Overview
The research addressed the main goals of the European Innovation Partnership for chemical pollution of Europe’s water systems [4] (compare Additional file 1: Material) and achieved to provide:
-
1.
A conceptual framework for the protection, monitoring, assessment and management of chemical pollution in European surface waters.
-
2.
A wide array of methods with which water managers can diagnose whether, where, and due to which compounds chemical pollution poses threats to water quality.
-
3.
A strategy for and an overview of potential measures, to provide water quality professionals with insights in the ‘solution space’ to reduce the water pollution problems, and thus to support deriving (cost)effective programs of measures.
All three achievements were developed with an eye on the holistic principle on which the WFD is based. This contrasts to the current practices in chemical pollution assessments, which have evolved into approaches that often focus on individual chemical measurements, with neglect of the water system context [15]. The diagnostic methods were developed because the current guidance is very limited in this respect (see WFD-Annex II text [6], and [14]). The attention was focused on intervention measures because current approaches are often focusing on describing the problem rather than on (also) providing solutions that can be implemented to improve water quality. Other closely related achievements, describing, e.g., the wide array of specific diagnostic methods, are presented in other Policy Briefs of the SOLUTIONS project.
The conceptual framework
The WFD assessment and management cycle is based on the DPSIR-causal framework. This consists of a systematic analysis of the Driving forces (D), the resulting Pressures on the environment (P), the Status characteristics of the water bodies (S), and finally the impact to water quality (I), which triggers a management Response (R) to protect or restore water quality [14].
In line with the DPSIR-cycle and combining that with the solution-focused risk assessment paradigm [16], a conceptual framework was developed for the protection, monitoring, diagnostic assessment and management of chemical pollution problems. The solution-focused risk assessment paradigm was proposed to improve the utility of chemical and environmental risk assessments [16]. This paradigm was operationalized, resulting in the comprehensive solution-focused framework shown in Fig. 1.
The figure shows four ‘corner-stone’ elements, their mutual relationships and the management-relevant outputs that are generated when the framework is applied. The outer ring shows that and how—in principle—chemical pollution can be reduced, such as (top) via the sustainable use of chemicals. In essence, the conceptual framework describes the transfer from a problem-oriented approach (‘what is the risk’) to the realm of the solutions-focused outcomes (‘what can be done if there is a risk or an effect’). The diagnostic tools and services (provided by the RiBaTox tool, see below) were designed for the key elements of the conceptual framework. The intervention database and -strategy (for technical and non-technical abatement options) was a specific product, positioned separately (lower left) in the framework.
Versatile tools and services
The research provided a variety of tools and services to assist in the process of assessing the likelihood that chemical pollution threatens water quality (cf. WFD-Annex II). This is referred to as ‘diagnosis’ in this paper.
The diagnostic methods are summarized and characterized in the other SOLUTIONS Policy Briefs. For example, methods can be selected for early-stage exploratory assessments on the presence of chemicals [19], via refined component- and effect-based diagnostic approaches of impacts [20, 21] to specific biological quality elements [22] and the ecological status [13], up till integrated modeling [23]. The methods cover the full array of the DPSIR-causal approach (Fig. 1). An assessor can derive the likelihood of chemical pollution to pose harm by combining the information from integrated modeling of expected threats associated to societal activities (Drivers), via wide-ranging non-target screening results on the presence of chemicals up to information gained by targeted component- and effect-based diagnostic and monitoring methods. The assessor can select the tools and services that are relevant to their local problem definition, using the decision tree approach of the RiBaTox-webtool (https://solutions.marvin.vito.be/). If needed, the methods can be applied in a tiered way.
The intervention database and -strategy
The research resulted in an intervention database and -strategy to help assessors to solve chemical pollution problems [18]. The strategy to identify options to derive programs of measures and thus to explore the ‘solution space’ is a key part of the conceptual framework (Fig. 1), and stresses the idea of paying early attention for the Response-step of the DPSIR-cycle.
The ‘solution space’ has been identified as large. That is, solutions can vary widely, ranging for example from operational changes in the technical designs of a waste water treatment plant facility up to strategic improvements in the design of chemicals (‘safe by design’). Measures can also be non-technical, such as via ‘zonation’ between the land use that causes the emissions of compounds and the water bodies. The overview of technical and non-technical abatement strategies provides end-users with a practical but not limiting basis for derivation of (cost-)effective management plans. Users can select the options that could apply to their pollution problem. Integrated modeling [23] can be used not only to explore threats of current emissions, but also to evaluate future emission scenarios and the effects of abatement measures.
It is recommended to apply intervention tools and -strategies in the earliest stages of a WFD DPSIR-cycle. Various risk prevention and management solutions may be simple to implement and of a no regret kind.
Utility of the achievements
Recommended methods should have practical utility [4]. Therefore, the achievements were tested and evaluated in case studies, with intensive contacts with the stakeholders.
In their final evaluation of the project, the stakeholders expressed their positive attitude to the three main elements of the holistic and comprehensive set of approaches to prevent, monitor, assess and manage chemical pollution of European surface waters [24]. They recognized the value and utility of the comprehensive principles (the conceptual model and the intervention database and -strategy). They also valued the large set of versatile tools to address the problem of complex mixtures in aquatic ecosystems. The utility relates not only to tools and services, but also to the wide array of chemicals and mixtures that can be identified, and of which the likely impacts can be characterized [19, 21]. The number of chemicals for which diagnostic solution-focused assessments can be made is vastly expanded as compared to the current number, of approx. 300 compounds considered separately [25], whilst including their mixtures.