholar
Yu M, Liu S, Wang M, Chen F, Tang H (2014) Mixture toxicities of three pesticides having different time-toxicity profiles. Chin J Chem 32:545–552. https://doi.org/10.1002/cjoc.201400133
Article
CAS
Google Scholar
Kretschmann A, Gottardi M, Dalhoff K, Cedergreen N (2015) The synergistic potential of the azole fungicides prochloraz and propiconazole toward a short alpha-cypermethrin pulse increases over time in Daphnia magna. Aquat Toxicol 162:94–101. https://doi.org/10.1016/j.aquatox.2015.02.011
Article
CAS
Google Scholar
Syberg K, Binderup M-L, Cedergreen N, Rank J (2015) Mixture genotoxicity of 2,4-dichlorophenoxyacetic acid, acrylamide, and maleic hydrazide on human Caco-2 cells assessed with comet assay. J Toxicol Environ Health Part Curr Issues 78:369–380. https://doi.org/10.1080/15287394.2014.983626
Article
CAS
Google Scholar
Zheng Q-F, Ju Z, Liu S-S (2019) Combined toxicity of dichlorvos and its metabolites to Vibrio qinghaiensis sp.-Q67 and Caenorhabditis elegans. Acta Chim Sinica 77:1008–1016. https://doi.org/10.6023/a19060197
Article
Google Scholar
Liu S-S, Xiao Q-F, Zhang J, Yu M (2016) Uniform design ray in the assessment of combined toxicities of multi-component mixtures. Sci Bull 61:52–58. https://doi.org/10.1007/s11434-015-0925-6
Article
Google Scholar
Zhang J, Liu L, Ren L, Feng W, Lv P, Wu W, Yan Y (2017) The single and joint toxicity effects of chlorpyrifos and beta-cypermethrin in zebrafish (Danio rerio) early life stages. J Hazard Mater 334:121–131. https://doi.org/10.1016/j.jhazmat.2017.03.055
Article
CAS
Google Scholar
Wang YH, Wu SG, Chen JE, Zhang CP, Xu ZL, Li G, Cai LM, Shen WF, Wang Q (2018) Single and joint toxicity assessment of four currently used pesticides to zebrafish (Danio rerio) using traditional and molecular endpoints. Chemosphere 192:14–23. https://doi.org/10.1016/j.chemosphere.2017.10.129
Article
CAS
Google Scholar
Liu S (2017) Assessment and prediction of toxicity of chemical mixtures. Sci Press, Beijing, p 155
Google Scholar
Liu S-S, Li K, Li T, Qu R (2016) Comments on “The synergistic toxicity of the multi chemical mixtures: implications for risk assessment in the terrestrial environment”. Environ Int 94:396–398. https://doi.org/10.1016/j.envint.2016.04.038
Article
CAS
Google Scholar
Liu S, Zhang J, Zhang Y, Qin L (2012) APTox: assessment and prediction on toxicity of chemical mixtures. Acta Chim Sinica 70:1511–1517. https://doi.org/10.6023/a12050175
Article
CAS
Google Scholar
Liu S, Liu L, Chen F (2013) Application of the concentration addition model in the assessment of chemical mixture toxicity. Acta Chim Sinica 71:1335–1340. https://doi.org/10.6023/a13040355
Article
CAS
Google Scholar
Fan Y, Liu S-S, Qu R, Li K, Liu H-L (2017) Polymyxin B sulfate inducing time-dependent antagonism of the mixtures of pesticide, ionic liquids, and antibiotics to Vibrio qinghaiensis sp.-Q67. Rsc Adv 7:6080–6088. https://doi.org/10.1039/c6ra25843c
Article
CAS
Google Scholar
Xu Y-Q, Liu S-S, Fan Y, Li K (2018) Toxicological interaction of multi-component mixtures to Vibrio qinghaiensis sp.-Q67 induced by at least three components. Sci Total Environ 635:432–442. https://doi.org/10.1016/j.scitotenv.2018.04.023
Article
CAS
Google Scholar
Shen L, Xiao J, Ye H, Wang D (2009) Toxicity evaluation in nematode Caenorhabditis elegans after chronic metal exposure. Environ Toxicol Pharmacol 28:125–132. https://doi.org/10.1016/j.etap.2009.03.009
Article
CAS
Google Scholar
Wang D, Liu P, Yang Y, Shen L (2010) Formation of a combined Ca/Cd toxicity on lifespan of nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 73:1221–1230. https://doi.org/10.1016/j.ecoenv.2010.05.002
Article
CAS
Google Scholar
Wang D, Xing X (2010) Pre-treatment with mild UV irradiation suppresses reproductive toxicity induced by subsequent cadmium exposure in nematodes. Ecotoxicol Environ Saf 73:423–429. https://doi.org/10.1016/j.ecoenv.2009.12.014
Article
CAS
Google Scholar
Feng L, Liu S-S, Li K, Tang H-X, Liu H-L (2017) The time-dependent synergism of the six-component mixtures of substituted phenols, pesticides and ionic liquids to Caenorhabditis elegans. J Hazard Mater 327:11–17. https://doi.org/10.1016/j.jhazmat.2016.12.031
Article
CAS
Google Scholar
Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. https://doi.org/10.1146/annurev.biochem.67.1.509
Article
CAS
Google Scholar
Ma H, Glenn TC, Jagoe CH, Jones KL, Williams PL (2009) A transgenic strain of the nematode Caenorhabditis elegans as a biomonitor for heavy metal contamination. Environ Toxicol Chem 28:1311–1318. https://doi.org/10.1897/08-496.1
Article
CAS
Google Scholar
Anbalagan C, Lafayette I, Antoniou-Kourounioti M, Gutierrez C, Rodriguez Martin J, Chowdhuri DK, De Pomerai DI (2013) Use of transgenic GFP reporter strains of the nematode Caenorhabditis elegans to investigate the patterns of stress responses induced by pesticides and by organic extracts from agricultural soils. Ecotoxicology 22:72–85. https://doi.org/10.1007/s10646-012-1004-2
Article
CAS
Google Scholar
Fitsanakis VA, Negga R, Hatfield HE (2014) Caenorhabditis elegans as a model for biomarkers of diseases and toxicities. Biomarkers in Toxicology, Gupta RC (ed). 113128
Tang H-X, Liu S-S, Li K, Feng L (2016) Combining the uniform design-based ray procedure with combination index to investigate synergistic lethal toxicities of ternary mixtures on Caenorhabditis elegans. Anal Methods 8:4466–4472. https://doi.org/10.1039/c6ay00582a
Article
CAS
Google Scholar
Tejeda-Benitez L, Flegal R, Odigie K, Olivero-Verbel J (2016) Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia. Environ Pollut 212:238–250. https://doi.org/10.1016/j.envpol.2016.01.057
Article
CAS
Google Scholar
Tejeda-Benitez L, Noguera-Oviedo K, Aga DS, Olivero-Verbel J (2018) Toxicity profile of organic extracts from Magdalena River sediments. Environ Sci Pollut Res 25:1519–1532. https://doi.org/10.1007/s11356-017-0364-9
Article
CAS
Google Scholar
Wang D, Shen L, Wang Y (2007) The phenotypic and behavioral defects can be transferred from zinc-exposed nematodes to their progeny. Environ Toxicol Pharmacol 24:223–230. https://doi.org/10.1016/j.etap.2007.05.009
Article
CAS
Google Scholar
Wang Y, Xie W, Wang D (2007) Transferable properties of multi-biological toxicity caused by cobalt exposure in Caenorhabditis elegans. Environ Toxicol Chem 26:2405–2412. https://doi.org/10.1897/06-646r1.1
Article
CAS
Google Scholar
McVey KA, Snapp IB, Johnson MB, Negga R, Pressley AS, Fitsanakis VA (2016) Exposure of C. elegans eggs to a glyphosate-containing herbicide leads to abnormal neuronal morphology. Neurotoxicol Teratol 55:23–31. https://doi.org/10.1016/j.ntt.2016.03.002
Article
CAS
Google Scholar
Lenz KA, Pattison C, Ma H (2017) Triclosan (TCS) and triclocarban (TCC) induce systemic toxic effects in a model organism the nematode Caenorhabditis elegans. Environ Pollut 231:462–470. https://doi.org/10.1016/j.envpol.2017.08.036
Article
CAS
Google Scholar
Yang R, Ren M, Rui Q, Wang D (2016) A mir-231-Regulated protection mechanism against the toxicity of graphene oxide in nematode Caenorhabditis elegans. Sci Rep. https://doi.org/10.1038/srep32214
Article
Google Scholar
Li P, Xu T, Wu S, Lei L, He D (2017) Chronic exposure to graphene-based nanomaterials induces behavioral deficits and neural damage in Caenorhabditis elegans. J Appl Toxicol 37:1140–1150. https://doi.org/10.1002/jat.3468
Article
CAS
Google Scholar
O’Donnell B, Huo L, Polli JR, Qiu L, Collier DN, Zhang B, Pan X (2017) ZnO nanoparticles enhanced germ cell apoptosis in Caenorhabditis elegans, in comparison with ZnCl2. Toxicol Sci 156:336–343. https://doi.org/10.1093/toxsci/kfw258
Article
CAS
Google Scholar
Li K, Xu Y-Q, Feng L, Liu S-S (2018) Assessing the influence of the genetically modified factor on mixture toxicological interactions in Caenorhabditis elegans: comparison between wild type and a SOD type. Environ Pollut 242:872–879. https://doi.org/10.1016/j.envpol.2018.06.107
Article
CAS
Google Scholar
Freedman JH, Slice LW, Dixon D, Fire A, Rubin CS (1993) The novel metallothionein genes of Caenorhabditis elegans. Structural organization and inducible, cell-specific expression. J Biol Chem 268:2554–2564
CAS
Google Scholar
Liu L, Liu S-S, Yu M, Zhang J, Chen F (2015) Concentration addition prediction for a multiple-component mixture containing no effect chemicals. Anal Methods 7:9912–9917. https://doi.org/10.1039/c5ay01784j
Article
CAS
Google Scholar
Liu L, Liu S-S, Yu M, Chen F (2015) Application of the combination index integrated with confidence intervals to study the toxicological interactions of antibiotics and pesticides in Vibrio qinghaiensis sp.-Q67. Environ Toxicol Pharmacol 39:447–456. https://doi.org/10.1016/j.etap.2014.12.013
Article
CAS
Google Scholar
Ju Z, Liu S-S, Xu Y-Q, Li K (2019) Combined toxicity of 2,4-dichlorophenoxyacetic acid and its metabolites 2,4-dichlorophenol (2,4-DCP) on two nontarget organisms. Acs Omega 4:1669–1677. https://doi.org/10.1021/acsomega.8b02282
Article
CAS
Google Scholar
Li T, Liu S-S, Qu R, Liu H-L (2017) Global concentration additivity and prediction of mixture toxicities, taking nitrobenzene derivatives as an example. Ecotoxicol Environ Saf 144:475–481. https://doi.org/10.1016/j.ecoenv.2017.06.044
Article
CAS
Google Scholar
Cedergreen N, Kudsk P, Mathiassen SK, Streibig JC (2007) Combination effects of herbicides on plants and algae: do species and test systems matter? Pest manage. Science 63:282–295. https://doi.org/10.1002/ps.1353
Article
CAS
Google Scholar
Syberg K, Elleby A, Pedersen H, Cedergreen N, Forbes VE (2008) Mixture toxicity of three toxicants with similar and dissimilar modes of action to Daphnia magna. Ecotoxicol Environ Saf 69:428–436. https://doi.org/10.1016/j.ecoenv.2007.05.010
Article
CAS
Google Scholar
Kurauchi M, Morise H, Eki T (2009) Using the nematode Caenorhabditis elegans daf-16 mutant to assess the lifespan toxicity of prolonged exposure to ecotoxic agents. J Health Sci 55:796–804. https://doi.org/10.1248/jhs.55.796
Article
CAS
Google Scholar
Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, Chilkoti A, Wiesner MR, Auffan M (2010) Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100:140–150. https://doi.org/10.1016/j.aquatox.2010.07.016
Article
CAS
Google Scholar
Swain SC, Keusekotten K, Baumeister R, Sturzenbaum SR (2004) C. elegans metallothioneins: new insights into the phenotypic effects of cadmium toxicosis. J Mol Biol 341:951–959. https://doi.org/10.1016/j.jmb.2004.06.050
Article
CAS
Google Scholar
Lipok J, Studnik H, Gruyaert S (2010) The toxicity of Roundup (R) 360 SL formulation and its main constituents: glyphosate and isopropylamine towards non-target water photoautotrophs. Ecotoxicol Environ Saf 73:1681–1688. https://doi.org/10.1016/j.ecoenv.2010.08.017
Article
CAS
Google Scholar
Pulicharla R, Das RK, Brar SK, Drogui P, Sarma SJ, Verma M, Surampalli RY, Valero JR (2015) Toxicity of chlortetracycline and its metal complexes to model microorganisms in wastewater sludge. Sci Total Environ 532:669–675. https://doi.org/10.1016/j.scitotenv.2015.05.140
Article
CAS
Google Scholar
Cedergreen N (2014) Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. PLoS ONE. https://doi.org/10.1371/journal.pone.0096580
Article
Google Scholar
Ohlsson A, Cedergreen N, Oskarsson A, Ulleras E (2010) Mixture effects of imidazole fungicides on cortisol and aldosterone secretion in human adrenocortical H295R cells. Toxicology 275:21–28. https://doi.org/10.1016/j.tox.2010.05.013
Article
CAS
Google Scholar
Bliss CI (1939) The toxicity of poisons applied jointly. Ann J Appl Biol 26:585–615
Article
CAS
Google Scholar
Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, Serrrano JA, Tietge JE, Villeneuve DL (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741. https://doi.org/10.1002/etc.34
Article
CAS
Google Scholar
Vinken M (2013) The adverse outcome pathway concept: a pragmatic tool in toxicology. Toxicology 312:158–165. https://doi.org/10.1016/j.tox.2013.08.011
Article
CAS
Google Scholar
Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann B, Lettieri T, Munn S, Nepelska M, Ottinger MA, Vergauwen L, Whelan M (2014) Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci 142:312–320. https://doi.org/10.1093/toxsci/kfu199
Article
CAS
Google Scholar
Baldrick P (2017) Pharmacokinetic and toxicology comparator testing of biosimilar drugs—assessing need. Regul Toxicol Pharmacol 86:386–391. https://doi.org/10.1016/j.yrtph.2017.04.010
Article
CAS
Google Scholar
Lopes S, Pinheiro C, Soares AMVM, Loureiro S (2016) Joint toxicity prediction of nanoparticles and ionic counterparts: simulating toxicity under a fate scenario. J Hazard Mater 320:1–9. https://doi.org/10.1016/j.jhazmat.2016.07.068
Article
CAS
Google Scholar