Mostert E (2009) International co-operation on Rhine water quality 1945–2008: an example to follow? Phys Chem Earth 34:142–149. https://doi.org/10.1016/J.PCE.2008.06.007
Article
Google Scholar
Wang Z, Walker GW, Muir DCG, Nagatani-Yoshida K (2020) Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories. Environ Sci Technol 54:2575–2584
Article
CAS
Google Scholar
Munthe J, Lexén J, Skårman T, Posthuma L, Brack W, Altenburger R, Brorström-Lundén E, Bunke D, Faust M, Rahmberg M et al (2019) Increase coherence, cooperation and cross-compliance of regulations on chemicals and water quality. Environ Sci Eur. https://doi.org/10.1186/S12302-019-0235-8
Article
Google Scholar
Neumann, M.; Schliebner, I. Protecting the sources of our drinking water: The criteria for identifying persistent, mobile and toxic (PMT) substances and very persistent and very mobile (vPvM) substances under EU Regulation REACH (EC) No 1907/2006. UBA TEXTE 127/2019. Ger. Environ. Agency (UBA), Dessau-Roßlau, Ger. ISBN 1862–4804. 87 pages 2019. https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-11-29_texte_127-2019_protecting-sources-drinking-water-pmt.pdf
Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ et al (2009) A safe operating space for humanity. Nature. https://doi.org/10.1038/461472a
Article
Google Scholar
Chen R, Li G, He Y, Pan L, Yu Y, Shi B (2021) Field study on the transportation characteristics of PFASs from water source to tap water. Water Res 198:117162. https://doi.org/10.1016/J.WATRES.2021.117162
Article
CAS
Google Scholar
Hu XC, Andrews DQ, Lindstrom AB, Bruton TA, Schaider LA, Grandjean P, Lohmann R, Carignan CC, Blum A, Balan SA et al (2016) Detection of poly- and perfluoroalkyl substances (PFASs) in U.S. drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environ Sci Technol Lett 3:344–350. https://doi.org/10.1021/ACS.ESTLETT.6B00260
Article
CAS
Google Scholar
Stoiber T, Evans S, Naidenko OV (2020) Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): a cyclical problem. Chemosphere 260:127659. https://doi.org/10.1016/J.CHEMOSPHERE.2020.127659
Article
CAS
Google Scholar
Hale SE, Arp HPH, Schliebner I, Neumann M (2020) What’s in a name: persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances. Environ Sci Technol 54:14790–14792. https://doi.org/10.1021/ACS.EST.0C05257
Article
CAS
Google Scholar
Hale SE, Arp HPH, Schliebner I, Neumann M (2020) Persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvM) substances pose an equivalent level of concern to persistent, bioaccumulative and toxic (PBT) and very persistent and very bioaccumulative (vPvB) substances under REACH. Environ Sci Eur 32:1–15
Article
Google Scholar
Rüdel H, Körner W, Letzel T, Neumann M, Nödler K, Reemtsma T (2020) Persistent, mobile and toxic substances in the environment: a spotlight on current research and regulatory activities. Environ Sci Eur. https://doi.org/10.1186/S12302-019-0286-X
Article
Google Scholar
Arp HPH, Brown TN, Berger U, Hale SE (2017) Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility. Environ Sci Process Impacts 19:939–955. https://doi.org/10.1039/c7em00158d
Article
CAS
Google Scholar
Reemtsma T, Berger U, Arp HPH, Gallard H, Knepper TP, Neumann M, Quintana JB, Voogt PD (2016) Mind the gap: persistent and mobile organic compounds—water contaminants that slip through. Environ Sci Technol. https://doi.org/10.1021/acs.est.6b03338
Article
Google Scholar
Reemtsma T, Berger U, Arp HPH, Gallard H, Knepper TP, Neumann M, Quintana JB, De VP (2016) Mind the gap: persistent and mobile organic compounds—water contaminants that slip through. Environ Sci Technol 50:10308–10315. https://doi.org/10.1021/acs.est.6b03338
Article
CAS
Google Scholar
EC. Chemicals strategy for sustainability towards a toxic-free environment; 2020; https://ec.europa.eu/environment/pdf/chemicals/2020/10/Strategy.pdf
Arp, H.P.H.; Hale, S. REACH: Improvement of guidance and methods for the identification and assessment of PMT/vPvM substances. UBA texte 126/2019. 2019, 1–129. https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-11-29_texte_126-2019_reach-pmt.pdf
Scheurer M, Nödler K, Freeling F, Janda J, Happel O, Riegel M, Müller U, Storck FR, Fleig M, Lange FT et al (2017) Small, mobile, persistent: trifluoroacetate in the water cycle—overlooked sources, pathways, and consequences for drinking water supply. Water Res 126:460–471. https://doi.org/10.1016/J.WATRES.2017.09.045
Article
CAS
Google Scholar
Behringer, D.; Heydel, F.; Gschrey, B.; Osterheld, S.; Schwarz, W.; Warncke, K.; Freeling, F.; Nödler, K.; Wasser, T.; Henne, S.; et al. Persistent degradation products of halogenated refrigerants and blowing agents in the environment: type, environmental concentrations, and fate with particular regard to new halogenated substitutes with low global warming potential. UBA texte 73/2021 2021. https://www.umweltbundesamt.de/sites/default/files/medien/5750/publikationen/2021-05-06_texte_73-2021_persistent_degradation_products.pdf
Solomon K, Velders G, Wilson S, Madronich S, Longstreth J, Aucamp P, Bornman J (2016) Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: Relevance to substances regulated under the Montreal and Kyoto Protocols. J Toxicol Environ Health B Crit Rev 19:289–304. https://doi.org/10.1080/10937404.2016.1175981
Article
CAS
Google Scholar
Tisler S, Zindler F, Freeling F, Nödler K, Toelgyesi L, Braunbeck T, Zwiener C (2019) Transformation products of fluoxetine formed by photodegradation in water and biodegradation in zebrafish embryos (Danio rerio). Environ Sci Technol 53:7400–7409. https://doi.org/10.1021/ACS.EST.9B00789
Article
CAS
Google Scholar
EURL-SRM Residue Findings Report - Residues of DFA and TFA in Samples of Plant Origin. EurlSrm_residue-Observation_TFA-DFA (eurl-pesticides.eu). 2017, Accessed 29 Jun 2021.
Scheurer M, Nödler K (2021) Ultrashort-chain perfluoroalkyl substance trifluoroacetate (TFA) in beer and tea—an unintended aqueous extraction. Food Chem 351:129304. https://doi.org/10.1016/J.FOODCHEM.2021.129304
Article
CAS
Google Scholar
Duan Y, Sun H, Yao Y, Meng Y, Li Y (2020) Distribution of novel and legacy per-/polyfluoroalkyl substances in serum and its associations with two glycemic biomarkers among Chinese adult men and women with normal blood glucose levels. Environ Int 134:105295. https://doi.org/10.1016/J.ENVINT.2019.105295
Article
CAS
Google Scholar
Pickard HM, Criscitiello AS, Persaud D, Spencer C, Muir DCG, Lehnherr I, Sharp MJ, Silva AO (2020) Ice core record of persistent short-chain fluorinated alkyl acids: evidence of the impact from global environmental regulations. Geophys Res Lett. https://doi.org/10.1029/2020GL087535
Article
Google Scholar
Freeling F, Behringer D, Heydel F, Scheurer M, Ternes TA, Nödler K (2020) Trifluoroacetate in precipitation: deriving a benchmark data set. Environ Sci Technol 54:11210–11219. https://doi.org/10.1021/ACS.EST.0C02910
Article
CAS
Google Scholar
Berends AG, Boutonnet JC, De Rooij CG, Thompson RS (1999) Toxicity of trifluoroacetate to aquatic organisms. Environ Toxicol Chem 18:1053–1059. https://doi.org/10.1002/ETC.5620180533
Article
CAS
Google Scholar
Seiber, J.N. and Cahill, T.M. Pesticides, organic contaminants, and pathogens in air—chemodynamics, health effects, sampling, and analysis.; irst editi.; 2022;
Stepien DK, Diehl P, Helm J, Thoms A, Püttmann W (2014) Fate of 1,4-dioxane in the aquatic environment: from sewage to drinking water. Water Res 48:406–419. https://doi.org/10.1016/J.WATRES.2013.09.057
Article
CAS
Google Scholar
Carrera G, Vegué L, Boleda MR, Ventura F (2017) Simultaneous determination of the potential carcinogen 1,4-dioxane and malodorous alkyl-1,3-dioxanes and alkyl-1,3-dioxolanes in environmental waters by solid-phase extraction and gas chromatography tandem mass spectrometry. J Chromatogr A 1487:1–13. https://doi.org/10.1016/J.CHROMA.2017.01.015
Article
CAS
Google Scholar
OVAM Additives of chlorinated solvents—1,4-dioxane in Flanders. 2017. https://www.ovam.be/sites/default/files/atoms/files/Rapport%20%28E%29%20-%20Additives%20of%20chlorinated%20solvents%20-%201%2C4-dioxine%20in%20Flanders.pdf
Abe A (1999) Distribution of 1, 4-dioxane in relation to possible sources in the water environment. Sci Total Environ 227:41–47. https://doi.org/10.1016/S0048-9697(99)00003-0
Anderson RH, Anderson JK, Bower PA (2012) Co-occurrence of 1,4-dioxane with trichloroethylene in chlorinated solvent groundwater plumes at US Air Force installations: Fact or fiction. Integr Environ Assess Manag 8:731–737. https://doi.org/10.1002/IEAM.1306
Article
CAS
Google Scholar
Adamson DT, Mahendra S, Walker KL, J., Rauch, S.R., Sengupta, S., Newell, C.J. (2014) A multisite survey to identify the scale of the 1,4-dioxane problem at contaminated groundwater sites. Environ Sci Technol Lett 1:254–258. https://doi.org/10.1021/EZ500092U
Article
CAS
Google Scholar
Karges U, Becker J, Püttmann W (2018) 1, 4-Dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume. Sci Total Environ 619–620:712–720. https://doi.org/10.1016/j.scitotenv.2017.11.043
Article
CAS
Google Scholar
Adamson DT, Piña EA, Cartwright AE, Rauch SR, Anderson RH, Mohr T, Connor JA (2017) 1, 4-Dioxane drinking water occurrence data from the third unregulated contaminant monitoring rule. Sci Total Environ 596–597:236–245. https://doi.org/10.1016/j.scitotenv.2017.04.085
Article
CAS
Google Scholar
Carrera G, Vegué L, Ventura F, Hernández-Valencia A, Devesa R, Boleda M (2019) Dioxanes and dioxolanes in source waters: occurrence, odor thresholds and behavior through upgraded conventional and advanced processes in a drinking water treatment plant. Water Res 156:404–413. https://doi.org/10.1016/J.WATRES.2019.03.026
Article
CAS
Google Scholar
da Silva MLB, He Y, Mathieu J, Alvarez PJJ (2020) Enhanced long-term attenuation of 1,4-dioxane in bioaugmented flow-through aquifer columns. Biodegradation 31:201–211. https://doi.org/10.1007/S10532-020-09903-0
Article
Google Scholar
Li M, Van Orden ET, DeVries DJ, Xiong Z, Hinchee R, Alvarez PJ (2015) Bench-scale biodegradation tests to assess natural attenuation potential of 1,4-dioxane at three sites in California. Biodegradation 26:39–50. https://doi.org/10.1007/S10532-014-9714-1
Article
CAS
Google Scholar
Stepien DK, Diehl P, Helm J, Thoms A (2013) Fate of 1,4-dioxane in the aquatic environment : from sewage to drinking water. Water Res. https://doi.org/10.1016/j.watres.2013.09.057
Article
Google Scholar
ECHA. European Chemicals Agency Inclusion of substances of very high concern in the Candidate List for eventual inclusion in Annex XIV, (Decision of the European Chemicals Agency), D(2021)4569-DC_19622. 2021. https://echa.europa.eu/documents/10162/ab77aafb-7b98-5cbb-3416-fc28e393a48e
Arp, H.P.H.; Hale, S.E. REACH: Improvement of guidance methods for the identification and evaluation of PM/PMT substances. UBA TEXTE 126/2019. German Environment Agency (UBA), Dessau-Roßlau, Germany. ISBN: 1862–4804. 130 pages. https://www.umweltbundesamt.de/en/publikationen/reach-improvement-of-guidance-methods-for-the. Accessed 3 Mar 2022.
Neuwald I, Muschket M, Zahn D, Berger U, Seiwert B, Meier T, Kuckelkorn J, Strobel C, Knepper TP, Reemtsma T (2021) Filling the knowledge gap: a suspect screening study for 1310 potentially persistent and mobile chemicals with SFC- and HILIC-HRMS in two German river systems. Water Res. https://doi.org/10.1016/J.WATRES.2021.117645
Article
Google Scholar
Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787. https://doi.org/10.1021/AC051437Y
Article
CAS
Google Scholar
Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinforma 11:1–11. https://doi.org/10.1186/1471-2105-11-395
Article
CAS
Google Scholar
Minkus S, Grosse S, Bieber S, Veloutsou S, Letzel T (2020) Optimized hidden target screening for very polar molecules in surface waters including a compound database inquiry. Anal Bioanal Chem 412:4953–4966. https://doi.org/10.1007/S00216-020-02743-0
Article
CAS
Google Scholar
Helmus R, ter Laak TL, van Wezel AP, de Voogt P, Schymanski EL (2021) patRoon: open source software platform for environmental mass spectrometry based non-target screening. J Cheminformatics 13:1–25. https://doi.org/10.1186/S13321-020-00477-W
Article
CAS
Google Scholar
Minkus S, Bieber S, Letzel T (2021) (Very) polar organic compounds in the Danube river basin: A non-target screening workflow and prioritization strategy for extracting highly confident features. Anal Methods 13:2044–2054. https://doi.org/10.1039/D1AY00434D
Article
CAS
Google Scholar
Bieber, S.; Letzel, T. White paper—polarity-extended chromatography, AFIN-TS Forum. 2020, February 1–4. https://afin-ts.de/wp-content/uploads/2020/04/AFIN-TS_01_2020_Pol_Ex.pdf
Bieber S, Greco G, Grosse S, Letzel T (2017) RPLC-HILIC and SFC with mass spectrometry: polarity-extended organic molecule screening in environmental (Water) samples. Anal Chem 89:7907–7914. https://doi.org/10.1021/ACS.ANALCHEM.7B00859
Article
CAS
Google Scholar
Kiefer K, Du L, Singer H, Hollender J (2021) Identification of LC-HRMS nontarget signals in groundwater after source related prioritization. Water Res. https://doi.org/10.1016/J.WATRES.2021.116994
Article
Google Scholar
Mechelke J, Longrée P, Singer H, Hollender J (2019) Vacuum-assisted evaporative concentration combined with LC-HRMS/MS for ultra-trace-level screening of organic micropollutants in environmental water samples. Anal Bioanal Chem. https://doi.org/10.1007/S00216-019-01696-3
Article
Google Scholar
Köke N, Zahn D, Knepper TP, Frömel T (2018) Multi-layer solid-phase extraction and evaporation—enrichment methods for polar organic chemicals from aqueous matrices. Anal Bioanal Chem 410:2403–2411. https://doi.org/10.1007/S00216-018-0921-1
Article
Google Scholar
Kern S, Fenner K, Singer HP, Schwarzenbach RP, Hollender J (2009) Identification of transformation products of organic contaminants in natural waters by computer-aided prediction and high-resolution mass spectrometry. Environ Sci Technol 43:7039–7046. https://doi.org/10.1021/ES901979H
Article
CAS
Google Scholar
Reemtsma T, Alder L, Banasiak U (2013) A multimethod for the determination of 150 pesticide metabolites in surface water and groundwater using direct injection liquid chromatography-mass spectrometry. J Chromatogr A 1271:95–104. https://doi.org/10.1016/J.CHROMA.2012.11.023
Article
CAS
Google Scholar
Crop life Europe. https://croplifeeurope.eu/pre-market-resources/analytical-standards-reference-standard-compounds-for-water-monitoring-programmes/. Accessed 3 Mar 2022.
Hollender J, Schymanski EL, Singer HP, Ferguson PL (2017) Nontarget screening with high resolution mass spectrometry in the environment: ready to go? Environ Sci Technol 51:11505–11512. https://doi.org/10.1021/ACS.EST.7B02184
Article
CAS
Google Scholar
Schulze S, Zahn D, Montes R, Rodil R, Quintana JB, Knepper TP, Reemtsma T, Berger U (2019) Occurrence of emerging persistent and mobile organic contaminants in European water samples. Water Res 153:80–90. https://doi.org/10.1016/J.WATRES.2019.01.008
Article
CAS
Google Scholar
Zektser, I.S. and Everett, L.G. Groundwater resources of the world and their use, United Nations Educational, Scientific and Cultural Organization, Paris. 2004. https://www.un-igrac.org/sites/default/files/resources/files/Groundwater_around_world.pdf
Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ Pollut 163:287–303. https://doi.org/10.1016/J.ENVPOL.2011.12.034
Article
CAS
Google Scholar
Sjerps RMA, Brunner AM, Fujita Y, Bajema B, de Jonge M, Bäuerlein PS, de Munk J, Schriks M, van Wezel A (2021) Clustering and prioritization to design a risk-based monitoring program in groundwater sources for drinking water. Environ Sci Eur. https://doi.org/10.1186/S12302-021-00470-6
Article
Google Scholar
ECHA. European chemicals agency guidance on information requirements and chemical safety assessment chapter R.11: PBT/vPvB assessment Version 3.0. ECHA-17-G-12-EN. 2017. https://echa.europa.eu/documents/10162/17224/information_requirements_r11_en.pdf/a8cce23f-a65a-46d2-ac68-92fee1f9e54f
Kalmykova Y, Björklund K, Strömvall AM, Blom L (2013) Partitioning of polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachates and stormwater. Water Res 47:1317–1328. https://doi.org/10.1016/J.WATRES.2012.11.054
Article
CAS
Google Scholar
Bansal RC, Goyal M (2005) Activated carbon. Adsorption. https://doi.org/10.1201/9781420028812
Article
Google Scholar
Zhu D, Pignatello JJ (2005) Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ Sci Technol 39:2033–2041. https://doi.org/10.1021/es0491376
Article
CAS
Google Scholar
Sigmund G, Gharasoo M, Hüffer T, Hofmann T (2020) Deep learning neural network approach for predicting the sorption of ionizable and polar organic pollutants to a wide range of carbonaceous materials. Environ Sci Technol 54:4583–4591. https://doi.org/10.1021/ACS.EST.9B06287
Article
CAS
Google Scholar
Kah M, Sigmund G, Xiao F, Hofmann T (2017) Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials. Water Res 124:673–692. https://doi.org/10.1016/j.watres.2017.07.070
Article
CAS
Google Scholar
Hagemann N, Schmidt HP, Kägi R, Böhler M, Sigmund G, Maccagnan A, McArdell CS, Bucheli TD (2020) Wood-based activated biochar to eliminate organic micropollutants from biologically treated wastewater. Sci Total Environ 730:138417. https://doi.org/10.1016/J.SCITOTENV.2020.138417
Article
CAS
Google Scholar
Gagliano E, Sgroi M, Falciglia PP, Vagliasindi FGA, Roccaro P (2020) Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res 171:115381. https://doi.org/10.1016/J.WATRES.2019.115381
Article
CAS
Google Scholar
Albergamo V, Blankert B, Cornelissen ER, Hofs B, Knibbe W-J, van der Meer W, de Voogt P (2019) Removal of polar organic micropollutants by pilot-scale reverse osmosis drinking water treatment. Water Res 148:535–545
Article
CAS
Google Scholar
United States Environmental Protection Agency Emerging technologies for wastewater treatment and in-plant wet weather management. EPA-832-R-12-011. 2013. https://www.epa.gov/sites/default/files/2019-02/documents/emerging-tech-wastewater-treatment-management.pdf
Brunner AM, Bertelkamp C, Dingemans MML, Kolkman A, Wols B, Harmsen D, Siegers W, Martijn BJ, Oorthuizen WA, ter Laak TL (2020) Integration of target analyses, non-target screening and effect-based monitoring to assess OMP related water quality changes in drinking water treatment. Sci Total Environ 705:135779. https://doi.org/10.1016/J.SCITOTENV.2019.135779
Article
CAS
Google Scholar
European Commission Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal L 327, 22/12/2000 p. 1–73. 2000. https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32000L0060
United Nations Environment Programme UNEP UNEP Yearbook: Emerging issues in our Global Environment; 2013. https://wedocs.unep.org/handle/20.500.11822/8222
OECD 309: Aerobic Mineralisation in Surface Water–Simulation Biodegradation Test. OECD Guidelines for the Testing of Chemicals, Section, 3. 2004. https://www.oecd-ilibrary.org/environment/test-no-309-aerobic-mineralisation-in-surface-water-simulation-biodegradation-test_9789264070547-en
Hofman-Caris, Roberta, Claßen, D. Persistence of gabapentin, 1Hbenzotriazole, diglyme, DTPA, 1,4- dioxane, melamine and urotropin in surface water: Testing of chemicals according to the OECD 309 guideline. 2020. https://edepot.wur.nl/539038
Gustafson D (1989) Groundwater ubiquity score—a simple method for assessing pesticide leachability. Environ Toxicol Chem 8:339
Article
CAS
Google Scholar
ECHA European Chemicals Agency Guidance on the Biocidal Products Regulation Volume IV: Environment Part A: Information Requirements. 2018, https://doi.org/10.2823/49865.
European Commission Ad Hoc Meeting of CARACAL PBT/vPvB/PMT/vPvM criteria 30 September 2021. Topic: Discussion on PMT/vPvM possible criteria in CLP. Ad-hoc CA/03/2021. 9 pp. Brussels. 2021.
Bronner G, Goss KU (2011) Sorption of organic chemicals to soil organic matter: Influence of soil variability and ph dependence. Environ Sci Technol 45:1307–1312. https://doi.org/10.1021/es102576e
Article
CAS
Google Scholar
Helling CS, Chesters G, Corey RB (1964) contribution of organic matter and clay to soil cation- exchange capacity as affected by the pH of the saturating solution. Soil Sci Soc Am J. https://doi.org/10.2136/sssaj1964.03615995002800040020x
Article
Google Scholar
Henneberger L, Goss K-U (2019) Environmental sorption behavior of ionic and ionizable organic chemicals. Rev Environ Contam Toxicol 253:43–64. https://doi.org/10.1007/398_2019_37
Article
CAS
Google Scholar
Zareitalabad P, Siemens J, Hamer M, Amelung W (2013) Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater—a review on concentrations and distribution coefficients. Chemosphere 91:725–732. https://doi.org/10.1016/j.chemosphere.2013.02.024
Article
CAS
Google Scholar
Droge STJ, Goss KU (2013) Development and evaluation of a new sorption model for organic cations in soil: Contributions from organic matter and clay minerals. Environ Sci Technol 47:14233–14241. https://doi.org/10.1021/es4031886
Article
CAS
Google Scholar
ECETOC Technical report 139: Persistent chemicals and water resources protection. 2021. https://www.ecetoc.org/wp-content/uploads/2021/05/ECETOC-TR-139-Persistent-chemicals-and-water-resources-protection-2.pdf
Cousins IT, Ng CA, Wang Z, Scheringer M (2019) Why is high persistence alone a major cause of concern? Environ Sci Process Impacts 21:781–792. https://doi.org/10.1039/c8em00515j
Article
CAS
Google Scholar
Kalberlah, F.; Oltmanns, J.; Schwarz, M.; Baumeister, J.; Striffler, A. Guidance for the precautionary protection of raw water destined for drinking water extraction from contaminants regulated under REACH. UFOPLAN Project FKZ 371265416. German Federal Environmental Agency. 2014. https://www.fachoekotoxikologie.de/fileadmin/fachoekotoxikologie/abgeschlossene_Arbeiten/2016/2_FKZ_371265416_UBA_REPORT-PMT_final-FoBiG.pdf
Holmberg, R.; Bay Wedebye, E.; Georgiev Nikolov, Nikolai Tyle, H. How many potential vPvM/PMT substances have been registered under REACH? - vPvM/PMT-screening by using the Danish (Q)SAR database — Welcome to DTU Research Database Available online: https://orbit.dtu.dk/en/publications/how-many-potential-vpvmpmt-substances-have-been-registered-under. Accessed 11 Sep 2021.
Bronner G, Goss K-U (2011) Predicting sorption of pesticides and other multifunctional organic chemicals to soil organic carbon. Environ Sci Technol 45:1313–1319. https://doi.org/10.1021/es102553y
Article
CAS
Google Scholar
Zheng Z, Peters GM, Arp HPH, Andersson PL (2019) Combining in silico tools with multicriteria analysis for alternatives assessment of hazardous chemicals: a case study of decabromodiphenyl ether alternatives. Environ Sci Technol. https://doi.org/10.1021/acs.est.8b07163
Article
Google Scholar
European Commission DIRECTIVE (EU). 2020/2184 of the European parliament and of the council of 16 December 2020 on the quality of water intended for human consumption (recast). 2020,
Pronk TE, Hofman-Caris RCHM, Vries D, Kools SAE, ter Laak TL, Stroomberg GJ (2021) A water quality index for the removal requirement and purification treatment effort of micropollutants. Water Supply 21:128–145. https://doi.org/10.2166/WS.2020.289
Article
CAS
Google Scholar
Timmer, H.; Bannink, A. “Combining science and legislation to protect the surface water sources of our drinking water”, Presentation: The Third PMT Workshop. Berlin. 2021. https://www.umweltbundesamt.de/sites/default/files/medien/3521/dokumente/day_2_afternoon_04_harrie_timmer_c. Accessed 3 Mar 2022.
Carvalho L, Mackay EB, Cardoso AC, Baattrup-Pedersen A, Birk S, Blackstock KL, Borics G, Borja A, Feld CK, Ferreira MT et al (2019) Protecting and restoring Europe’s waters: an analysis of the future development needs of the Water Framework Directive. Sci Total Environ 658:1228–1238. https://doi.org/10.1016/J.SCITOTENV.2018.12.255
Article
CAS
Google Scholar
Wuijts, S.; Zijp, C.; Reijnders, R. Drinking water in river basin manage- ment plans of EU Member States in the Rhine and Meuse river basins Drinking water in river basin management plans of EU Member States in the Rhine and Meuse river basins. 2010. https://www.rivm.nl/bibliotheek/rapporten/734301035.pdf
Pistocchi A, Dorati C, Aloe A, Ginebreda A, Marcé R (2019) River pollution by priority chemical substances under the Water Framework Directive: a provisional pan-European assessment. Sci Total Environ 662:434–445. https://doi.org/10.1016/J.SCITOTENV.2018.12.354
Article
CAS
Google Scholar
Caspari, M., Goppel, M. Development of water quality in the river rhine. In 24 Essener Tagung Wasser und Abfall in Europa. Dresden: Wasser und Abfall in Europa. 1991, 141–146.
Pawlowski S, Jatzek J, Brauer T, Hempel K, Maisch R (2012) 34 years of investigation in the Rhine River at Ludwigshafen, Germany—trends in Rhine fish populations. Environ Sci Eur 24:1–8. https://doi.org/10.1186/2190-4715-24-28
Article
Google Scholar
Schulte-Wülwer-Leidig A (1993) The River Rhine. Development of the current water quality from a national point of view. Wasserwirtsch Wassertech 7:30–35
Google Scholar
European Coffee Federation European Coffee Report 2018/2019. 2019. https://www.ecf-coffee.org/wp-content/uploads/2020/09/European-Coffee-Report-2018-2019.pdf
Brandsma SH, Koekkoek JC, van Velzen MJM, de Boer J (2019) The PFOA substitute GenX detected in the environment near a fluoropolymer manufacturing plant in the Netherlands. Chemosphere 220:493–500. https://doi.org/10.1016/j.chemosphere.2018.12.135
Article
CAS
Google Scholar
Buck R, Franklin J, Berger U, Conder J, Cousins I, de Voogt P, Jensen A, Kannan K, Mabury S, van Leeuwen S (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7:513–541
Article
CAS
Google Scholar
OECD (2018) Toward a new comprehensive global database of per- and polyfluoroalkyl substances (PFASs): summary report on updating the OECD 2007 list of per- and polyfluoroalkyl substances (PFASs). Ser Risk Manag. 39:1–24
Google Scholar
ECHA European Chemicals Agency https://echa.europa.eu/de/registry-of-restriction-intentions/-/dislist/details/0b0236e18663449b.
United Nations Environment Programme UNEP Montreal Protocol on Substances that Deplete the Ozone Layer. 1989. https://treaties.un.org/doc/publication/unts/volume%201522/volume-1522-i-26369-english.pdf
Cousins IT, Goldenman G, Herzke D, Lohmann R, Miller M, Ng CA, Patton S, Scheringer M, Trier X, Vierke L (2019) The concept of essential use for determining when uses of PFASs can be phased out. Environ Sci Process Impacts 21:1803–1815
Article
CAS
Google Scholar
Cousins IT, De Witt JC, Glüge J, Goldenman G, Herzke D, Lohmann R, Miller M, Ng CA, Patton S, Scheringer M et al (2021) Finding essentiality feasible: common questions and misinterpretations concerning the “essential-use” concept. Environ Sci Process Impacts 23:1079–1087. https://doi.org/10.1039/D1EM00180A
Article
CAS
Google Scholar
European Environment Agency https://www.eea.europa.eu/highlights/designing-safe-and-sustainable-products. https://www.eea.europa.eu/highlights/designing-safe-and-sustainable-products. Accessed 3 Mar 2022.
European Commission. https://ec.europa.eu/info/research-and-innovation/research-area/industrial-research-and-innovation/key-enabling-technologies/advanced-materials_en. https://ec.europa.eu/info/research-and-innovation/research-area/industrial-research-and-innovation/key-enabling-technologies/advanced-materials_en. Accessed 3 Mar 2022.
Scheringer M, Trier X, Cousins IT, de Voogt P, Fletcher T, Wang Z, Webster TF (2014) Helsingør statement on poly- and perfluorinated alkyl substances (PFASs). Chemosphere 114:337–339. https://doi.org/10.1016/J.CHEMOSPHERE.2014.05.044
Article
CAS
Google Scholar
ChemSec. https://sinlist.chemsec.org/the-new-sin-list-chemicals/. Accessed 3 Mar 2022.
ChemSec. https://sinlist.chemsec.org/the-science-behind/eloc-identification/pmt/. Accessed 3 Mar 2022.
Zimmerman JB, Anastas PT (2015) Toward substitution with no regrets: advances in chemical design are needed to create safe alternatives to harmful chemicals. Science 347:1198–1199. https://doi.org/10.1126/SCIENCE.AAA0812
Article
CAS
Google Scholar
Horan TS, Pulcastro H, Lawson C, Gerona R, Martin S, Gieske MC, Sartain CV, Hunt PA (2018) Replacement bisphenols adversely affect mouse gametogenesis with consequences for subsequent generations. Curr Biol 28:2948-2954.e3. https://doi.org/10.1016/J.CUB.2018.06.070
Article
CAS
Google Scholar
Behringer, D.; Heydel, F.; Gschrey, B.; Osterheld, S.; Schwarz, W.; Warncke, K.; Freeling, F.; Nödler, K.; Wasser, T.; Henne, S.; et al. Final report Persistent degradation products of halogenated refrigerants and blowing agents in the environment: type, environmental concentrations, and fate with particular regard to new halogenated substitutes with low global warming potential. 2021. https://www.umweltbundesamt.de/sites/default/files/medien/5750/publikationen/2021-05-06_texte_73-2021_persistent_degradation_products.pdf
Zheng Z, Arp HPH, Peters G, Andersson PL (2020) Combining in silico tools with multicriteria analysis for alternatives assessment of hazardous chemicals: accounting for the transformation products of decaBDE and its alternatives. Environ Sci Technol. https://doi.org/10.1021/acs.est.0c02593
Article
Google Scholar
Bunke, D.; Löw, C.; Moch, K.; Reihlen, A.; Reineke, N. Advancing REACH-REACH and substitution Final report. https://www.umweltbundesamt.de/sites/default/files/medien/5750/publikationen/2021-01-14_texte_08-2021_advanching_reach_ap_10.pdf
Arp, H.P.H. Poll results and Commentary from the Third PMT workshop: Getting Control of PMT and vPvM substances under REACH https://www.umweltbundesamt.de/sites/default/files/medien/362/dokumente/third_pmt_workshop_polling_results_commentary_final.pdf. Accessed 3 Mar 2022.
Zarfl C, Hotopp I, Kehrein N, Matthies M (2012) Identification of substances with potential for long-range transport as possible substances of very high concern. Environ Sci Pollut Res Int 19:3152–3161. https://doi.org/10.1007/S11356-012-1046-2
Article
CAS
Google Scholar
RIVM. https://www.rivm.nl/en/soil-and-water/simpletreat. Accessed 3 Mar 2022.
Rodgers TFM, Truong JW, Jantunen LM, Helm PA, Diamond ML (2018) Organophosphate ester transport, fate, and emissions in Toronto, Canada, estimated using an updated multimedia urban model. Environ Sci Technol 52:12465–12474. https://doi.org/10.1021/ACS.EST.8B02576
Article
CAS
Google Scholar
Franco A, Struijs J, Gouin T, Price O (2013) Evolution of the sewage treatment plant model SimpleTreat: applicability domain and data requirements. Integr Environ Assess Manag 9:560–568. https://doi.org/10.1002/IEAM.1414
Article
CAS
Google Scholar
CEFIC. https://cefic-lri.org/projects/eco-54-developing-a-tiered-modeling-framework-in-support-of-risk-assessment-of-chemical-substances-associated-with-mobility-concerns/. Accessed 3 Mar 2022.
Droge S, Goss K-U (2012) Effect of sodium and calcium cations on the ion-exchange affinity of organic cations for soil organic matter. Environ Sci Technol 46:5894–5901. https://doi.org/10.1021/ES204449R
Article
CAS
Google Scholar
Matthies M, Solomon K, Vighi M, Gilman A, Tarazona JV (2016) The origin and evolution of assessment criteria for persistent, bioaccumulative and toxic (PBT) chemicals and persistent organic pollutants (POPs). Environ Sci Process Impacts 18:1114–1128. https://doi.org/10.1039/c6em00311g
Article
CAS
Google Scholar
Van Der Hoek JP, Bertelkamp C, Verliefde Bertelkamp ARD, Singhal N (2014) Drinking water treatment technologies in Europe: state of the art—Challenges—Research needs. J Water Supply Res Technol AQUA 63:124–130. https://doi.org/10.2166/aqua.2013.007
Article
Google Scholar
ECHA European Chemicals Agency. Support document for identification of perfluorobutane sulfonic acid and its salts as substances of very high concern because of their hazardous properties which cause probable serious effects to human health and the environment which give rise to an equi. 2019. https://echa.europa.eu/documents/10162/891ab33d-d263-cc4b-0f2d-d84cfb7f424a
ECHA European Chemicals Agency. Member state committee support document for identification of 1,4-dioxane as a substance of very high concern because of its hazardous properties which cause probable serious effects to human health and the environment which give rise to an equivalent lev. 2021. https://echa.europa.eu/documents/10162/e0466f47-be1a-6c72-2f1c-9e47665d8529
Dong H, Cuthbertson AA, Richardson SD (2020) Effect-directed analysis (EDA): a promising tool for nontarget identification of unknown disinfection byproducts in drinking water. Environ Sci Technol 54:1290–1292. https://doi.org/10.1021/ACS.EST.0C00014
Article
CAS
Google Scholar
Zheng Z, Arp HPH, Peters G, Andersson PL (2020) Combining in silico tools with multicriteria analysis for alternatives assessment of hazardous chemicals: accounting for the transformation products of decaBDE and its alternatives. Environ Sci Technol 55:1088–1098. https://doi.org/10.1021/ACS.EST.0C02593
Article
Google Scholar