Blanchet S, Prunier JG, Paz-Vinas I, Saint-Pé K, Rey O, Raffard A, Mathieu-Bégné E, Loot G, Fourtune L, Dubut V (2020) A river runs through it: the causes, consequences, and management of intraspecific diversity in river networks. Evol Appl 13(6):1195–1213
Article
Google Scholar
Hughes JM, Schmidt DJ, Finn DS (2009) Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat. Bioscience 59(7):573–583
Article
Google Scholar
Vernesi C, Bruford MW, Bertorelle G, Pecchioli E, Rizzoli A, Hauffe HC (2008) Where’s the conservation in conservation genetics? Conserv Biol 22(3):802–804
Article
Google Scholar
Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol Lett 6(8):783–796. https://doi.org/10.1046/j.1461-0248.2003.00486.x
Article
Google Scholar
Garant D, Forde SE, Hendry AP (2007) The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct Ecol. https://doi.org/10.1111/j.1365-2435.2006.01228.x
Article
Google Scholar
Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17(4):183–189. https://doi.org/10.1016/S0169-5347(02)02497-7
Article
Google Scholar
Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Syst 32(1):159–181. https://doi.org/10.1146/annurev.ecolsys.32.081501.114016
Article
Google Scholar
Finn DS, Blouin MS, Lytle DA (2007) Population genetic structure reveals terrestrial affinities for a headwater stream insect. Freshw Biol 52(10):1881–1897. https://doi.org/10.1111/j.1365-2427.2007.01813.x
Article
CAS
Google Scholar
Morrissey MB, de Kerckhove DT (2009) The maintenance of genetic variation due to asymmetric gene flow in dendritic metapopulations. Am Nat 174(6):875–889. https://doi.org/10.1086/648311
Article
Google Scholar
Alp M, Keller I, Westram AM, Robinson CT (2012) How river structure and biological traits influence gene flow: a population genetic study of two stream invertebrates with differing dispersal abilities. Freshw Biol 57(5):969–981. https://doi.org/10.1111/j.1365-2427.2012.02758.x
Article
Google Scholar
Razeng E, Morán-Ordóñez A, Brim Box J, Thompson R, Davis J, Sunnucks P (2016) A potential role for overland dispersal in shaping aquatic invertebrate communities in arid regions. Freshw Biol 61(5):745–757. https://doi.org/10.1111/fwb.12744
Article
Google Scholar
Allan JD, Castillo MM, Capps KA (2021) Stream ecology: structure and function of running waters. Springer Nature. https://doi.org/10.1007/978-3-030-61286-3
Article
Google Scholar
Gleick PH (2003) Global freshwater resources: soft-path solutions for the 21st century. Science 302(5650):1524–1528. https://doi.org/10.1126/science.1089967
Article
CAS
Google Scholar
Sundermann A, Gerhardt M, Kappes H, Haase P (2013) Stressor prioritisation in riverine ecosystems: which environmental factors shape benthic invertebrate assemblage metrics? Ecol Ind 27:83–96
Article
Google Scholar
Grizzetti B, Pistocchi A, Liquete C, Udias A, Bouraoui F, Van De Bund W (2017) Human pressures and ecological status of European rivers. Sci Rep 7(1):1–11. https://doi.org/10.1038/s41598-017-00324-3
Article
CAS
Google Scholar
Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561. https://doi.org/10.1038/nature09440
Article
CAS
Google Scholar
Ginebreda A, Muñoz I, de Alda ML, Brix R, López-Doval J, Barceló D (2010) Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environ Int 36(2):153–162. https://doi.org/10.1016/j.envint.2009.10.003
Article
CAS
Google Scholar
Pimentel D (2009) Pesticides and pest control. In: Peshin R, Dhawan AK (eds) Integrated pest management: innovation-development process. Springer, pp 83–87. https://doi.org/10.1007/978-1-4020-8992-3_3
Stamm C, Räsänen K, Burdon FJ, Altermatt F, Jokela J, Joss A, Ackermann M, Eggen RIL (2016) Unravelling the impacts of micropollutants in aquatic ecosystems: Interdisciplinary studies at the interface of large-scale ecology. In: Dumbrell AJ, Kordas RL, Woodward G (eds) Advances in Ecological Research, vol 55. Academic Press, pp 183–223. https://doi.org/10.1016/bs.aecr.2016.07.002
Beckers L-M, Busch W, Krauss M, Schulze T, Brack W (2018) Characterization and risk assessment of seasonal and weather dynamics in organic pollutant mixtures from discharge of a separate sewer system. Water Res 135:122–133
Article
CAS
Google Scholar
Burdon FJ, Munz NA, Reyes M, Focks A, Joss A, Räsänen K, Altermatt F, Eggen RIL, Stamm C (2019) Agriculture versus wastewater pollution as drivers of macroinvertebrate community structure in streams. Sci Total Environ 659:1256–1265
Article
CAS
Google Scholar
Inostroza PA, Vera-Escalona I, Wicht A-J, Krauss M, Brack W, Norf H (2016) Anthropogenic stressors shape genetic structure: insights from a model freshwater population along a land use gradient. Environ Sci Technol 50(20):11346–11356. https://doi.org/10.1021/acs.est.6b04629
Article
CAS
Google Scholar
Woodcock TS, Huryn AD (2007) The response of macroinvertebrate production to a pollution gradient in a headwater stream. Freshw Biol 52(1):177–196. https://doi.org/10.1111/j.1365-2427.2006.01676.x
Article
CAS
Google Scholar
Major KM, Weston DP, Lydy MJ, Wellborn GA, Poynton HC (2018) Unintentional exposure to terrestrial pesticides drives widespread and predictable evolution of resistance in freshwater crustaceans. Evol Appl 11(5):748–761
Article
CAS
Google Scholar
Shahid N, Becker JM, Krauss M, Brack W, Liess M (2018) Adaptation of Gammarus pulex to agricultural insecticide contamination in streams. Sci Total Environ 621:479–485
Article
CAS
Google Scholar
Wallace JB, Webster JR (1996) The role of macroinvertebrates in stream ecosystem function. Annu Rev Entomol 41(1):115–139
Article
CAS
Google Scholar
Adam O, Degiorgi F, Crini G, Badot PM (2010) High sensitivity of Gammarus sp. juveniles to deltamethrin: outcomes for risk assessment. Ecotoxicol Environ Saf 73(6):1402–1407. https://doi.org/10.1016/j.ecoenv.2010.02.011
Article
CAS
Google Scholar
Brettschneider DJ, Misovic A, Schulte-Oehlmann U, Oetken M, Oehlmann J (2019) Detection of chemically induced ecotoxicological effects in rivers of the Nidda catchment (Hessen, Germany) and development of an ecotoxicological, Water Framework Directive–compliant assessment system. Environ Sci Eur 31(1):1–22. https://doi.org/10.1186/s12302-019-0190-4
Article
CAS
Google Scholar
Harth FU, Arras C, Brettschneider DJ, Misovic A, Oehlmann J, Schulte-Oehlmann U, Oetken M (2018) Small but with big impact? Ecotoxicological effects of a municipal wastewater effluent on a small creek. Journal of Environmental Science and Health, Part A 53(13):1149–1160. https://doi.org/10.1080/10934529.2018.1530328
Article
CAS
Google Scholar
Kunz PY, Kienle C, Gerhardt A (2010) Gammarus spp. in aquatic ecotoxicology and water quality assessment: toward integrated multilevel tests. Rev Environ Contam Toxicol 205:1–76. https://doi.org/10.1007/978-1-4419-5623-1_1
Article
CAS
Google Scholar
Besse J-P, Coquery M, Lopes C, Chaumot A, Budzinski H, Labadie P, Geffard O (2013) Caged Gammarus fossarum (Crustacea) as a robust tool for the characterization of bioavailable contamination levels in continental waters: towards the determination of threshold values. Water Res 47(2):650–660. https://doi.org/10.1016/j.watres.2012.10.024
Article
CAS
Google Scholar
Copilaş-Ciocianu D, Petrusek A (2015) The southwestern Carpathians as an ancient centre of diversity of freshwater gammarid amphipods: insights from the Gammarus fossarum species complex. Mol Ecol 24(15):3980–3992
Article
Google Scholar
Müller J (2000) Mitochondrial DNA variation and the evolutionary history of cryptic Gammarus fossarum types. Mol Phylogenet Evol 15(2):260–268. https://doi.org/10.1006/mpev.1999.0740
Article
CAS
Google Scholar
Wattier R, Mamos T, Copilaş-Ciocianu D, Jelić M, Ollivier A, Chaumot A, Danger M, Felten V, Piscart C, Žganec K (2020) Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda). Sci Rep 10(1):1–16
Article
Google Scholar
Weiss M, Macher JN, Seefeldt MA, Leese F (2014) Molecular evidence for further overlooked species within the Gammarus fossarum complex (Crustacea: Amphipoda). Hydrobiologia 721(1):165–184
Article
CAS
Google Scholar
Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22(3):148–155. https://doi.org/10.1016/j.tree.2006.11.004
Article
Google Scholar
Habets MG, Rozen DE, Hoekstra RF, de Visser JAG (2006) The effect of population structure on the adaptive radiation of microbial populations evolving in spatially structured environments. Ecol Lett 9(9):1041–1048. https://doi.org/10.1111/j.1461-0248.2006.00955.x
Article
Google Scholar
Müller J, Partsch E, Link A (2000) Differentiation in morphology and habitat partitioning of genetically characterized Gammarus fossarum forms (Amphipoda) across a contact zone. Biol J Lin Soc 69(1):41–53. https://doi.org/10.1111/j.1095-8312.2000.tb01668.x
Article
Google Scholar
Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21(3):394–407. https://doi.org/10.1111/j.1365-2435.2007.01283.x
Article
Google Scholar
Weigand AM, Michler-Kozma D, Kuemmerlen M, Jourdan J (2020) Substantial differences in genetic diversity and spatial structuring among (cryptic) amphipod species in a mountainous river basin. Freshw Biol 65(9):1641–1656. https://doi.org/10.1111/fwb.13529
Article
CAS
Google Scholar
Weiss M, Leese F (2016) Widely distributed and regionally isolated! Drivers of genetic structure in Gammarus fossarum in a human-impacted landscape. BMC Evol Biol 16:153. https://doi.org/10.1186/s12862-016-0723-z
Article
CAS
Google Scholar
Eisenring M, Altermatt F, Westram AM, Jokela J (2016) Habitat requirements and ecological niche of two cryptic amphipod species at landscape and local scales. Ecosphere 7(5):e01319. https://doi.org/10.1002/ecs2.1319
Article
Google Scholar
Feckler A, Zubrod JP, Thielsch A, Schwenk K, Schulz R, Bundschuh M (2014) Cryptic species diversity: an overlooked factor in environmental management? J Appl Ecol 51(4):958–967
Article
Google Scholar
Tang W, Wang D, Wang J, Wu Z, Li L, Huang M, Xu S, Yan D (2018) Pyrethroid pesticide residues in the global environment: an overview. Chemosphere 191:990–1007
Article
CAS
Google Scholar
Weston DP, Poynton HC, Wellborn GA, Lydy MJ, Blalock BJ, Sepulveda MS, Colbourne JK (2013) Multiple origins of pyrethroid insecticide resistance across the species complex of a nontarget aquatic crustacean, Hyalella azteca. Proc Natl Acad Sci 110(41):16532–16537. https://doi.org/10.1073/pnas.1302023110
Article
Google Scholar
Mirtl M, Borer ET, Djukic I, Forsius M, Haubold H, Hugo W, Jourdan J, Lindenmayer D, McDowell WH, Muraoka H (2018) Genesis, goals and achievements of long-term ecological research at the global scale: a critical review of ILTER and future directions. Sci Total Environ 626:1439–1462. https://doi.org/10.1016/j.scitotenv.2017.12.001
Article
CAS
Google Scholar
Tonkin JD, Stoll S, Jähnig SC, Haase P (2016) Contrasting metacommunity structure and beta diversity in an aquatic-floodplain system. Oikos 125(5):686–697
Article
Google Scholar
Jourdan J, O’Hara RB, Bottarin R, Huttunen K-L, Kuemmerlen M, Monteith D, Muotka T, Ozoliņš D, Paavola R, Pilotto F, Springe G, Skuja A, Sundermann A, Tonkin JD, Haase P (2018) Effects of changing climate on European stream invertebrate communities: a long-term data analysis. Sci Total Environ 621:588–599
Article
CAS
Google Scholar
Dahm V, Kupilas B, Rolauffs R, Hering D, Haase P, Kappes H, Leps M, Sundermann A, Döbbelt-Grüne S, Hartmann C (2014) Hydromorphologische Steckbriefe der deutschen Fließgewässertypen-Anhang 1 von “Strategien zur Optimierung von Fließgewässer-Renaturierungsmaßnahmen und ihrer Erfolgskontrolle.”. Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, Umweltbundesamt 43
Brettschneider DJ, Misovic A, Schulte-Oehlmann U, Oetken M, Oehlmann J (2019) Poison in paradise: increase of toxic effects in restored sections of two rivers jeopardizes the success of hydromorphological restoration measures. Environ Sci Eur 31(1):1–20. https://doi.org/10.1186/s12302-019-0218-9
Article
CAS
Google Scholar
Heye K, Wiebusch J, Becker J, Rongstock L, Bröder K, Wick A, Schulte-Oehlmann U, Oehlmann J (2019) Ecotoxicological characterization of the antiepileptic drug carbamazepine using eight aquatic species: baseline study for future higher tier tests. J Environ Sci Health Part A 54(5):441–451. https://doi.org/10.1080/10934529.2018.1562819
Article
CAS
Google Scholar
Mackey A, Cooling D, Berrie A (1984) An evaluation of sampling strategies for qualitative surveys of macro-invertebrates in rivers, using pond nets. J Appl Ecol. https://doi.org/10.2307/2403426
Article
Google Scholar
Brack W, Ait-Aissa S, Burgess RM, Busch W, Creusot N, Di Paolo C, Escher BI, Hewitt LM, Hilscherova K, Hollender J (2016) Effect-directed analysis supporting monitoring of aquatic environments—an in-depth overview. Sci Total Environ 544:1073–1118
Article
CAS
Google Scholar
Busch W, Schmidt S, Kühne R, Schulze T, Krauss M, Altenburger R (2016) Micropollutants in European rivers: a mode of action survey to support the development of effect-based tools for water monitoring. Environ Toxicol Chem 35(8):1887–1899
Article
CAS
Google Scholar
Neale PA, Altenburger R, Aït-Aïssa S, Brion F, Busch W, de Aragão UG, Denison MS, Du Pasquier D, Hilscherová K, Hollert H (2017) Development of a bioanalytical test battery for water quality monitoring: fingerprinting identified micropollutants and their contribution to effects in surface water. Water Res 123:734–750
Article
CAS
Google Scholar
Giebner S, Ostermann S, Straskraba S, Oetken M, Oehlmann J, Wagner M (2018) Effectivity of advanced wastewater treatment: reduction of in vitro endocrine activity and mutagenicity but not of in vivo reproductive toxicity. Environ Sci Pollut Res 25(5):3965–3976. https://doi.org/10.1007/s11356-016-7540-1
Article
CAS
Google Scholar
Keiter S, Rastall A, Kosmehl T, Erdinger L, Braunbeck T, Hollert H (2006) Ecotoxicological assessment of sediment, suspended matter and water samples in the upper Danube river. A pilot study in search for the causes for the decline of fish catches (12 pp). Environ Sci Pollut Res 13(5):308–319
Article
CAS
Google Scholar
Nguyen LT, Muyssen BT, Janssen CR (2012) Single versus combined exposure of Hyalella azteca to zinc contaminated sediment and food. Chemosphere 87(1):84–90
Article
CAS
Google Scholar
Völker J, Vogt T, Castronovo S, Wick A, Ternes TA, Joss A, Oehlmann J, Wagner M (2017) Extended anaerobic conditions in the biological wastewater treatment: Higher reduction of toxicity compared to target organic micropollutants. Water Res 116:220–230. https://doi.org/10.1016/j.watres.2017.03.030
Article
CAS
Google Scholar
Hagiwara Y, Watanabe M, Oda Y, Sofuni T, Nohmi T (1993) Specificity and sensitivity of Salmonella typhimurium YG1041 and YG1042 strains possesing elevated levels of both nitroreductase and acetyltransferase activity. Mutation Research/Environmental Mutagenesis and Related Subjects 291(3):171–180. https://doi.org/10.1016/0165-1161(93)90157-U
Article
CAS
Google Scholar
Reifferscheid G, Maes HM, Allner B, Badurova J, Belkin S, Bluhm K, Brauer F, Bressling J, Domeneghetti S, Elad T (2012) International round-robin study on the Ames fluctuation test. Environ Mol Mutagen 53(3):185–197. https://doi.org/10.1002/em.21677
Article
CAS
Google Scholar
Stalter D, Magdeburg A, Wagner M, Oehlmann J (2011) Ozonation and activated carbon treatment of sewage effluents: removal of endocrine activity and cytotoxicity. Water Res 45(3):1015–1024. https://doi.org/10.1016/j.watres.2010.10.008
Article
CAS
Google Scholar
Eiseler B (2010) Taxonomie für die Praxis. Bestimmungshilfen–Makrozoobenthos (1). Landesamt für Natur Umwelt und Verbraucherschutz NRW Arbeitsblatt 14
Jourdan J, Piro K, Weigand AM, Plath M (2019) Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod. Front Zool 16:29. https://doi.org/10.1186/s12983-019-0327-8
Article
CAS
Google Scholar
Pöckl M (1993) Reproductive potential and lifetime potential fecundity of the freshwater amphipods Gammarus fossarum and G. roeseli in Austrian streams and rivers. Freshw Biol 30 (1):73–91
Riesch R, Curtis A, Jourdan J, Schlupp I, Arias-Rodriguez L, Plath M (2022) Two ecological gradients drive phenotypic differentiation of a cave fish over a few hundred metres. Biol J Lin Soc 135(4):825–838. https://doi.org/10.1093/biolinnean/blac004
Article
Google Scholar
Palmquist K, Salatas J, Fairbrother A (2012) Pyrethroid insecticides: use, environmental fate, and ecotoxicology. In: Perveen F (ed) Insecticides-advances in integrated pest management, pp 251–278
Davies T, Field L, Usherwood P, Williamson M (2007) DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life 59(3):151–162. https://doi.org/10.1080/15216540701352042
Article
CAS
Google Scholar
Soderlund DM, Bloomquist JR (1989) Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol 34(1):77–96. https://doi.org/10.1146/annurev.en.34.010189.000453
Article
CAS
Google Scholar
Borgmann U (1996) Systematic analysis of aqueous ion requirements of Hyalella azteca: a standard artificial medium including the essential bromide ion. Arch Environ Contam Toxicol 30(3):356–363
Article
CAS
Google Scholar
OECD (2004) Test No. 202: Daphnia sp. Acute Immobilisation Test. OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris. https://doi.org/10.1787/9789264069947-en
Hebert PD, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270(1512):313–321
Article
CAS
Google Scholar
Alther R, Fišer C, Altermatt F (2016) Description of a widely distributed but overlooked amphipod species in the European Alps. Zool J Linn Soc 179(4):751–766. https://doi.org/10.1111/zoj.12477
Article
Google Scholar
Grabowski M, Mamos T, Bącela-Spychalska K, Rewicz T, Wattier RA (2017) Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. PeerJ 5:e3016
Article
Google Scholar
Folmer O, Hoeh WR, Black MB, Vrijenhoek RC (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3(5):294–299
CAS
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096
Article
CAS
Google Scholar
Bell TG, Kramvis A (2013) Fragment merger: an online tool to merge overlapping long sequence fragments. Viruses 5(3):824–833. https://doi.org/10.3390/v5030824
Article
CAS
Google Scholar
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673
Article
CAS
Google Scholar
Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34(12):3299–3302. https://doi.org/10.1093/molbev/msx248
Article
CAS
Google Scholar
Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
Article
CAS
Google Scholar
Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6(9):1110–1116. https://doi.org/10.1111/2041-210x.12410
Article
Google Scholar
Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37(1):130–137
Article
Google Scholar
Finn DS, Bonada N, Múrria C, Hughes JM (2011) Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. J N Am Benthol Soc 30(4):963–980
Article
Google Scholar
Schröder O, Schneider JV, Schell T, Seifert L, Pauls SU (2022) Population genetic structure and connectivity in three montane freshwater invertebrate species (Ephemeroptera, Plecoptera, Amphipoda) with differing life cycles and dispersal capabilities. Freshw Biol 67(3):461–472. https://doi.org/10.1111/fwb.13854
Article
CAS
Google Scholar
Múrria C, Bonada N, Arnedo MA, Prat N, Vogler AP (2013) Higher β-and γ-diversity at species and genetic levels in headwaters than in mid-order streams in Hydropsyche (Trichoptera). Freshw Biol 58(11):2226–2236. https://doi.org/10.1111/fwb.12204
Article
CAS
Google Scholar
Pentinsaari M, Salmela H, Mutanen M, Roslin T (2016) Molecular evolution of a widely-adopted taxonomic marker (COI) across the animal tree of life. Sci Rep 6(1):1–12
Article
Google Scholar
Lowe WH, Likens GE (2005) Moving headwater streams to the head of the class. Bioscience 55(3):196–197
Article
Google Scholar
Meyer JL, Strayer DL, Wallace JB, Eggert SL, Helfman GS, Leonard NE (2007) The contribution of headwater streams to biodiversity in river networks. JAWRA 43(1):86–103
Google Scholar
Hardin G (1960) The Competitive Exclusion Principle: an idea that took a century to be born has implications in ecology, economics, and genetics. Science 131(3409):1292–1297. https://doi.org/10.1126/science.131.3409.1292
Article
CAS
Google Scholar
Vellend M, Geber MA (2005) Connections between species diversity and genetic diversity. Ecol Lett 8(7):767–781. https://doi.org/10.1111/j.1461-0248.2005.00775.x
Article
Google Scholar
Harr B (2006) Genomic islands of differentiation between house mouse subspecies. Genome Res 16(6):730–737. https://doi.org/10.1101/gr.5045006
Article
CAS
Google Scholar
Turner TL, Hahn MW, Nuzhdin SV (2005) Genomic islands of speciation in Anopheles gambiae. PLoS Biol 3(9):e285. https://doi.org/10.1371/journal.pbio.0030285
Article
CAS
Google Scholar
Gavrilets S, Vose A (2005) Dynamic patterns of adaptive radiation. Proc Natl Acad Sci 102(50):18040–18045. https://doi.org/10.1073/pnas.0506330102
Article
CAS
Google Scholar
Nosil P, Funk DJ, Ortiz-Barrientos D (2009) Divergent selection and heterogeneous genomic divergence. Mol Ecol 18(3):375–402. https://doi.org/10.1111/j.1365-294X.2008.03946.x
Article
Google Scholar
Wu C-I, Ting C-T (2004) Genes and speciation. Nat Rev Genet 5(2):114–122. https://doi.org/10.1038/nrg1269
Article
CAS
Google Scholar
Feckler A, Thielsch A, Schwenk K, Schulz R, Bundschuh M (2012) Differences in the sensitivity among cryptic lineages of the Gammarus fossarum complex. Sci Total Environ 439:158–164. https://doi.org/10.1016/j.scitotenv.2012.09.003
Article
CAS
Google Scholar
Jaume D, Christenson K (2001) Amphi-Atlantic distribution of the subterranean amphipod family Metacrangonyctidae (Crustacea, Gammaridea). Contrib Zool 70(2):99–125. https://doi.org/10.1163/18759866-07002004
Article
Google Scholar
Watling L, Thiel M (2012) Functional morphology and diversity. Oxford University Press
Google Scholar
Dick JT, Elwood RW (1989) Assessments and decisions during mate choice in Gammarus pulex (Amphipoda). Behaviour 109(3–4):235–245. https://doi.org/10.1163/156853989X00259
Article
Google Scholar
Grafen A, Ridley M (1983) A model of mate guarding. J Theor Biol 102(4):549–567. https://doi.org/10.1016/0022-5193(83)90390-9
Article
Google Scholar
Lipkowski K, Steigerwald S, Schulte LM, Sommer-Trembo C, Jourdan J (2022) Natural variation in social conditions affects male mate choosiness in the amphipod Gammarus roeselii. Curr Zool 68(4):459–468. https://doi.org/10.1093/cz/zoab016
Article
Google Scholar
Kinzler W, Maier G (2006) Selective predation by fish: a further reason for the decline of native gammarids in the presence of invasives? J Limnol 65(1):27. https://doi.org/10.4081/jlimnol.2006.27
Article
Google Scholar
Nelson WG (1979) Experimental studies of selective predation on ampipods: consequences for amphipod distribution and abundance. J Exp Mar Biol Ecol 38(3):225–245. https://doi.org/10.1016/0022-0981(79)90069-8
Article
Google Scholar
Wellborn GA (1994) Size-biased predation and prey life histories: a comparative study of freshwater amphipod populations. Ecology 75(7):2104–2117. https://doi.org/10.2307/1941614
Article
Google Scholar
White EP, Ernest SM, Kerkhoff AJ, Enquist BJ (2007) Relationships between body size and abundance in ecology. Trends Ecol Evol 22(6):323–330
Article
Google Scholar
De Gelder S, Van der Velde G, Platvoet D, Leung N, Dorenbosch M, Hendriks H, Leuven R (2016) Competition for shelter sites: testing a possible mechanism for gammarid species displacements. Basic Appl Ecol 17(5):455–462
Article
Google Scholar
Pringle S (1982) Factors affecting the microdistribution of different sizes of the amphipod Gammarus pulex. Oikos. https://doi.org/10.2307/3544679
Henry RP, Lucu C, Onken H, Weihrauch D (2012) Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Front Physiol 3:431
Article
CAS
Google Scholar
Brooks SJ, Mills CL (2011) Osmoregulation in hypogean populations of the freshwater amphipod, Gammarus pulex (L.). J Crustacean Biol 31(2):332–338
Sutcliffe DW (1984) Quantitative aspects of oxygen uptake by Gammarus (Crustacea, Amphipoda): a critical review. Freshw Biol 14(5):443–489. https://doi.org/10.1111/j.1365-2427.1984.tb00168.x
Article
Google Scholar
Glazier DS, Paul DA (2017) Ecology of ontogenetic body-mass scaling of gill surface area in a freshwater crustacean. J Exp Biol 220(11):2120–2127. https://doi.org/10.1242/jeb.155242
Article
Google Scholar
Åbjörnsson K, Dahl J, Nyström P, Brönmark C (2000) Influence of predator and dietary chemical cues on the behaviour and shredding efficiency of Gammarus pulex. Aquat Ecol 34(4):379–387. https://doi.org/10.1023/A:1011442331229
Article
Google Scholar
Wooster DE (1998) Amphipod (Gammarus minus) responses to predators and predator impact on amphipod density. Oecologia 115(1):253–259. https://doi.org/10.1007/s004420050514
Article
Google Scholar
Švara V, Krauss M, Michalski SG, Altenburger R, Brack W, Luckenbach T (2021) Chemical pollution levels in a river explain site-specific sensitivities to micropollutants within a genetically homogeneous population of freshwater amphipods. Environ Sci Technol 55(9):6087–6096. https://doi.org/10.1021/acs.est.0c07839
Article
CAS
Google Scholar
Ashauer R, Caravatti I, Hintermeister A, Escher BI (2010) Bioaccumulation kinetics of organic xenobiotic pollutants in the freshwater invertebrate Gammarus pulex modeled with prediction intervals. Environ Toxicol Chem 29(7):1625–1636. https://doi.org/10.1002/etc.175
Article
CAS
Google Scholar
Ashauer R, O’Connor I, Hintermeister A, Escher BI (2015) Death dilemma and organism recovery in ecotoxicology. Environ Sci Technol 49(16):10136–10146. https://doi.org/10.1021/acs.est.5b03079
Article
CAS
Google Scholar
Shahid N, Becker JM, Krauss M, Brack W, Liess M (2018) Pesticide body burden of the crustacean Gammarus pulex as a measure of toxic pressure in agricultural streams. Environ Sci Technol 52(14):7823–7832
Article
CAS
Google Scholar
Babin A, Saciat C, Teixeira M, Troussard J-P, Motreuil S, Moreau J, Moret Y (2015) Limiting immunopathology: interaction between carotenoids and enzymatic antioxidant defences. Dev Comp Immunol 49(2):278–281. https://doi.org/10.1016/j.dci.2014.12.007
Article
CAS
Google Scholar
Tu HT, Silvestre F, De Meulder B, Thome J-P, Phuong NT, Kestemont P (2012) Combined effects of deltamethrin, temperature and salinity on oxidative stress biomarkers and acetylcholinesterase activity in the black tiger shrimp (Penaeus monodon). Chemosphere 86(1):83–91
Article
CAS
Google Scholar
Persson L, Carney Almroth BM, Collins CD, Cornell S, de Wit CA, Diamond ML, Fantke P, Hassellöv M, MacLeod M, Ryberg MW (2022) Outside the safe operating space of the planetary boundary for novel entities. Environ Sci Technol 56:1510–1521
Article
Google Scholar
Bernhardt ES, Rosi EJ, Gessner MO (2017) Synthetic chemicals as agents of global change. Front Ecol Environ 15(2):84–90
Article
Google Scholar