Abdel-Aty AM, Ammar NS, Abdel Ghafar HH, Ali RK (2013) Biosorption of cadmium and lead from aqueous solution by freshwater alga Anabaena sphaerica biomass. J Adv Res 4:367–374
CAS
Google Scholar
Ahad RIA, Goswami S, Syiem MB (2017) Biosorption and equilibrium isotherms study of cadmium removal by Nostoc muscorum Meg 1: morphological, physiological and biochemical alterations. Biotech 7:104
Google Scholar
Ahad RIA, Syiem MB, Rai AN (2021) Cd(II) sorption by Nostoc sp. JRD1: Kinetic, thermodynamic and isotherm studies. Environ Technol Innov 21:101283
CAS
Google Scholar
Alidousta L, Zahiria SH, Malekib H, Soltanic N, Valid H, Noghabi KA (2019) Nostoc entophytum cell response to cadmium exposure: a possible role of chaperon proteins GroEl and HtpG in cadmium-induced stress. Ecotoxicol Environ Saf 169:40–49
Google Scholar
Antunes WM, Luna AS, Henriques CA, da Costa ACA (2003) An evaluation of copper biosorption by a brown seaweed under optimized conditions. Electron J Biotechnol 6(3):174–184
Google Scholar
Arunakumara KKIU, Zhang X (2009) Effects of heavy metals (Pb2+ and Cd2+) on the ultrastructure, growth and pigment contents of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Chin J Oceanol Limnol 27(2):383
CAS
Google Scholar
Atri N, Rai LC (2003) Differential responses of three cyanobacteria to UV-B and Cd. J Microbiol Biotechnol 13(4):544–551
CAS
Google Scholar
Avigliano E, Schenone N, Volpedo A, Goessler W, Cirelli A (2015) Heavy metals and trace elements in the muscle of silverside (Odontesthes bonariensis) and water from different environments (Argentina): aquatic pollution and consumption effect approach. Sci Total Environ 506:102–108
Google Scholar
Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng 4(1):37–59
Google Scholar
Cepoi L, Rudi L, Chiriac T, Codreanu S, Valuţa A (2016) Biological Methods of Wastewater Treatment. Cyanobacteria for Bioremediation of Wastewaters. Springer, Cham, pp 45–60
Google Scholar
Chen D, Wang XB, Wang XL, Feng K, Su JC, Dong JN (2020) The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil. Sci Total Environ 714:136550. https://doi.org/10.1016/j.scitotenv.2020.136550
Article
CAS
Google Scholar
Cheng QM, Huang Q, Khan S, Liu YJ, Liao ZN, Li G, Ok YS (2016) Adsorption of Cd by peanut husks and peanut husk biochar from aqueous solutions. Ecol Eng 87:240–245. https://doi.org/10.1016/j.ecoleng.2015.11.045
Article
Google Scholar
Chojnacka K, Noworyta A (2004) Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Technol 34:461–465
CAS
Google Scholar
Dadar, M., Adel, M., Ferrante, M., Nasrollahzadeh Saravi, H., Copat, C., Oliveri Conti, G., 2016. Potential risk assessment of trace metals accumulation in food, water and edible tissue of rainbow trout (Oncorhynchus mykiss) farmed in Haraz River, northern Iran. Toxin Reviews, 1–6.
Davies BH (1976) Carotenoids. In: Goodwin TW (ed) Chemistry and Biochemistry of Plant Pigments, 2nd. Academic Press, New York, pp 38–165
Google Scholar
Dixit S, Singh DP (2013) Phycoremediation of lead and cadmium by employing Nostoc muscorum as biosorbent and optimization of its biosorption potential. Int J Phytorem 15(8):801–813
CAS
Google Scholar
Fipps, G., 2015. Irrigation Water Quality Standards and Salinity Management Strategies. https://www.researchgate.net/publication/26905268.
Fulekar MH (2010) Environmental biotechnology. CRC Press
Google Scholar
Garnham GW, Godd GA, Godd GM (1992) Accumulation of Co, Zinc and Manganese by the estuarine green microalgae Chlorella salina immobilized in alginate beads. Environ Sci Technol 26:1764–1770
CAS
Google Scholar
Gautam RK, Sharma SK, Mahiya S, Chattopadhyaya MC (2014) Contamination of heavy metals in aquatic media: transport, toxicity and technologies for remediation. Heavy metals in water: Presence, removal and safety. pp 1–24
Ghoneim MM, El-Desoky HS, El-Moselhy KM, Amer A, Abou El-Naga EH, Mohamedein LI, Al-Prol AE (2014) Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca Egypt. J Aquat Res 40:235–242
Google Scholar
Goswami S, Syiem MB, Pakshirajan K (2015) Cadmium removal by Anabaena doliolum Ind1 isolated from a coal mining area in Meghalaya, India: associated structural and physiological alterations. Environmental Engineering Research
Guo JH, Yan CZ, Luo ZX, Fang HD, Hu SG, Cao YL (2019) Synthesis of a novel ternary HA/Fe-Mn oxides-loaded biochar composite and its application in cadmium (II) and arsenic(V) adsorption. J Environ Sci (China) 85:168–176. https://doi.org/10.1016/j.jes.2019.06.004
Article
Google Scholar
Halttunen T (2008) Removal of cadmium, lead and arsenic from water by lactic acid bacteria. Functional Foods Forum; PhD. Thesis, Department of Biochemistry and Food Chemistry, University of Turku
Hazarika J, Pakshirajan K, Sinharoy A, Syiem MB (2015) Bioremoval of Cu(II), Zn(II), Pb(II) and Cd(II) by Nostoc muscorum isolated from a coal mining site. J Appl Phycol 27:1525–1534
CAS
Google Scholar
Heimann K, Cirés S (2015) N 2-Fixing Cyanobacteria: Ecology and Biotechnological Applications. In Handbook of Marine Microalgae. pp 501–515
Heng LY, Jusoh K, Ling CM, Idris M (2004) Toxicity of single and combinations of lead and cadmium to the cyanobacteria Anabaena flos-aquae. Bull Environ Contam Toxicol 72(2):373–379
CAS
Google Scholar
Inthorn D, Dungkokkrauad N, Incharoensakdi A (2003) Improved efficiency for the removal of cadmium from aqueous solution using cells of the cyanobacterium Phormidium angustissimum pre-treated with sodium hydroxide. Asian J Microbiol Biotechnol Environ Exp Sci 5:283–289
CAS
Google Scholar
Inthorn D, Nagase H, Isaji Y, Hirata K, Miyamoto K (1996) Removal of cadmium from aqueous solution by the filamentous cyanobacterium Tolypothrix tenuis. J Ferment Bioeng 82(6):580–584
CAS
Google Scholar
Inthorn D, Sidtitoon N, Silapanuntakul S, Incharoensakdi A (2002) Sorption of mercury, cadmium and lead by the use of microalgae. Science Asia 28:253–261
CAS
Google Scholar
Irfan M, Hayat S, Ahmad A, Alyemeni MN (2013) Soil cadmium enrichment: allocation and plant physiological manifestations. Saudi J Biol Sci 20(1):1–10
CAS
Google Scholar
Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72
Google Scholar
Karunanayake AG, Todd OA, Crowley M, Ricchetti L, Pittman CU, Anderson R, Mohan D, Mlsna T (2018) Lead and cadmium remediation using magnetized and non-magnetized biochar from Douglas fir. Chem Eng J 331:480–491. https://doi.org/10.1016/j.cej.2017.08.124
Article
CAS
Google Scholar
Khan S, Shamshad I, Waqas M, Nawab J, Ming L (2017) Remediating industrial wastewater containing potentially toxic elements with four freshwater algae. Ecol Eng 102:536–541
Google Scholar
Khan ZH, Gao M, Qiu WW, Islam MS, Song ZG (2020) Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution. Chemosphere 246:125701. https://doi.org/10.1016/j.chemosphere.2019.125701
Article
CAS
Google Scholar
Kumar KS, Dahms HU, Won EJ, Lee JS, Shin KH (2015) Microalgae – A promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352
Google Scholar
Kumar PS, Gunasundari E (2018) Bioremediation of Heavy Metals. Bioremediation: Applications for Environmental Protection and Management. Springer, Singapore, pp 165–195
Google Scholar
Kumar PS, Pavithra KG (2018) Biosorption Strategies in the Remediation of Toxic Pollutants from Contaminated Water Bodies. Bioremediation: Applications for Environmental Protection and Management. Springer, Singapore, pp 127–163
Google Scholar
Kumar V, Sinha A, Rodrigues P, Mubiana V, Blust R, De Boeck G (2015) Linking environmental heavy metal concentrations and salinity gradients with metal accumulation and their effects: a case study in 3 mussel species of Vito´ria estuary and Espı´rito Santo bay Southeast Brazil. Sci Total Environ 523:1–15
CAS
Google Scholar
Kupper H, Kupper F, Spiller M (1998) In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth Res 58:123–133
CAS
Google Scholar
Lam YY, Lau SSS, Wong JWC (2019) Removal of Cd (II) from aqueous solutions using plant-derived biochar: kinetics, isotherm, and characterization. Bioresour Technol Rep 8:100323. https://doi.org/10.1016/j.biteb.2019.100323
Article
Google Scholar
Lamaia C, Kruatrachuea M, Pokethitiyooka P, Upathamb ES, Soonthornsarathoola V (2005) Toxicity and accumulation of lead and cadmium in the filamentous green alga Cladophora fracta (OF Muller ex Vahl) Kutzing: a laboratory study. Science Asia 31(2):121–127
Google Scholar
Leborans GF, Novillo A (1996) Toxicity and bioaccumulation of cadmium in Olishodiscus luteus (Raphidophyceae). Water Res 30:57–62
CAS
Google Scholar
Mota R, Pereira SB, Meazzini M, Fernandes R, Santos A, Evans CA, De Philippis R, Wright PC, Tamagnini P (2015) Effects of heavy metals on Cyanothece sp. CCY 0110 growth, extracellular polymeric substances (EPS) production, ultrastructure and protein profiles. J Proteomics 120:75–94
CAS
Google Scholar
Mstat-c., (1989) Users guide: a microcomputer program for the design, management and analysis of agronomic research experiments. Michigan University, East Lansing, MC, USA
Google Scholar
Nordberg GF, Bernard A, Diamond GL, Duffus JH, Illing P, Nordberg M, Bergdahl IA, Jin TY, Skerfving S (2018) Risk assessment of effects of cadmium on human health (IUPAC Technical Report). Pure Appl Chem 90:755–808. https://doi.org/10.1515/pac-2016-0910
Article
CAS
Google Scholar
Oboh I, Aluyor E, Audu T (2009) Biosorption of heavy metal ions from aqueous solutions using a biomaterial. Leonardo J Sci 14:58–65
Google Scholar
Penido ES, Melo LCA, Guilherme LRG, Bianchi ML (2019) Cadmium binding mechanisms and adsorption capacity by novel phosphorus/magnesium-engineered biochars. Sci Total Environ 671:1134–1143. https://doi.org/10.1016/j.scitotenv.2019.03.437
Article
CAS
Google Scholar
Phang SM, Chu WL, Rabiei R (2015) Phycoremediation. the Algae World. Springer, Dordrecht, pp 357–389
Google Scholar
Pourret O, Hursthouse A (2019) It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. Int J Environ Res Public Health 16:4446. https://doi.org/10.3390/ijerph16224446
Article
CAS
Google Scholar
Prakash J, Awasthi G (2013) Accumulation of Heavy Metals in Different Water Bodies by Biological Source Algae. Adv Life Sci 2(1):10–14
Google Scholar
Rehman A, Shakoori AR (2004) Tolerance and Uptake of Cadmium and Nickle by Chlorella sp., Isolated from Tannery Effluents Pakistan. J Zool 36(4):327–331
CAS
Google Scholar
Rangsayatorn N, Upatham ES, Kruatrachue M, Pokethitiyook P, Lanza GR (2002) Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environ Pollut 119(1):45–53
CAS
Google Scholar
Ripkka R, Dereulles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61
Google Scholar
Ritchie RJ (2008) Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 46(1):115–126
CAS
Google Scholar
Rowe D, Abdel-Magid I (1995) Handbook of Wastewater Reclamation and Reuse. Inc, CRC Press, p 550
Google Scholar
Singh R, Singh P, Sharma R (2014) Microorganism as a tool of bioremediation technology for cleaning environment: a review. Int Acad Ecol Environ Sci 4(1):1–6
CAS
Google Scholar
Siva KRR, Madhu GM, Satyanarayana SV, Bindiya P (2012) Bioaccumulation of Cadmium in Blue Green Algae Spirulina (Arthrospira) Indica. J Biorem Biodegrad 3:141
Google Scholar
Snedecor GA, Cochran WG (1976) Statistical Method. Iowa State Univ. Press, Ames
Google Scholar
Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy Metals Toxicity and the Environment. Molecular, clinical and environmental toxicology. Springer, Basel, pp 133–164
Google Scholar
Thornton, I., Webb, J.S., 1980. Trace elements in soils and plants. In: Blaxter, K. (Ed.), Food Chains and Human Nutrition. Springer, Dordrecht, London, pp. 273–315 https://doi.org/10.1007/978-94-011-7336-012.
Vieira RHSF, Volesky B (2000) Biosorption: a solution to pollution. Int Microbiol 3:17–24
CAS
Google Scholar
Wang B, Gao B, Wan YS (2018) Entrapment of ball-milled biochar in Ca-alginate beads for the removal of aqueous Cd (II). J Ind Eng Chem 61:161–168. https://doi.org/10.1016/j.jiec.2017.12.013
Article
CAS
Google Scholar
Zhang HY, Yue XP, Li F, Xiao R, Zhang YP, Gu DQ (2018) Preparation of rice straw derived biochar for efficient cadmium removal by modification of oxygen-containing functional groups. Sci Total Environ 631–632:795–802. https://doi.org/10.1016/j.scitotenv.2018.03.071
Article
CAS
Google Scholar
Zinicovscaia I (2016) Water Quality: A Major Global Problem. Cyanobacteria for Bioremediation of Wastewaters. Springer, Cham, pp 5–16
Google Scholar