Skip to main content

Spatiotemporal snowline status and climate variability impact assessment: a case study of Pindari River Basin, Kumaun Himalaya, India


The snowline exhibits significant seasonal shifts upward and downward, reflecting the ever-changing dynamics of the seasons and being influenced by climate variations, which can vary annually. These fluctuations profoundly impact the cryosphere, biota, and ecosystem processes in high mountain regions. Despite the critical role of snowline variations, comprehensive information on how actual climate variability affects snow cover trends in the central mountain range of the western Himalayas is scarce. In the 'Pindari' region of the Uttarakhand district, India, which is part of the Himalayas, these challenges are exacerbated by the unchecked growth of anthropogenic activities and the broader impacts of climate change. This study analyses snowline variations in the Pindari glacial region from 1972 to 2018. The findings revealed that the snowline elevation significantly shifted upward between 1972 and 2018. Notably, this research revealed a decrease in snow-covered areas of approximately 5.01 km2 over the course of 46 years. This decrease is attributed to a direct response to the increasing number of high-temperature events that occurred during this extended period. This study emphasizes the urgent need for conservation measures in the study region and similar high mountains to combat global warming and safeguard the snowline, which serves as a visible proxy indicator to safeguard high-altitude Himalayan glaciers.


The snow-capped peaks of the western Himalayas represent sentinels of climate change, and their snowlines trace the delicate balance between areas covered by snow and those that are snow-free slopes and veins. Snow acts as an insulating layer, protecting the underlying glacier ice from direct exposure to warmer air temperatures [45, 52]. When the snowline remains at a higher elevation, glaciers are protected from melting by warmer air temperatures, thus helping to maintain their mass balance [53]. Importantly, the Himalayan glacier is considered the "Water Tower of Asia" because it sources approximately 8.6 × 106 m3 of water annually [50]. High mountain regions in the Himalayas, such as the western Himalayas, are characterized by their sensitivity to climatic changes, which manifests as significant alterations in snowline dynamics [35, 60, 65] that negatively impact the glacier systems of the region. Various studies have shown that the northwestern Himalayas have undergone a substantial increase in temperature (1.6 °C) at a proportion more significantly compared with the world mean (global average) over the last era [11, 20, 54]. Moreover, over the western Himalayas, there was a declining trend in snowfall and an increase in temperature [18, 46, 58]. Other studies revealed an increase in temperature in the Himalayas and Tibetans [51], which is much greater than the global average over the last 100 years.

Himalayan glaciers are large masses of ice that formed from the accumulation and compaction of snow over time and face such troubles. The tendency of inclination in snowlines and diminishing snow cover each year influences glacial melt, a phenomenon documented since the 1850s [59, 66, 74]. The evaporation, soil and water also impact on the forest and snow changes in the hilly region [23, 80]. The machine learning and deep learning models have been used for identification of snow and earth features [64, 65, 72]. Outside the polar regions, the Himalayan Mountain range has one of the highest consolidations of glaciers and permanent snow cover fields in the world [29, 33, 76]. Glaciers are essential to humanity because they influence the hydrological cycle at the global level, sustain ocean levels, and provide water to streams continuously [47, 77, 78]. Although the melting of snow and glacial Himalayan cryospheres provide a sufficient water supply for many Himalayan rivers, the flow rate in these rivers has decreased, which could influence water accessibility downstream [29, 34, 75]. Snow and glaciers cover large areas of the Himalayas [10, 28, 32]. These regions are highly vulnerable to climate change. The ice mass available in the Himalayas is approximately 600 billion tons, considered the third-highest on the planet after the northern and southern poles [37]. There has been a 0.74 °C increase in global annual temperature [16], which significantly negatively impacts high-altitude regions, such as mountains. According to previous studies, since global warming has begun to impact snowmelt and stream runoff in the Himalayan region, it is critical to track snow cover shifts to forecast the future hydrologic cycle. The snowline altitude is an essential parameter for predicting changes in snow cover [3, 40].

The snowline marks the elevation on a mountain where snow persists throughout most, if not all, of the year. The concept of the snowline can involve different temporal and spatial orientations. A shifting snowline represents seasonal patterns in many areas. Climatic variations significantly influence the actual existence of snowlines. The elevation of these rocks can fluctuate annually at the end of the melting period. Remote sensing (such as satellite imagery and aerial photographs) and geographic information systems (computer-based systems) help to measure spatiotemporal snowline shifting. As a result, snowlines have become a significant visible and easily detectable feature in high-elevation hydrological systems [10, 57, 70]. Snow-covered areas typically exhibit higher reflectances in the visible and near-infrared bands than does the underlying terrain. This is because snow reflects a significant amount of sunlight due to its high albedo (reflectivity), while the surrounding terrain absorbs more sunlight [21, 68]. Therefore, identifying the snowline at a given point in time is possible.

The snowline is an important measure of snow depth, and when observed over a wide area, the change in elevation of the snowline suggests a certain climate behavior, either cold or warm. Regularly monitoring snowlines (both spatially and temporally) is essential for assessing hydrological cycle equilibrium and understanding regional and global temperature changes [17, 29, 43, 56].

An increase in the elevation of snowlines is an indicator of climate change because these regions are exposed to the external environment. The accumulation and ablation of snow and ice are affected mainly by temperature and precipitation [2, 7, 24, 46, 63]. The Pindari region of Uttarakhand, a region of the Himalayas, is also facing such problems due to haphazardly increasing anthropogenic activities and other human-induced interferences. Changes in climatic conditions are a significant concern for Pindari because of its geographical location, which involves both anthropogenic activities and tropical climates and has been affected by climate variations during recent decades.

Glaciers in the Pindari area have been found to be shrinking as a result of climatic change and anthropogenic causes. The consistent increase in temperature has led to the quicker melting of glacial reserves in the Pindari region. The majority of researchers believe that climate is the primary controlling variable in glacial recessions [30, 61, 69]. Moreover, numerous investigations have distinguished the impact of topography [9, 19]. The warming patterns across the region have quickened the ice mass to dissolve and change the type of precipitation, resulting in a decrease in snow cover and an increase in the height of the snowline.

The recession of Himalayan arc glaciers has affected stream flows and caused the creation of lakes [38, 62, 79], which may be possible sites for glacial lake outbursts resulting from floods. This cryosphere region in Uttarakhand is retreating at an accelerated pace compared to that in other high-mountain Asia regions. Glacier depletion in the Pindari Valley is an example of glacial depletion in the Uttarakhand Mountains [8, 47]. The land framework changes in the locale have been connected to exhausting stream flows, financial contemplations, and spontaneous land change. Changes in the snowline pattern in the study area will have long-term socioeconomic and environmental implications for agriculture, land management, water-based ventures, climate, water supplies, and numerous other development exercises. Hence, this study aimed to (1) assess the long-term trends in snowline elevation and snow cover extent in the Pindari glacial region of the western Himalayas from 1972 to 2018 and (2) investigate the relationship between high-temperature events and the observed upward shift in snowline elevation and decrease in snow cover. This study lays the preliminary groundwork for establishing a database that tracks temporal changes in the snowline within the Pindari region, focusing on how these changes are linked to increasing temperatures due to climate variabilities. Additionally, this research serves as a proxy for exploring the impact of temperature fluctuations on the rate at which snow melts in the western Himalayas, using this region as a representative area.

Study area

Uttarakhand, one of India's northern states, belongs to the region of the Western Himalayas. The Himalayan region of Uttarakhand State of India encompasses a 320 km stretch of mountain ranges between the Kali River, which forms the border between India and Nepal in the eastern part of the Pithoragarh district of Uttarakhand, and the valleys of Tones-Pabar, which form Himachal Pradesh's eastern border.

The study addresses the Pinder watershed (Kumaun Himalaya) (Fig. 1), which extends between 30° 6.25' N and 30° 19.25' N and between 79° 47.95’ E and 80° 5.69' E and encompasses an area of 391.05 km2. The Pindari Glacier region is a center in the study area located close to Chhanguch Glacier, which is part of the Upper Himalayan range in the northern part of Uttarakhand State, India. The Pindar River is the largest of the Ganga River's branches. Its current origin location is 3,847 m at 30°16.47′ N and 80°00.48′ E. The study site experienced various climatic circumstances ranging from heavy to sunny snowfall and needed a 70 km hike from the village 'Song' [47]. The average summer temperature in the area is between -10 °C and -15 °C, and the average winter temperature is between -20 °C and -40 °C. The quickest path to Milam Glacier is by the tongue of Pindari Glacier, which is referred to as the ‘Trail Pass’. Changuch (6322 m asl), Nandakhat (6611 m asl), Nandakot (6860 m asl), Pawalidwar (6663 m asl), and Baljuri (5922 m asl) are the peaks near the Pindari glacier regions. The rationale for selecting the Pindari region as the study site included three key factors: (1) its clear visibility on satellite imagery, (2) minimal cloud cover, and (3) the presence of climate change impacts, such as a sustained rise in temperatures and human-induced activities leading to the rapid melting of glacial reserves in the Pindari region [8, 47].

Fig. 1
figure 1

Study area in the Pindari Valley region in the Kumaun Himalaya region of Uttarakhand, India


Dataset and methods

To differentiate between snow cover and adjacent bare rocks, temporal satellite images were categorized into these two classes, and then, snowline changes were analyzed; for this purpose, we used Landsat Series Data-1–3 MSS (1972), 4–5 TM (1980), 4–5 TM (1993), ETM-7 (1999), 4–5 TM (2011), and Sentinel 2 MSI (2018) (Supplementary Table S1–S6). An accuracy assessment (Supplementary Table S7) was performed to validate the accuracy of the classified maps. Ground truth points (i.e., snow and nonsnow areas) that were gathered from field observations and high-resolution Google Earth images were used to measure accuracy. The overall accuracy of the classified maps was calculated (formula) to determine the accuracy of the output maps:

$$\frac{\mathrm{Correctly\,classified\,point }}{\mathrm{Total\,collected\,points}}*100$$

Landsat series data and Sentinel-2 data are freely available on the official websites of The Top of the Atmospheric Reflectance (ToA) was calculated to correct Landsat image errors caused by upper atmospheric constituents [48]. Finally, the subset images of all the years were classified to delineate the snowline from adjoining bare rocks of the Pindari region.

The snowlines were measured using an on-screen visual analysis technique with temporal satellite datasets. We compared the snowlines of different time periods in the region and inferred the retreat rate over the last 46 years, spanning between 1972 and 2018. We used different satellite data (07 years) from four decades (46 years) to detect snowline shifting patterns, as satellite data facilitate overcoming spatial and temporal scaling problems that plague simulation and experiment-based yield gap studies [5]. Satellite data can distinguisogical features in particular areas and are now more accessible and inexpensive than ever.

The overall method adopted for conducting the study is presented in Fig. 2. The study starts by collecting the dataset for the analysis section. All the datasets were collected from the USGC official web portal "", and the full description of the data used and methodology used are shown below.

Fig. 2
figure 2

Overall methodological framework for conducting the study

Meteorological datasets (power data access viewer)

We used observed meteorological data from NASA's online web portal of power data access viewer in our study methodology for comparing our results with temperature fluctuations. We downloaded the temperature dataset from 1981 to 2018. The power data access viewer provides different meteorological datasets in the form of text, geospatial datasets, and files, which can be downloaded from users and integrated into different supporting software for further application, analysis, and visualization; the data provided by the access viewer have a resolution of 0.25 × 0.25 degrees ( We downloaded the temperature data using the regional data access widget provided by the portal, from which we constructed a rectangular study area. We obtained two sets of coordinate data: 30° 15' N–79° 45’ E and 30° 15’ N–80° 15' E. Then, we formatted the data in different months from 1981 to 2018 to show the trends of the mean monthly minimum and maximum temperatures at the location of the study area.

Preprocessing of Landsat data

After the datasets are retrieved, the images contain two main types of errors: "Radiometric" and "Geometric". This study rectified the radiometric errors (radiometric correction) and found the right quality image; we included the ToA operation using Eq. (1) on every temporal satellite image. ToA reflectance and the data were converted into 16 unsigned bits to obtain the same data from the USGS.

Top-of-atmosphere (ToA) corrections

The top-of-atmosphere reflectance is the value detected by space-based equipment as it travels above the Earth's atmosphere. The reflectance values are influenced by clouds, aerosols, and atmospheric compounds. The reflectance is converted using the TOA operation, which can be derived using Eq. (1):

$${\rho }_{\lambda }=\frac{\pi *{L}_{\lambda }*{d}^{2}}{{ESUN}_{\lambda }*{cos\theta }_{s}}$$

where \(d\) = Earth–Sun distance in astronomical units,\({\rho }_{\lambda }\) = planetary reflectance measurements,\({L}_{\lambda }\) = spectral radiance,\({\theta }_{s}\) = solar zenith angle, and \({ESUN}_{\lambda }\) = mean solar exo-atmospheric irradiance.

Geometric corrections (GC) and image processing

The operation of geometric correction (GC) follows after performing the ToA. The GC process was performed using a toposheet obtained from the official web portal of the survey department of India (scale = 1:50,000). We used the nearest neighbor sampling approach to geometrically adjust the satellite photos. All the required satellite images (Landsat MSS, TM, ETM + , and Sentinel 2A) were rectified geometrically by using a root mean square error (RMSE) < 0.6 pixels. Layer stacking in ERDAS Imagine combines corrected bands into a unified band for analysis, enabling diverse band combinations for improved ground cover visualization. Subsequently, images were mosaicked into a composite and subsetted using the study area. In the realm of image processing, after initial preprocessing, we conducted image fusion to obtain a high-resolution image suitable for object detection in satellite imagery. This fusion technique enhanced the resolution of the 1999 Landsat 7 ETM + image, aiding in identifying features such as the snowline and vegetation line through visual interpretation. Image fusion involves combining data from multiple satellite image bands into a single composite, yielding imagery with enhanced spectral and spatial resolution. In our research, we utilized Landsat 7 ETM + images alongside panchromatic and multispectral data processed using ERDAS Imagine software with the nearest neighbor sampling method to ensure accurate fusion.

Image classification

The classification operation generates the output in which the pixels of a satellite image are categorized into various feature classes of land cover. These output classified data are then further used to prepare different theme-based (thematic) land use/land cover maps. There are currently two types of classification methods: supervised and unsupervised. Here, in the present study, we include the supervised and spectral indices of the NDSI given in Eq. (2) for classifying snow cover and finding snowlines. The main objective of classifying satellite imagery is to generate valuable information from the raw data acquired by the satellite in digital numbers:

$$NDSI= \frac{{Band}_{Green}- {Band}_{NIR}}{{Band}_{Green -}{Band}_{NIR}}.$$

The supervised classification method is one of the most widely used classification methods in remote sensing science [39]. The user sets a well-defined signature or training set to prepare a supervised classifier model. The main difference between supervised and unsupervised methods is the control of the classifier model [49]. In a supervised classifier, the total control of the model depends on the user, but in the case of the unsupervised classifier method, the control depends on computer-defined parameters. Once each information class has been statistically characterized, the image is identified by analyzing each pixel's reflectance and deciding on the most similar reflectance spectral signatures. This study included the supervised classifier "maximum likelihood". The maximum likelihood (ML) decision criterion is a statistical function used to assign pixels for a given class with the highest chance of improving the classification of overlapping signatures. The ML classifier uses the Bayesian equation to compute the weighted distance or probability (D) of a nondefined measurement of vector (X), which refers to one of the defined function classes of (Mc), and (T) signifies the transposition function as given in Eq. (3) [15]. It is a parametric classifier algorithm that assumes that the digital number of the satellite image has a Gaussian distribution of the classes represented in the image:

$$D=ln {(a}_{c})-\left[0.5ln\left(\left|{COV}_{c}\right|\right)\right]-\left[0.5\left(X-Mc\right)T\left({COV}_{c}-1\right)\left(X-Mc\right)\right].$$

Visual interpretation

The snowline locations were physically translated and digitized as polygon files using the ArcGIS v.9.3 platform each year, and the area of each polygon was calculated. The results were finally compared using Microsoft Excel 2013. After validating the satisfactory results, we generated a layout map of the 1972, 1980, 1993, 1999, 2011, and 2018 study periods.

Relation between temperature fluctuations and snowline shift

GPS coordinates for snowlines at 30-m intervals from different years were collected using ArcGIS 10.3. Elevation data from ASTER imagery were then extracted to create an elevation dataset for the years 1972, 1980, 1993, 1999, 2011, and 2018. Next, the average elevation for each snowline was calculated, and ANOVA was performed to assess the patterns in the mean elevational shifts across various years. Additionally, we compared the differences in mean snowline elevations between 1972 and 2018. Furthermore, we compared the mean monthly minimum and maximum temperatures from 1981 to 2018 and conducted an ANOVA to assess whether there was a significant change in these temperatures across the same period. Finally, we examined the trends in snowline shifts in relation to the monthly minimum and maximum temperatures throughout the study period.


The current study examines the effect of environmental temperature variabilities on Himalayan snow cover, mainly in the upper Pindari region of Uttarakhand, using Sentinel 2A and Landsat time-series data with multispectral performance change detection analysis for identifying changes in land use/land cover resources using geo-corrected remotely sensed data. In this study, changes in snowlines in response to temperature increases and temporal changes were the primary concern.

This work depicts the change in the Pindari region's snowline location from 1972 to 2018 with the help of multiresolution satellite imagery for the years 1972, 1980, 1993, 1999, 2011, and 2018 (Fig. 3). The mean elevational shifts within the snowlines during these years are shown in boxplots (Fig. 4).

Fig. 3
figure 3

Snowlines (blue lines) derived from the satellite image classification for a 1972, b 1980, c 1993, d 1999, d 2011, and f 2018

Fig. 4
figure 4

Distributions of elevation across the snowlines in different study years with the mean elevation for each year. The trend line shows that the mean elevation shifted from 1972 to 2018

The ANOVA test suggested that there were statistically significant differences in snow line elevations across the different years (F = 930.6, p < 0.05). The Welch two-sample t-test indicated a highly significant difference in elevation means between 2018 and 1972, with the mean elevation (within the snow line) in 2018 being significantly greater than that in 1972 (t = 50.174, df = 8473.8, p < 0.05).

Between 1972 and 2018, there was a minimum elevation change of 63 m from the lower side, with an average annual upward shift of 1.36 m. Additionally, a maximum elevation change of 77 m was observed, with an average annual upward shift of 1.67 m; all image accuracy values ranged between 91.59 and 87.27 (Supplementary Table S7). Tables 1 and 2 show the snowline shifts for both the maximum and minimum elevation changes during the study years. The snowline represents the elevation above which snow remains year-round, and its movement is influenced primarily by climate variations, especially environmental temperature fluctuations, both upward and downward. However, the snow cover area also decreased by 5.01 km2 in the span of 46 years, which represents a retreat rate of 0.108/year (Tables 1 and 2).

Table 1 Minimum and maximum snow line variations and snow cover in the Pindari Valley from 1972 to 2018
Table 2 The net changes in snow line and snow cover in the Pindari valley of Uttarakhand from 1972–2018

A graphical representation (Fig. 5a, b) shows the overall maximum and minimum monthly temperature variations from 1981 to 2018. The seasonal temperature data reveal a consistent upward trend in the monthly minimum temperature across the years 1981 to 2018, as depicted in Fig. 6a–c. Conversely, the monthly maximum temperatures exhibit a slight decline for all seasons during the same period, as illustrated in Fig. 6d–f.

Fig. 5
figure 5

The graphical depiction displays the fluctuations in monthly temperature, highlighting both the maximum and minimum temperatures from 1981 to 2018. Additionally, the overall trend of temperature increase over time was illustrated

Fig. 6
figure 6

Seasonwise minimum monthly temperature trends in a monsoon season, b summer, and c winter, whereas seasonwise maximum monthly temperature trends in d monsoon season, e summer, and f winter in the Pindari region of Uttarakhand, India (1981–2020)


Spatiotemporal shifts in the snowline

The observed changes in snowline locations from 1972 to 2018 present a compelling narrative of the region's response to temperature increases and temporal variations. The snowline, which represents the elevation above which snow persists throughout the year, is a sensitive indicator of climatic variations. The mean elevational shift within snowlines across these years, as depicted in Fig. 4, highlights a clear upward trend in snowline elevation.

As indicated by the ANOVA test, the statistically significant differences in snowline elevations reaffirmed the ongoing changes in the region's snow cover. The Welch two-sample t-test further revealed that these changes were particularly pronounced between 2018 and 1972, with the mean elevation in 2018 being significantly greater than that in 1972. The magnitude of these elevational shifts is noteworthy, with a minimum upward change of 63 m and a maximum change of 77 m occurring between 1972 and 2018. This translates to an average annual upward shift of 1.36 m to 1.67 m. These findings align with regional studies in the Himalayas [14, 64] and reflect a broader trend of elevational shifts in response to warming temperatures.

Snow cover area and retreat rate

Beyond the changes in snowline elevation, the reduction in snow cover area emerges as a notable and concerning outcome of this comprehensive study. Over a 46-year period, the Pindari region experienced a substantial decrease in snow cover area, amounting to 5.01 km2, equivalent to a retreat rate of 0.108 km2 per year. This decrease in snow cover area mirrors broader global trends observed in mountainous regions [27, 55] and underscores the heightened vulnerability of high mountain regions to the impacts of climate change.

The retreat rate observed in this study aligns with findings from extensive research conducted in the Himalayas [4, 44], further emphasizing the region's acute sensitivity to rising temperatures and the broader implications of climate change on mountain ecosystems and downstream communities. This reduction in snow cover area has complex consequences, affecting not only the availability of water resources, but also the livelihoods and biodiversity of the region.

The findings presented here align with a growing body of research highlighting the intricate relationship between climate change and the cryosphere in high mountain regions. The observed retreat of the Pindari region's snow cover area indicates that larger changes occurred in mountainous areas across the globe. As the snow cover continues to diminish, it is imperative to develop and implement climate-resilient strategies to address the challenges associated with reduced water resources, potential water-related hazards, and the need for adaptation and mitigation measures to safeguard mountain regions' ecological and societal stability.

Temperature trends

The analysis of temperature trends plays a pivotal role in framing the observed alterations in snowline positions and snow cover areas. The consistent and discernible upward trajectory in monthly minimum temperatures spanning from 1981 to 2018 is a compelling indicator of a pronounced warming trend in the Pindari region. This warming trend aligns with overarching global climate change patterns and resonates with research findings from the Himalayan region, which have led to the amplification of warming trends [1, 26, 36].

The counterintuitive decrease in monthly maximum temperatures during the same period is emblematic of a complex climatic phenomenon noted in various mountainous areas [41]. This phenomenon is attributed to a combination of factors, including shifts in cloud cover patterns, alterations in precipitation regimes, and the influence of the snow–albedo feedback effect on temperature dynamics. The interaction among these intricate factors leads to a noticeable decrease in daytime temperatures, even as minimum temperatures continue to rise in the background. These nuanced temperature dynamics underscore the intricate nature of climate change in high mountain regions and necessitate a comprehensive understanding of the multifaceted factors contributing to the observed trends.

These findings highlight the critical role of local climate drivers in shaping temperature patterns in mountainous regions, where changes in temperature dynamics may have cascading effects on snow cover, the mass balance of glaciers, hydrology, and local ecosystems. The observed temperature trends serve as an essential backdrop for interpreting shifts in the cryosphere, emphasizing the urgency of continued research and adaptive strategies for these vulnerable regions.

Comparison with global and regional studies

These findings concur with the broader global and regional trends concerning shifts in snow cover and temperature dynamics. At the global scale, extensive research has consistently reported a reduction in both the extent and duration of snow cover [13, 42], indicating a response to the pervasive influence of climate change. The Himalayan region, known for its complex topography and ecological significance, has been a focal point for in-depth investigations. Research carried out in the Himalayas has consistently noted the retreat of glaciers and variations in the amount of snow cover, indicating the increasing influence of increasing temperatures and changing patterns of precipitation [6, 12].

Delving into the specific context of the Kumaun Himalaya, the findings of this study resonate with observations made in neighboring regions. Notably, in Himachal Pradesh [22, 25] and Nepal [31, 67], similar shifts in snowline positions and a decrease in snow cover have been attributed to the pronounced influence of rising temperatures and alterations in precipitation regimes. Notably, these regional trends transcend the boundaries of the mountainous areas themselves. The consequences of these disasters ripple downstream, profoundly affecting the availability of freshwater resources, the integrity of fragile ecosystems, and the livelihoods of communities that are intricately tied to these resources for their sustenance [70].

This collective body of evidence underscores the imperative of addressing climate change and its multilayered impacts on high mountain regions. Given their pivotal role as water towers, providing essential freshwater resources for vast populations and supporting unique ecosystems, comprehending the underlying mechanisms governing snow cover and temperature variations is imperative. Such an understanding is critical for the development of adaptive strategies and the formulation of well-informed policies to mitigate the far-reaching consequences of climate change in these sensitive environments.


The spatiotemporal mapping of snow cover and snowlines through remotely sensed satellite imagery from different years plays a vital role in high-elevation ecological protection and conservation. This study revealed that in 1972, 1980, 1993, 1999, 2011, and 2018, the snow cover decreased to 5.01 km2, equivalent to a retreat rate of 0.108 km2/year, and a significant shift in the minimum and maximum snowline elevation occurred. The main cause of this snowline shift and decrease in the field of snow cover in the region is an increase in temperature. These changes have dramatic impacts on the ecology and environment of the Himalayas. The results of this study on the impact of environmental temperature variabilities on Himalayan snow cover, particularly in the upper Pindari region of Uttarakhand, have several significant implications for mitigation strategies and provide valuable suggestions for policymakers. The findings from this preliminary case study serve as concrete evidence of the ongoing impact of climate change on the Himalayan region. This finding reinforces the importance of raising awareness about climate change and its effects on local environments. Policymakers can use this information to advocate for climate action and communicate the urgency of mitigating climate change to the public.

The observed decreases in snow cover area and shifting snowlines indicate a direct consequence of rising temperatures. Policymakers should take these findings into account when developing mitigation strategies, such as reducing greenhouse gas emissions and transitioning to sustainable energy sources. Implementing mitigation measures can help slow or even reverse these negative trends. Understanding the trends in temperature and snow cover is essential for planning adaptation measures in the Himalayan region. Policymakers should invest in infrastructure and policies addressing water resource management, disaster preparedness, and sustainable agricultural practices to help communities adapt to changing conditions. Given the region's significance in terms of tourism and its economic role, declining snow cover can adversely affect the local economy, necessitating diversification and alternative opportunities for stability. Furthermore, the cross-border nature of the Himalayan region offers a unique opportunity for policymakers to foster international collaboration on climate and environmental issues, recognizing the importance of regional cooperation in effectively addressing transboundary challenges. Changes in snow cover and temperature have implications for public health and safety, affecting the availability of water resources and the risk of natural disasters. Policymakers must prioritize the well-being of the local population and develop strategies to mitigate these risks. To stay informed and adapt policies accordingly, continued monitoring of temperature, snow cover, and land use is crucial, as it requires support for ongoing research and data collection efforts.

Availability of data

The data that support the findings of this study are available upon request from the corresponding author.


  1. Ahmed R, Wani GF, Ahmad ST, Sahana M, Singh H, Ahmed P (2021) A review of glacial lake expansion and associated glacial lake outburst floods in the Himalayan region. Earth Syst Environ 5(3):695–708

    Article  Google Scholar 

  2. Andreadis KM, Storck P, Lettenmaier DP (2009) Modeling snow accumulation and ablation processes in forested environments. Water Resour Res.

    Article  Google Scholar 

  3. Ayejoto DA, et al. (2023) Influence of seasonal changes on the quality of water resources in southwestern Nigeria: A review, climate change impacts on Nigeria. Springer climate. Springer, Cham.

  4. Azizi AH, Asaoka Y (2020) Assessment of the impact of climate change on snow distribution and river flows in a snow-dominated mountainous watershed in the western Hindukush-Himalaya, Afghanistan. Hydrology 7(4):74

    Article  Google Scholar 

  5. Ban Y, Gong P, Giri C (2015) Global land cover mapping using Earth observation satellite data: recent progresses and challenges. ISPRS J Photogramm Remote Sens 103:1–6

    Article  Google Scholar 

  6. Bolch T et al (2019) Status and change of the cryosphere in the extended Hindu Kush Himalaya Region. In: Wester P, Mishra A, Mukherji A, Shrestha A (eds) The Hindu Kush Himalaya Assessment. Springer, Cham (10.1007/978-3-319-92288-1_7)

    Google Scholar 

  7. Bonsoms J, López-Moreno JI, Alonso-González E (2023) Snow sensitivity to temperature and precipitation change during compound cold–hot and wet–dry seasons in the Pyrenees. Cryosphere 17(3):1307–1326

    Article  Google Scholar 

  8. Chauhan P, Akıner ME, Sain K, Kumar A (2022) Forecasting of suspended sediment concentration in the Pindari-Kafni glacier valley in Central Himalayan region considering the impact of precipitation: using soft computing approach. Arab J Geosci 15(8):683

    Article  Google Scholar 

  9. Chauhan P, Sharma J, Bhardwaj P, Mehta M, Shah RA, Singh O, Sain K (2023) Comparative analysis of discharge and sediment flux from two contiguous glacierized basins of Central Himalaya, India. Environ Monit Assess 195(6):729

    Article  CAS  Google Scholar 

  10. Chinh LV, Jensen JR (2023) Characteristics of local pump schemes reusing drainage water in a major rice-based irrigation and drainage area in the Red River Basin, Vietnam. Water Conserv Manag 7(1):36–44.

  11. Choudhury A, Yadav AC, Bonafoni S (2021) A response of snow cover to the climate in the northwest Himalaya (NWH) using satellite products. Remote Sens 13(4):655

    Article  Google Scholar 

  12. Dash SK (2013) Weather and climate in high altitudes with special reference to the Himalayas. Climate Change and its Ecological Implications for the Western Himalaya, 128–161.

  13. Derksen C, Brown R (2012) Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys Res Lett.

    Article  Google Scholar 

  14. Dharpure JK, Patel A, Goswami A, Kulkarni AV (2020) Spatiotemporal snow cover characterization and its linkage with climate change over the Chenab river basin, western Himalayas. GISci Remote Sens 57(7):882–906

    Article  Google Scholar 

  15. ERDAS Inc. (1999) Erdas field guide. Erdas Inc., Atlanta

    Google Scholar 

  16. Fassnacht S, Cherry M, Venable N, Saavedra F (2016) Snow and albedo climate change impacts across the United States Northern Great Plains. Cryosphere 10(1):329–339

    Article  Google Scholar 

  17. Faudzi F, Miskon MF, Azid A, Tajudin NS, Shaharudin SM (2023) Development of trace metals concentration model for river: application of principal component analysis and artificial neural network. Water Conserv Manag 7(2):122–127.

    Article  Google Scholar 

  18. Garg S, Shukla A, Garg PK, Yousuf B, Shukla UK et al (2021) Revisiting the 24-year (1994–2018) record of glacier mass budget in the Suru sub-basin, western Himalaya: overall response and controlling factors. Sci Total Environ 800:149533.

    Article  CAS  Google Scholar 

  19. Garg PK, Shukla A, Jasrotia AS (2017) Influence of topography on glacier changes in the central Himalaya, India. Global Planet Change 155:196–212

    Article  Google Scholar 

  20. Girona-Mata M, Miles ES, Ragettli S, Pellicciotti F (2019) High-resolution snowline delineation from Landsat imagery to infer snow cover controls in a Himalayan catchment. Water Resour Res 55:6754–6772

    Article  Google Scholar 

  21. Grenfell TC, Warren SG, Mullen PC (1994) Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J Geophys Res 99(D9):18669–18684

    Article  Google Scholar 

  22. Haq MA, Baral P, Yaragal S, Rahaman G (2020) Assessment of trends of land surface vegetation distribution, snow cover and temperature over entire Himachal Pradesh using MODIS datasets. Nat Resour Model 33(2):e12262

    Article  Google Scholar 

  23. He M, Dong J, Jin Z, Liu C, Xiao J et al (2021) Pedogenic processes in loess-paleosol sediments: Clues from Li isotopes of leachate in Luochuan loess. Geochim Cosmochim Acta 299:151–162.

    Article  CAS  Google Scholar 

  24. Huang X, Deng J, Wang W, Feng Q, Liang T (2017) Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau. Remote Sens Environ 190:274–288

    Article  Google Scholar 

  25. Husain MA, Kumar P, Singh A, Raman VAV, Dua R, Thakur S (2023) Snow cover and snowline variation in relation to land surface temperature in Spiti Valley, Himachal Pradesh, India. Int J Ecol Environ Sci 49:187–199

    Google Scholar 

  26. IPCC. (2021). Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.

  27. Immerzeel WW, Lutz AF, Andrade M, Bahl A, Biemans H, Bolch T (2020) Importance and vulnerability of the world’s water towers. Nature 577(7790):364–369

    Article  CAS  Google Scholar 

  28. Kaul MK (1999) Inventory of Himalayan Glacier, Geological Survey of India, Special Publication 34.

  29. Kaur R, Saikumar D, Kulkarni AV, Chaudhary BS (2009) Variations in snow cover and snowline altitude in Baspa Basin. Curr Sci.

    Article  Google Scholar 

  30. Khadka D, Babel MS, Shrestha S, Tripathi NK (2014) Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region. J Hydrol 511:49–60

    Article  Google Scholar 

  31. Khadka N, Chen X, Sharma S, Shrestha B (2023) Climate change and its impacts on glaciers and glacial lakes in Nepal Himalayas. Reg Environ Change 23(4):143

    Article  Google Scholar 

  32. Kohler T, Maselli D (2009) Mountains and climate change. From understanding to action. Geographica Bernensia.

  33. Lin X, Zhu G, Qiu D, Ye L, Liu Y et al (2023) Stable precipitation isotope records of cold wave events in Eurasia. Atmos Res 296:107070.

    Article  CAS  Google Scholar 

  34. Liu J, Wang Y, Li Y, Peñuelas J, Zhao Y et al (2023) Soil ecological stoichiometry synchronously regulates stream nitrogen and phosphorus concentrations and ratios. CATENA 231:107357.

    Article  CAS  Google Scholar 

  35. Lu S, Zhu G, Meng G, Lin X, Liu Y et al (2024) Influence of atmospheric circulation on the stable isotope of precipitation in the monsoon margin region. Atmos Res 298:107131.

    Article  CAS  Google Scholar 

  36. Manzoor S, Ahmad Ahanger M (2022) Spatio-temporal trends in precipitation and temperature means/extremes in the Himalayan states of India. J Water Clim Change 13(7):2531–2558

    Article  Google Scholar 

  37. Maskey S, Uhlenbrook S, Ojha S (2011) An analysis of snow cover changes in the Himalayan region using MODIS snow products and in-situ temperature data. Clim Change 108(1):391–400

    Article  Google Scholar 

  38. Mir RA, Jain SK, Lohani AK, Saraf AK (2018) Glacier recession and glacial lake outburst flood studies in Zanskar basin, western Himalaya. J Hydrol 564:376–396

    Article  Google Scholar 

  39. Mishra AP, Rai ID, Pangtey D, Padalia H (2021) Vegetation characterization at community level using sentinel-2 satellite data and random forest classifier in western Himalayan Foothills, Uttarakhand. J Indian Soc Remote Sens 49:759–771

    Article  Google Scholar 

  40. Mishra, Arun Pratap, Sipu Kumar, Rounak Patra, Amit Kumar, Himanshu Sahu, Naveen Chandra, Chaitanya B. Pande, and Fahad Alshehri (2023) Physicochemical Parameters of Water and Its Implications on Avifauna and Habitat Quality, Sustainability 15, no. 12: 9494.

  41. Mountain Research Initiative EDW Working Group (MRIEWG) (2015). Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5, 424–430.

  42. Mudryk LR, Derksen C, Howell S, Laliberté F, Thackeray C, Sospedra-Alfonso R, Brown R (2018) Canadian snow and sea ice: historical trends and projections. Cryosphere 12(4):1157–1176

    Article  Google Scholar 

  43. Naharuddin N, Wahid A, Golar G, Rachman I, Akhbar A, Massiri SD (2022) Soil infiltration in various areas as a basis for hydrlogical alterations in The Toboli Watershed, Central Sulawesi, Indonesia. Water Conserv Manag 6(2):76–80.

    Article  Google Scholar 

  44. Negi HS, Shekhar MS, Gusain HS, Ganju A. (2018) Winter climate and snow cover variability over north-west Himalaya. Science and Geopolitics of The White World: Arctic-Antarctic-Himalaya, 127–142.

  45. Pandey P, Kulkarni AV, Venkataraman G (2013) Remote sensing study of snowline altitude at the end of melting season, Chandra-Bhaga basin, Himachal Pradesh, 1980–2007. Geocarto Int 28(4):1–12.

    Article  Google Scholar 

  46. Pandey A, Parashar D, Baruah B, Palni S, Yadav AS, Singh AP, Bhatt PK, Pundir C (2022) Assessment of snout analysis of Himalayan glaciers: impact studies on Pindari, Kafni, Sundardhunga, and Baljuri base camp glaciers. Environ Monit Assess 194(5):338

    Article  CAS  Google Scholar 

  47. Pandey A, Sarkar MS, Kumar M, Singh G, Lingwal S, Rawat JS (2018) Retreat of Pindari glacier and detection of snout position using remote sensing technology. Remote Sens Appl Soc Environ 11:64–69

    Google Scholar 

  48. Pandey A, Singh G, Palni S, Chandra N, Rawat JS, Singh AP (2021) Application of remote sensing in alpine grasslands cover mapping of western Himalaya, Uttarakhand, India. Environ Monit Assess 193(4):166

    Article  Google Scholar 

  49. Parashar D, Kumar A, Palni S, Pandey A, Singh A, Singh AP (2024) Use of machine learning-based classification algorithms in the monitoring of Land Use and Land Cover practices in a hilly terrain. Environ Monit Assess 196(1):8

    Article  Google Scholar 

  50. Pratap B, Dobhal DP, Bhambri R, Mehta M, Tewari VC (2016) Four decades of glacier mass balance observations in the Indian Himalaya. Reg Environ Change 16(3):643–658

    Article  Google Scholar 

  51. Qin J, Yang K, Liang S, Guo X (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim Change 97(1):321–327

    Article  Google Scholar 

  52. Rabatel A, Bermejo A, Loarte E, Soruco A, Gomez J et al (2012) Can the snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics? J Glaciol 58(212):1027–1036.

    Article  Google Scholar 

  53. Racoviteanu AE, Rittger K, Armstrong RL (2019) An automated approach for estimating snowline altitudes in the Karakoram and eastern Himalaya from remote sensing. Front Earth Sci 7:220.

    Article  Google Scholar 

  54. Rahim A, Wang X, Javed N, Aziz F, Jahangir A, Khurshid T (2023) Early 21st century trends of temperature extremes over the Northwest Himalayas. Atmosphere 14(3):454

    Article  Google Scholar 

  55. Rangwala I, Miller JR, Xu M (2009) Warming in the Tibetan Plateau: possible influences of the changes in surface water vapor. Geophys Res Lett.

    Article  Google Scholar 

  56. Sakthivadivel M, Nirmala A, Sakthivadivel J, Mukhilan RR, Tennyson S (2020) Physicochemical and biological parameters of water at industrial sites of metropolitan City of Chennai, Tamil Nadu, India. Water Conserv Manag 4(2):90–98.

    Article  Google Scholar 

  57. Shammout MW, Shatanawi K, Zamil MAL, Abualhaija MM (2023) A long-term estimation and modeling of domestic water resources in the Yarmouk River Basin-Jordan. Water Conserv Manag 7(2):107–113.

    Article  Google Scholar 

  58. Shekhar MS, Chand H, Kumar S, Srinivasan K, Ganju A (2010) Climate-change studies in the western Himalaya. Ann Glaciol 51(54):105–112

    Article  Google Scholar 

  59. Shrestha AB, Wake CP, Mayewski PA, Dibb JE (1999) Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. J Clim 12(9):2775–2786

    Article  Google Scholar 

  60. Shukla A, Garg S, Kumar V, Mehta M, Shukla UK (2020) Sensitivity of glaciers in part of the Suru basin, western Himalaya to ongoing climatic perturbations. Himalayan Weather and Climate and their Impact on the Environment, pp 351–377.

  61. Singh S, Kumar R, Bhardwaj A, Sam L, Shekhar M, Singh A, Kumar R, Gupta A (2016) Changing climate and glacio-hydrology in Indian Himalayan Region: a review. Wiley Interdiscip Rev Clim Change 7(3):393–410

    Article  Google Scholar 

  62. Singh N, Singhal M, Chhikara S, Karakoti I, Chauhan P, Dobhal DP (2020) Radiation and energy balance dynamics over a rapidly receding glacier in the central Himalaya. Int J Climatol 40(1):400–420

    Article  Google Scholar 

  63. Sobota I (2011) Snow accumulation, melt, mass loss, and the near-surface ice temperature structure of Irenebreen, Svalbard. Polar Sci 5(3):327–336

    Article  Google Scholar 

  64. Thakur A, Sharma A, Thakural LN (2023) Assessment of snow cover changes over the tons river basin during last two decades (2000–2019). Climate change and environmental impacts: past, present and future perspective. Springer International Publishing, Cham, pp 287–294

    Google Scholar 

  65. Tian H, Pei J, Huang J, Li X, Wang J et al (2020) Garlic and winter wheat identification based on active and passive satellite imagery and the google earth engine in Northern China. Remote Sens (Basel, Switzerland) 12(3539):3539.

    Article  Google Scholar 

  66. Wang X, Wang T, Xu J, Shen Z, Yang Y et al (2022) Enhanced habitat loss of the Himalayan endemic flora driven by warming-forced upslope tree expansion. Nat Ecol Evol 6(7):890–899.

    Article  Google Scholar 

  67. Weidinger J, Gerlitz L, Bechtel B, Böhner J (2018) Statistical modelling of snow cover dynamics in the Central Himalaya Region, Nepal.

  68. Weihs P, Laimighofer J, Formayer H, Olefs M (2021) Influence of snow making on albedo and local radiative forcing in an alpine area. Atmos Res 255:105448

    Article  Google Scholar 

  69. Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang YUN, Wilkes A (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23(3):520–530

    Article  CAS  Google Scholar 

  70. Yi J, Li H, Zhao Y, Shao M et al (2022) Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region. Agric Water Manag 265:107543.

    Article  Google Scholar 

  71. Yin L, Wang L, Keim BD, Konsoer K, Yin Z et al (2023) Spatial and wavelet analysis of precipitation and river discharge during operation of the Three Gorges Dam, China. Ecol Indicat 154:110837.

    Article  Google Scholar 

  72. Yin L, Wang L, Li T, Lu S, Tian J et al (2023) U-Net-LSTM: time series-enhanced lake boundary prediction model. Land 12(10):1859.

    Article  Google Scholar 

  73. Yin L, Wang L, Li T, Lu S, Yin Z et al (2023) U-Net-STN: a novel end-to-end lake boundary prediction model. Land 12(8):1602.

    Article  Google Scholar 

  74. Zhang S, Bai X, Zhao C, Tan Q, Luo G et al (2021) Global CO2 consumption by silicate rock chemical weathering: its past and future. Earth’s Future 9(5):e1938E-e2020E.

    Article  Google Scholar 

  75. Zhao Y, Wang H, Song B, Xue P, Zhang W et al (2023) Characterizing uncertainty in process-based hydraulic modeling, exemplified in a semiarid Inner Mongolia steppe. Geoderma 440:116713.

    Article  Google Scholar 

  76. Zhou G, Lin G, Liu Z, Zhou X, Li W et al (2023) An optical system for suppression of laser echo energy from the water surface on single-band bathymetric LiDAR. Opt Lasers Eng 163:107468.

    Article  Google Scholar 

  77. Zhou G, Su S, Xu J, Tian Z, Cao Q (2023) Bathymetry retrieval from spaceborne multispectral subsurface reflectance. IEEE J Sel Top Appl Earth Observ Remote Sens 16:2547–2558.

    Article  Google Scholar 

  78. Zhou G, Wu G, Zhou X, Xu C, Zhao D et al (2023) Adaptive model for the water depth bias correction of bathymetric LiDAR point cloud data. Int J Appl Earth Obs Geoinf 118:103253.

    Article  Google Scholar 

  79. Zhu Y, Dai H, Yuan S (2023) The competition between heterotrophic denitrification and DNRA pathways in hyporheic zone and its impact on the fate of nitrate. J Hydrol 626:130175.

    Article  CAS  Google Scholar 

  80. Zhu G, Evaporation, infiltration and storage of soil water in different vegetation zones in the Qilian Mountains: a stable isotope perspective. Hydrol Earth Syst Sci 26(14):3771–3784.

    Article  CAS  Google Scholar 

Download references


We gratefully acknowledge the support provided by the Vice-Chancellor of Soban Singh Jeena University, Almora, Uttarakhand, and the Director GB Pant 'National Institute of Himalayan Environment'(NIHE), Almora, Uttarakhand. The authors are also grateful to editors and potential reviewers.


This research was technically supported by the in-house projects of G.B. Pant National Institute of Himalayan Environment (GBP-NIHE) and the Wildlife Institute of India (WII).

Author information

Authors and Affiliations



All the authors contributed equally to the conceptualization, methodology development, data collection, investigation and modeling, original draft preparation, writing and editing. The authors certify that there is no conflicts of interest. Arvind Pandey: conceptualization, methodology, investigation, data collection, data interpretation, analysis, software guidance, original draft preparation, writing and editing. Deepanshu Parashar: conceptualization, methodology, data collection, data interpretation, investigation and modeling, analysis, writing and editing. Sarita Palni: conceptualization, methodology, data collection, investigation and modeling, software, writing and editing. Mriganka Shekhar Sarkar: conceptualization, methodology, investigation, writing and editing. Arun Pratap Mishra: methodology, investigation, original draft preparation, revision, review, writing and editing. Ajit Pratap Singh: investigation, conceptualization, visualization, modeling and analysis, writing and editing, overall supervision and guidance. Romulus Costache: original draft writing, review, writing and editing. Tuhami Jamil Abdulqadim: review, original draft, writing and editing. Chaitanya B. Pande: investigation, original draft, review, writing and editing. Abebe Debele Tolche: original draft, review, writing and editing. Mohd Yawar Ali: formal analysis, review, writing and editing.

Corresponding author

Correspondence to Abebe Debele Tolche.

Ethics declarations

Competing interests

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information


Supplementary Material 1: Table S1. Landsat 1 satellite and characteristics. Details of acquiring dates and resolution of the imageries used to study Kafni, Sundardhunga, Baljuri Base Camp glacier. Table S2. Details of Acquiring Year and resolution of the imageries used for the study of Pindari Glacier. Table S3. Metadata of Landsat MSS. Table S4. Metadata of Landsat 4 and 5 TM. Table S5. Metadata of Landsat 7 ETM+. Table S6. Metadata of sentinel 2 dataset. Table S7. Accuracy assessment of study area in the different year.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Parashar, D., Palni, S. et al. Spatiotemporal snowline status and climate variability impact assessment: a case study of Pindari River Basin, Kumaun Himalaya, India. Environ Sci Eur 36, 104 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: