Zhou ZY, Li CC, Gao TC, Tan GJ (2008) Research progress of triazole fungicides. J Anhui Agric Sci 36:11842–11844. https://doi.org/10.3969/j.issn.0517-6611.2008.27.099
Article
CAS
Google Scholar
Gao HY (2014) Adsorption of triadimefon in water with cationic-nonionic organobentonite. Water Purif Technol 33:42–45
Google Scholar
Wei C, Song LJ, Yang WP, Lu TY, Wang P, Yao XM (2016) Detection and feature analysis of organochlorine pesticide pollution in drinking water sources in Guiyang. Environ Sci Technol 39(3):131–135
Google Scholar
US EPA (2006) Registration eligibility decision for triadimefon and tolerance reassessment for traidmimenol. Washington
Liu Y, Yang WP, Wei CH, Lu TY, Song LJ (2015) Pesticide contamination characteristics and health risks of drinking water sources in Guiyang during dry season. Earth Environ 43(6):653–659. https://doi.org/10.14050/j.cnki.1672-9250.2015.06.008
Article
CAS
Google Scholar
Liu N, Jin XW, Xue LD, Shi JZ, Xu YJ (2017) Concentrations distribution and ecological risk assessment of pharmaceuticals and personal care products in Taihu Lake. China Environ Sci 37:3515–3522
CAS
Google Scholar
You MH (2008) Determination and abiotic degradation of nine trizole pesticides in natual aquatic environments. Xiamen University
Fu Y, Yang T, Zhao J, Zhang L, Chen RX, Wu YL (2017) Determination of eight pesticides in Lycium barbarum by LC-MS/MS and dietary risk assessment. Food Chem 218:192–198. https://doi.org/10.1016/j.foodchem.2016.09.014
Article
CAS
Google Scholar
OEHHA (2017) Proposition 65: a list of chemicals known to the state to cause cancer or reproductive toxicity [EB/OL]
Pan UK (2005) A catalogue of lists of pesticides identifying those associated with particularly harmful health or environmental impacts. Brighton
Jiang JH, Hu GJ, Zhang CP, Zhao XP, Wang Q, Chen LZ (2017) Toxicological analysis of triadimefon on endocrine disruption and oxidative stress during rare minnow (Gobiocypris rarus) larvae development. Environ Sci Pollut Res 24:26681–26691. https://doi.org/10.1007/s11356-017-0317-3
Article
CAS
Google Scholar
Li M, Li SY, Yao TT, Zhao RJ, Wang QW, Zhu GN (2016) Waterborne exposure to triadimefon causes thyroid endocrine disruption and developmental delay in Xenopus laevis tadpoles. Aquat Toxicol 177:190–197. https://doi.org/10.1016/j.aquatox.2016.05.018
Article
CAS
Google Scholar
Wu SG, Hu GJ, Zhao XP, Wang Q, Jiang JH (2018) Synergistic potential of fenvalerate and triadimefon on endocrine disruption and oxidative stress during rare minnow embryo development. Environ Toxicol 33:759–769. https://doi.org/10.1002/tox.22563
Article
CAS
Google Scholar
Zhang WJ, Deng Y, Chen L, Zhang LY, Wang ZK, Liu R, Diao JL, Zhou ZQ (2020) Effect of triadimefon and its metabolite on adult amphibians Xenopus laevis. Chemosphere 243:125288. https://doi.org/10.1016/j.chemosphere.2019.125288
Article
CAS
Google Scholar
Zhang WJ, Deng Y, Chen L, Zhang LY, Wang ZK, Liu R, Zhou ZQ, Diao JL (2020) Comparing the effect of triadimefon and its metabolite on male and female Xenopus laevis: Obstructed growth and gonad morphology. Chemosphere 259:127415. https://doi.org/10.1016/j.chemosphere.2020.127415
Article
CAS
Google Scholar
De la Paz JF, Beiza N, Paredes-Zuniga S, Hoare MS, Allende ML (2017) Triazole fungicides inhibit zebrafish hatching by blocking the secretory function of hatching gland cells. Int J Mol Sci 18(4):710. https://doi.org/10.3390/ijms18040710
Article
CAS
Google Scholar
Hassold E, Backhaus T (2009) Chronic toixicity of five structurally diverse demethylase-inhibiting fungicides to the crustacean Daphnia magna: a comparative assessmentive. Environ Toxicol Chem 28:1218–1226. https://doi.org/10.1897/08-339.1
Article
CAS
Google Scholar
Paredes-Zuniga S, Trost N, De la Paz JF, Alcayaga J, Allende ML (2019) Behavioral effects of triadimefon in zebrafish are associated with alterations of the dopaminergic and serotonergic pathways. Prog Neuropsychopharmacol Biol Psychiatry 92:118–126. https://doi.org/10.1016/j.pnpbp.2018.12.012
Article
CAS
Google Scholar
Ward WO, Delker DA, Hester SD, Thai SF, Wolf DC, Allen JW, Nesnow S (2006) Transcriptional profiles in liver from mice treated with hepatotumorigenic and nonhepatotumorigenic triazole conazole fungicides: propiconazole, triadimefon, and myclobutanil. Toxicol Pathol 34:863–878. https://doi.org/10.1080/01926230601047832
Article
CAS
Google Scholar
Liu HC, Chu TY, Chen LL, Gui WJ, Zhu GN (2017) The cardiovascular toxicity of triadimefon in early life stage of zebrafish and potential implications to human health. Environ Pollut 231:1093–1103. https://doi.org/10.1016/j.envpol.2017.05.072
Article
CAS
Google Scholar
Menegola E, Broccia RF, Prati M, Giavini E (2000) In vitro teratogenic potential of two antifungal triazoles: triadimefon and triadimenol. In Vitro Cell Dev Biol Animal 36:89–95. https://doi.org/10.1290/1071-2690(2000)036%3c0088:IVTPOT%3e2.0.CO;2
Article
Google Scholar
Maria Z, Kyriaki M (2017) Zebrafish as an alternative vertebrate model for investigating developmental toxicity-the triadimefon example. Int J Mol Sci 18(4):817. https://doi.org/10.3390/ijms18040817
Article
CAS
Google Scholar
Ma YN, Sun LH, Li SY, Ni YX, Cao ZY, Chen MX, Mou RX (2020) Modulation of steroid metabolism and xenobiotic biotransformation responses in zebrafish (Danio rerio) exposed to triadimefon. Environ Pollut 262:114145. https://doi.org/10.1016/j.envpol.2020.114145
Article
CAS
Google Scholar
Liu N, Jin XW, Zhou JY, Wang YY, Yang Q, Wu FC, Giesy JP, Johnson AC (2018) Predicted no-effect concentration (PNEC) and assessment of risk for the fungicide, triadimefon based on reproductive fitness of aquatic organisms. Chemosphere 207:682–689. https://doi.org/10.1016/j.chemosphere.2018.05.093
Article
CAS
Google Scholar
Zhang WG, Gao JS, Chen SS, Li CJ (2005) Determination of residual triadimefon, triadimenol-a, triadimenol-b in corn by gel permeation chromatography and gas chromatography/mass spectrometry. Chin J Anal Chem 33:1442–1444. https://doi.org/10.2116/bunsekikagaku.54.1015
Article
CAS
Google Scholar
Watschke TL, Mumma RO, Linde DT, Borger JA and Harrison SA (2000) Surface runoff of selected pesticides applied to turfgrasses In: JM Clark and MP Kenna (eds.). Fate and management of turfgrass chemicals. Acs Symposium Series 743:94–105
Thomatou AA, Zacharias I, Hela D, Konstantinou I (2013) Determination and risk assessment of pesticide residues in lake Amvrakia (Western Greece) after agricultural land use changes in the lake’s drainage basin. Int J Environ Anal Chem 93:780–799. https://doi.org/10.1080/03067319.2012.656099
Article
CAS
Google Scholar
Stamatis N, Hela D, Triantafyllidis V, Konstantinou I (2013) Spatiotemporal variation and risk assessment of pesticides in water of the lower catchment basin of Acheloos River, Western Greece. Sci World J. https://doi.org/10.1155/2013/231610
Article
Google Scholar
Liu N, Jin XW, Feng CL, Wang ZJ, Wu FC, Johnson AC, Xiao HX, Hollert H, Giesy JP (2020) Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: a proposed multiple-level system. Environ Int 136:105454. https://doi.org/10.1016/j.envint.2019.105454
Article
CAS
Google Scholar
Liu N, Jin XW, Yan Z, Luo Y, Feng CL, Fu ZY, Tang Z, Wu FC, Giesy JP (2020) Occurrence and multiple-level ecological risk assessment of pharmaceuticals and personal care products (PPCPs) in two shallow lakes of China. Environ Sci Eur 32:69. https://doi.org/10.1186/s12302-020-00346-1
Article
CAS
Google Scholar
Stamatis N, Hela D, Konstantinou I (2010) Occurrence and removal of fungicides in municipal sewage treatment plant. J Hazard Mater 175:829–835. https://doi.org/10.1016/j.jhazmat.2009.10.084
Article
CAS
Google Scholar
Garrison AW, Avants JK, Jones WJ (2011) Microbial transformation of triadimefon to triadimenol in soils: selective production rates of triadimenol stereoisomers affect exposure and risk. Environ Sci Technol 45:2186–2193. https://doi.org/10.1021/es103430s
Article
CAS
Google Scholar
Li ZY, Zhang YC, Li QL, Wang WX, Li JY (2011) Enantioselective degradation, abiotic racemization, and chiral transformation of triadimefon in soils. Environ Sci Technol 45:2797–2803. https://doi.org/10.1021/es103830z
Article
CAS
Google Scholar
Liu TT, Diao JL, Di SS, Zhou ZQ (2014) Stereoselective bioaccumulation and metabolite formation of triadimefon in Tubifex tubifex. Environ Sci Technol 48:6687–6693. https://doi.org/10.1021/es5000287
Article
CAS
Google Scholar
Wang ZK, Tian ZN, Chen L, Zhang WJ, Zhang LY, Li Y, Diao JL, Zhou ZQ (2020) Stereoselective metabolism and potential adverse effects of chiral fungicide triadimenol on Eremias argus. Environ Sci Pollut Res 27:7823–7834. https://doi.org/10.1007/s11356-019-07205-4
Article
CAS
Google Scholar
Xu P, Huang LD (2017) Stereoselective bioaccumulation, transformation, and toxicity of triadimefon in Scenedesmus obliquus. Chirality 29:61–69. https://doi.org/10.1002/chir.22671
Article
CAS
Google Scholar
Liu YH, Guo ZY, Yang RB, Xiong YQ (2004) Hydrolysis dynamic of triadimefon in aquatic environment. J Agro-Environ Sci 23(6):1133–1135. https://doi.org/10.3321/j.issn:1672-2043.2004.06.023
Article
CAS
Google Scholar
Liu YH, Guo ZY, Yang RB, Xiong YQ (2005) Hydrolysis dynamics of triadimefon in aquatic environment different in pH value. Rural Eco-Environ 21(67–68):71. https://doi.org/10.3969/j.issn.1673-4831.2005.01.016
Article
Google Scholar
Liu YH (2005) Chemistry behavior of triadimefon in aquatic environment. Hunan Agricultural University
Da Silva JP, Ferreira LFV, Da Silva AM (2003) Aqueous photochemistry of pesticides triadimefon and triadimenol. J Photochem Photobiol, A 154:293–298. https://doi.org/10.1016/s1010-6030(02)00328-3
Article
Google Scholar
Iesce MR, Graziano ML, Cermola F, Montella S, di Gioia L, Stasio C (2003) Effects of sensitizers on the photodegradation of the systemic fungicide triadimenol. Chemosphere 51:163–166. https://doi.org/10.1016/s0045-6535(02)00823-8
Article
CAS
Google Scholar
Da Silva JP, Da Silva AM, Khmelinskii IV, Martinho JMG, Ferreira LFV (2001) Photophysics and photochemistry of azole fungicides: triadimefon and triadimenol. J Photochem Photobiol, A 142:31–37. https://doi.org/10.1016/s1010-6030(01)00489-0
Article
Google Scholar
Dureja P, Subir KN (1997) Photodegradation of azole fungicide triadimefon. J Agric Food Chem 45:294–198. https://doi.org/10.1021/jf960074n
Article
Google Scholar
Singh N (2005) Factors affecting triadimefon degradation in soils. J Agric Food Chem 53:70–75. https://doi.org/10.1021/jf048884j
Article
CAS
Google Scholar
Mohamed AT, Yang ZH, Li JH, Zhao Y, Alrasheed Mohamed Omer S, Xiong YB (2018) The influence of microbial communities for triadimefon enantiomerization in soils with different pH values. Chirality 30:293–301. https://doi.org/10.1002/chir.22796
Article
CAS
Google Scholar
Khoury R, Geahchan A, Coste CM, Antoun MA, Kawar NS (2001) Behavior of triadimefon in two Lebanese soils. J Environ Sci Health B 36:741–754. https://doi.org/10.1081/PFC-100107408
Article
CAS
Google Scholar
Liu HC, Shao JL, Su J, Wang ZF, Li QW (2013) Degradation kinetics of triadimefon in facility soil. Soil Sci 44(01):128–131. https://doi.org/10.19336/j.cnki.trtb.2013.01.020
Article
CAS
Google Scholar
Nag SK, Dureja P (2003) Environmental transformation of triadimefon in water and on plant leaf surface. J Environ Sci Health B 38:49–57. https://doi.org/10.1081/PFC-120016605
Article
CAS
Google Scholar
Liu HJ, Cai WD, Liu WP (2011) Enantioselective toxicity of chiral pesticides in aquatic systems chiral pesticides: stereoselectivity and its consequences. ACS Symp Ser 1085:107–120
Article
CAS
Google Scholar
Li JT, Wang YH, Li W, Xu P, Guo BY, Li JZ, Wang HL (2017) Tissue distribution and metabolism of triadimefon and triadimenol enantiomers in Chinese lizards (Eremias argus). Ecotoxicol Environ Safety 142:284–292. https://doi.org/10.1016/j.ecoenv.2017.04.035
Article
CAS
Google Scholar
Shen QX, Li JT, Xu P, Li W, Zhuang GQ, Wang YH (2017) Enantioselective metabolism of triadimefon and its chiral metabolite triadimenol in lizards. Ecotoxicol Environ Safety 143:159–165. https://doi.org/10.1016/j.ecoenv.2017.05.024
Article
CAS
Google Scholar
Wang YH, Yu DY, Xu P, Guo BY, Zhang YF, Li JZ, Wang HL (2014) Stereoselective metabolism, distribution, and bioaccumulation brof triadimefon and triadimenol in lizards. Ecotoxicol Environ Safety 107:276–283. https://doi.org/10.1016/j.ecoenv.2014.06.021
Article
CAS
Google Scholar
Konwick BJ, Garrison AW, Avants JK, Fisk AT (2006) Bioaccumulation and biotransformation of chiral triazole fungicides in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 80:372–381. https://doi.org/10.1016/j.aquatox.2006.10.003
Article
CAS
Google Scholar
Kenneke JF, Ekman DR, Mazur CS, Konwick BJ, Fisk AT, Avants JK, Garrison AW (2010) Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout. Chirality 22:183–192. https://doi.org/10.1002/chir.20725
Article
CAS
Google Scholar
Li YB, Dong FS, Liu XG, Jun Xu, Han YT, Zheng YQ (2014) Chiral fungicide triadimefon and triadimenol: stereoselective transformation in greenhouse crops and soil, and toxicity to Daphnia magna. J Hazard Mater 265:115–123. https://doi.org/10.1016/j.jhazmat.2013.11.055
Article
CAS
Google Scholar
Zarn JA, Bruschweiler BJ, Schlatter JR (2003) Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase. Environ Health Perspect 111:255–261. https://doi.org/10.1289/ehp.5785
Article
CAS
Google Scholar
Barton HA, Tang J, Sey YM, Stanko JP, Murrell RN, Rockett JC, Dix DJ (2006) Metabolism of myclobutanil and triadimefon by human and rat cytochrome P450 enzymes and liver microsomes. Xenobiotica 36:793–806. https://doi.org/10.1080/00498250600821292
Article
CAS
Google Scholar
Crowell SR, Henderson WM, Fisher JW, Kenneke JF (2010) Gender and species differences in triadimefon metabolism by rodent hepatic microsomes. Toxicol Lett 193:101–107. https://doi.org/10.1016/j.toxlet.2009.12.011
Article
CAS
Google Scholar
Kenneke JF, Mazur CS, Ritger SE, Sack TJ (2008) Mechanistic investigation of the noncytochrome P450-mediated metabolism of triadimefon to triadimenol in hepatic microsomes. Chem Res Toxicol 21:1997–2004. https://doi.org/10.1021/tx800211t
Article
CAS
Google Scholar
Aladaghlo Z, Fakhari AR, Alavioon SI, Dabiri M (2019) Ultrasound assisted dispersive solid phase extraction of triazole fungicides by using an N-heterocyclic carbene copper complex supported on ionic liquid-modified graphene oxide as a sorbent. Microchim Acta. https://doi.org/10.1007/s00604-019-3276-1
Article
Google Scholar
Shen J (2013) The toxicity and bio-concentration of three pesticides to benthic animals molluscs. Zhejing University
Papis E, Bernardini G, Gornati R, Prati M (2006) Triadimefon causes branchial arch malformations in Xenopus laevis embryos. Environ Sci Pollut Res 13:251–255. https://doi.org/10.1065/espr2006.01.014
Article
CAS
Google Scholar
Cao CY, Wang QW, Jiao F, Zhu GN (2016) Impact of co-exposure with butachlor and triadimefon on thyroid endocrine system in larval zebrafish. Exp Toxicol Pathol 68:463–469. https://doi.org/10.1016/j.etp.2016.07.004
Article
CAS
Google Scholar
Le TTY, Peijnenburg WJGM (2013) Modeling toxicity of mixtures of perfluorooctanoic acid and triazoles (triadimefon and paclobutrazol) to the benthic cladoceran Chydorus sphaericus. Environ Sci Technol 47:6621–6629. https://doi.org/10.1021/es4001104
Article
CAS
Google Scholar
Liu SY, Jin Q, Huang XH, Zhu GN (2014) Disruption of zebrafish (Danio rerio) sexual development after full life-cycle exposure to environmental levels of triadimefon. Environ Toxicol Pharmacol 37:468–475. https://doi.org/10.1016/j.etap.2013.11.007
Article
CAS
Google Scholar
Zhang WJ, Lu YL, Huang LD, Cheng C, Di SS, Chen L, Zhou ZQ, Diao JL (2018) Comparison of triadimefon and its metabolite on acute toxicity and chronic effects during the early development of Rana nigromaculata tadpoles. Ecotoxicol Environ Safety 156:247–254. https://doi.org/10.1016/j.ecoenv.2018.03.009
Article
CAS
Google Scholar
Liu SY, Chang JH, Zhao Y, Zhu GN (2011) Changes of thyroid hormone levels and related gene expression in zebrafish on early life stage exposure to triadimefon. Environ Toxicol Pharmacol 32:472–477. https://doi.org/10.1016/j.etap.2011.09.002
Article
CAS
Google Scholar
Yu L, Chen ML, Liu YH, Gui WJ, Zhu GN (2013) Thyroid endocrine disruption in zebrafish larvae following exposure to hexaconazole and tebuconazole. Aquat Toxicol 138–139:35–42. https://doi.org/10.1016/j.aquatox.2013.04.001
Article
CAS
Google Scholar
Jiang JH, Wu SG, Chen JB, Wu CX, Cai LM, Zhao XP (2015) Acute toxic effects of triadimefon on different life stages of Zebrafish (Danio rerio) and Chinese Rare Minnow (Gobiocypris rarus). Asian J Ecotoxicol 10:150–156
Google Scholar
Zhu B, Liu L, Gong YX, Ling F, Wang GX (2014) Triazole-induced toxicity in developing rare minnow (Gobiocypris rarus) embryos. Environ Sci Pollut Res 21:13625–13635. https://doi.org/10.1007/s11356-014-3317-6
Article
CAS
Google Scholar
Rodriguez EM, Medesani DA, Fingerman M (2007) Endocrine disruption in crustaceans due to pollutants: a review. Comp Biochem Physiol A: Mol Integr Physiol 146:661–671. https://doi.org/10.1016/j.cbpa.2006.04.030
Article
CAS
Google Scholar
Li JT, Chang J, Li W, Guo BY, Li JZ, Wang HL (2017) Disruption of sex-hormone levels and steroidogenic-related gene expression on Mongolia Racerunner (Eremias argus) after exposure to triadimefon and its enantiomers. Chemosphere 171:554–563. https://doi.org/10.1016/j.chemosphere.2016.12.096
Article
CAS
Google Scholar
Groppelli S, Pennati R, De Bernardi F, Menegola E, Giavini E, Sotgia C (2005) Teratogenic effects of two antifungal triazoles, triadimefon and triadimenol, on Xenopus laevis development: craniofacial defects. Aquat Toxicol 73:370–381. https://doi.org/10.1016/j.aquatox.2005.04.004
Article
CAS
Google Scholar
Di Renzo F, Broccia ML, Giavini E, Menegola E (2007) Antifungal triazole derivative triadimefon induces ectopic maxillary cartilage by altering the morphogenesis of the first branchial arch. Birth Defects Res B 80:2–11. https://doi.org/10.1002/bdrb.20097
Article
CAS
Google Scholar
Di Renzo F, Broccia ML, Giavini E, Menegola E (2011) Stage-dependent abnormalities induced by the fungicide triadimefon in the mouse. Reprod Toxicol 31:194–199. https://doi.org/10.1016/j.reprotox.2010.10.011
Article
CAS
Google Scholar
Menegola E, Broccia ML, Di Renzo F, Massa V, Giavini E (2005) Craniofacial and axial skeletal defects induced by the fungicide triadimefon in the mouse. Birth Defects Res B 74:185–195. https://doi.org/10.1002/bdrb.20035
Article
CAS
Google Scholar
Pennati R, Groppelli S, Zega G, Biggiogero M, De Bernardi F, Sotgia C (2006) Toxic effects of two pesticides, Imazalil and Triadimefon, on the early development of the ascidian Phallusia mammillata (Chordata, Ascidiacea). Aquat Toxicol 79:205–212. https://doi.org/10.1016/j.aquatox.2006.05.012
Article
CAS
Google Scholar
Wolf DC, Allen JW, George MH, Hester SD, Sun GB, Moore T, Thai SF, Delker D, Winkfield E, Leavitt S, Nelson G, Roop BC, Jones C, Thibodeaux J, Nesnow S (2006) Toxicity profiles in rats treated with tumorigenic and nontumorigenic triazole conazole fungicides: propiconazole, triadimefon, and myclobutanil. Toxicol Pathol 34:895–902. https://doi.org/10.1080/01926230601047808
Article
CAS
Google Scholar
Li W, Zha JM, Li ZL, Yang LH, Wang ZJ (2009) Effects of exposure to acetochlor on the expression of thyroid hormone related genes in larval and adult rare minnow (Gobiocypris rarus). Aquat Toxicol 94:87–93. https://doi.org/10.1016/j.aquatox.2009.06.002
Article
CAS
Google Scholar
Walker QD, Lewis MH, Crofton KM, Mailman RB (1990) Triadimefon, a triazole fungicide, induces stereotyped behavior and alters monoamine metabolism in rats. Toxicol Appl Pharmacol 102:474–485. https://doi.org/10.1016/0041-008x(90)90043-t
Article
CAS
Google Scholar
Liu SY (2011) Embryonic developmental and endocrine-reproductive toxicity of triadimefon on zebrafish. Zhejiang University
Gagnaire F, Micillino JC (2006) Effects of triadimefon on extracellular dopamine, DOPAC, HVA and 5-HIAA in adult rat striatum. Toxicology 217:91–104. https://doi.org/10.1016/j.tox.2005.08.021
Article
CAS
Google Scholar
Walker QD, Mailman RB (1996) Triadimefon and triadimenol: effects on monoamine uptake and release. Toxicol Appl Pharmacol 139:227–233. https://doi.org/10.1006/taap.1996.0161
Article
CAS
Google Scholar
Sozen H, Celik OI, Cetin ES, Yilmaz N, Aksozek A, Topal Y, Cigerci IH, Beydilli H (2015) Evaluation of the protective effect of silibinin in rats with liver damage caused by itraconazole. Cell Biochem Biophys 71:1215–1223. https://doi.org/10.1007/s12013-014-0331-8
Article
CAS
Google Scholar
Sun RJ, Guo J, Song QQ, Song WH (2013) Study on the toxicity of triadimefon and triadimenol to human hepatocytes. Acta Scientiarum Naturalium Universitatis Nankaiensis 46(01):85–90
Google Scholar
Petit F, Le Goff P, Cravedi JP, Valotaire Y, Pakdel F (1997) Two complementary bioassays for screening the estrogenic potency of xenobiotics: recombinant yeast for trout estrogen receptor and trout hepatocyte cultures. J Mol Endocrinol 19:321–335. https://doi.org/10.1677/jme.0.0190321
Article
CAS
Google Scholar
Liu N (2016) Study for reproductive toxicity effect and ecological risk assessment of typical PPCPs China. University of Geosciences
Wang YH, Xu C, Wang D, Weng HB, Yang GL, Guo DM, Yu RX, Wang XQ, Wang Q (2020) Combined toxic effects of fludioxonil and triadimefon on embryonic development of zebrafish (Danio rerio). Environ Pollut 260:114105. https://doi.org/10.1016/j.envpol.2020.114105
Article
CAS
Google Scholar
European Commission (EC) (2003) Technical guidance document on risk assessment, Joint Research Centre, Institute for Health and Comsumer Protection, European Chemicals Bureau, Ispra, Italy
Bu Q, Wang B, Huang J, Deng SB, Yu G (2013) Pharmaceuticals and personal care products in the aquatic environment in China: a review. J Hazard Mater 262:189–211. https://doi.org/10.1016/j.jhazmat.2013.08.040
Article
CAS
Google Scholar
Aldenberg T, Jaworska JS (2000) Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicol Environ Saf 46:1–18. https://doi.org/10.1006/eesa.1999.1869
Article
CAS
Google Scholar
Han WH, Zao Y, Dang JH, Xiong L (2017) Distribution and ecological risk evaluation of phthalate esters in Fenhe River Basin. Environ Chem 36:1377–1387
CAS
Google Scholar
Solomon KR, Baker DB, Richards RP, Dixon KR, Klaine SJ, Point TWL (1996) Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15:31–76. https://doi.org/10.1002/etc.5620150105
Article
CAS
Google Scholar
Solomon K, Giesy JP, Jones P (2000) Probabilistic risk assessment of agrochemicals in the environment. Crop Prot 19(8):649–655. https://doi.org/10.1016/S0261-2194(00)00086-7
Article
Google Scholar
Sun HW, Giesy JP, Jin XW, Wang J (2017) Tiered probabilistic assessment of organohalogen compounds in the Han River and Danjiangkou Reservoir, Central China. Sci Total Environ 586:163–173. https://doi.org/10.1016/j.scitotenv.2017.01.194
Article
CAS
Google Scholar
Liu N, Wang YY, Yang Q, Lu YB, Jin XW, Giesy JP, Johnson AC (2016) Probabilistic assessment of risks of diethylhexyl phthalate (DEHP) in surface waters of China on reproduction of fish. Environ Pollut 213:482–488. https://doi.org/10.1016/j.envpol.2016.03.005
Article
CAS
Google Scholar
Moore DRJ, Teed RS, Greer CD, Solomon KR, Giesy JP (2014) Refined avian risk assessment for chlorpyrifos in the United States. Rev Environ Contam Toxicol 231:163–217. https://doi.org/10.1007/978-3-319-03865-0_6
Article
CAS
Google Scholar
Sun J, Xiao PF, Liu YH, Yin XH, Zhu GN (2020) Study on the effect of triadimefon on freshwater zooplankton community using indoor microcosm system. Asian J Ecotoxicol 15:139–148
Google Scholar
Zhou YT, Wu JX, Wang B, Duan L, Zhang YZ, Zhao WX, Wang F, Sui Q, Chen ZY, Xu DJ, Li QX, Yu G (2020) Occurrence, source and ecotoxicological risk assessment of pesticides in surface water of Wujin District (northwest of Taihu Lake), China. Environ Pollut 265:114953. https://doi.org/10.1016/j.envpol.2020.114953
Article
CAS
Google Scholar