Sterner RW, Keeler B, Polasky S et al (2020) Ecosystem services of Earth’s largest freshwater lakes. Ecosyst Serv 41:101046
Article
Google Scholar
European Commission (2000): EU Water Framework Directive (WFD). In, eur-lex.europa.eu.
Landesamt Für Landwirtschaft Umwelt Und Ländliche Räume-Schleswig Holstein (2014). In: Abteilung Gewässer DS (ed) Ökologische Zustandsbewertung der größeren Seen in Schleswig-Holstein nach EG-Wasserrahmenrichtlinie
Yang X-E, Wu X, Hao H-L et al (2008) Mechanisms and assessment of water eutrophication. J Zhejiang Univ Sci B 9:197–209
Article
CAS
Google Scholar
Paerl HW (2009) Controlling Eutrophication along the freshwater–marine continuum: dual nutrient (N and P) reductions are essential. Estuaries Coasts 32:593–601
Article
CAS
Google Scholar
Carr GM (1998) Macrophyte growth and sediment phosphorus and nitrogen in a Canadian prairie river. Freshw Biol 39:525–536
Article
CAS
Google Scholar
Krambeck C (2020) Ausfälle submerser Vegetation und Verdrängung von Characeen durch Angiosperme in einem mesotrophen See und mögliche Rolle von Herbizideinträgen. Deutsche Gesellschaft für Limnologie
Diepens NJ, Arts GHP, Focks A et al (2014) Uptake, translocation, and elimination in sediment-rooted macrophytes: a model-supported analysis of whole sediment test data. Environ Sci Technol 48:12344–12353
Article
CAS
Google Scholar
Turgut C (2005) Uptake and modeling of pesticides by roots and shoots of Parrotfeather (Myriophyllum aquaticum) (5 pp). Environ Sci Pollut Res Int 12:342–346
Article
CAS
Google Scholar
Malaj E, Von Der Ohe PC, Grote M et al (2014) Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc Natl Acad Sci 111:9549–9554
Article
CAS
Google Scholar
Posthuma L, Zijp MC, De Zwart D et al (2020) Chemical pollution imposes limitations to the ecological status of European surface waters. Sci Rep 10:14825
Article
Google Scholar
Brazner JC, Danz NP, Trebitz AS et al (2007) Responsiveness of great lakes wetland indicators to human disturbances at multiple spatial scales: a multi-assemblage assessment. J Great Lakes Res 33(42–66):25
Google Scholar
Tockner K, Pusch M, Borchardt D et al (2010) Multiple stressors in coupled river-floodplain ecosystems. Freshw Biol 55:135–151
Article
Google Scholar
Weitere M, Altenburger R, Anlanger C et al (2021) Disentangling multiple chemical and non-chemical stressors in a lotic ecosystem using a longitudinal approach. Sci Total Environ 769:144324
Article
CAS
Google Scholar
Sayer CD, Hoare DJ, Simpson GL et al (2006) TBT causes regime shift in shallow lakes. Environ Sci Technol 40:5269–5275
Article
CAS
Google Scholar
Arts G, Davies J, Dobbs M et al (2010) AMEG: the new SETAC advisory group on aquatic macrophyte ecotoxicology. Environ Sci Pollut Res 17:820–823
Article
CAS
Google Scholar
Sprague JB (1970) Measurement of pollutant toxicity to fish. II. Utilizing and applying bioassay results. Water Res 4:3–32
Article
CAS
Google Scholar
Massei R, Byers H, Beckers L-M et al (2018) A sediment extraction and cleanup method for wide-scope multitarget screening by liquid chromatography–high-resolution mass spectrometry. Anal Bioanal Chem 410:177–188
Article
CAS
Google Scholar
Muskus AM, Krauss M, Miltner A et al (2019) Effect of temperature, pH and total organic carbon variations on microbial turnover of 13C315N-glyphosate in agricultural soil. Sci Total Environ 658:697–707
Article
CAS
Google Scholar
Chambers MC, Maclean B, Burke R et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920
Article
CAS
Google Scholar
Pluskal T, Castillo S, Villar-Briones A et al (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformat 11:395–395
Article
CAS
Google Scholar
Beckers L-M, Brack W, Dann JP et al (2020) Unraveling longitudinal pollution patterns of organic micropollutants in a river by non-target screening and cluster analysis. Sci Total Environ 727:138388
Article
CAS
Google Scholar
Wood S (2019): mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. R package version 1.8-31
R Core Team (2018): R: a language and environment for statistical computing
Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York
Book
Google Scholar
Ginebreda A, Kuzmanovic M, Guasch H et al (2014) Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: compound prioritization, mixture characterization and relationships with biological descriptors. Sci Total Environ 468–469:715–723
Article
CAS
Google Scholar
Sprague JB, Ramsay BA (1965) Lethal levels of mixed copper-zinc solutions for juvenile salmon. J Fish Res Board Can 22:425–432
Article
CAS
Google Scholar
Hawthorne SB, Grabanski CB, Miller DJ (2006) Measured partitioning coefficients for parent and alkyl polycyclic aromatic hydrocarbons in 114 historically contaminated sediments: part 1. KOC values Environ Toxicol Chem 25:2901–2911
Article
CAS
Google Scholar
Hawthorne SB, Grabanski CB, Miller DJ et al (2011) Improving predictability of sediment-porewater partitioning models using trends observed with PCB-contaminated field sediments. Environ Sci Technol 45:7365–7371
Article
CAS
Google Scholar
Nguyen TH, Goss K-U, Ball WP (2005) Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environ Sci Technol 39:913–924
Article
CAS
Google Scholar
Ulrich N, Endo S, Brown TN et al. (2017) UFZ-LSER database v 3.2 [Internet]
Busch W, Schmidt S, Kühne R et al (2016) Micropollutants in European rivers: a mode of action survey to support the development of effect-based tools for water monitoring. Environ Toxicol Chem 35:1887–1899
Article
CAS
Google Scholar
Mayo-Beana K, Nabholza JV, Meylanb WM et al. (2009) USER’S GUIDE for the ECOSAR Class Program-MS-Windows Version 1.00. In: U.S. Environmental Protection Agency
Nabholz Jv, Cash G, Meylan Wm et al. (1998) ECOSAR: a computer program for estimating the ecotoxicity of industrial chemicals based on structure activity relationships. In: U.S. Environmental Protection Agency
Ufz Department of Ecological Chemistry (2016) ChemProp 6.3. http://www.ufz.de/ecochem/chemprop
Schulze T, Küster E, Schlichting R et al. (2020) Comparison of novel and current approaches for the target- and non-target screening, effect-based monitoring and prioritisation of river basin specific pollutants to improve future water quality monitoring. In: Liska I, Wagner F, Sengl M, Deutsch K, Slobodnik J, Paunovic M (eds) Joint danube survey 4 scientific report: a shared analysis of the Danube River. ICPDR, Vienna
Kandie FJ, Krauss M, Beckers L-M et al (2020) Occurrence and risk assessment of organic micropollutants in freshwater systems within the Lake Victoria South Basin, Kenya. Sci Total Environ 714:136748
Article
CAS
Google Scholar
Sidoli P, Baran N, Angulo-Jaramillo R (2016) Glyphosate and AMPA adsorption in soils: laboratory experiments and pedotransfer rules. Environ Sci Pollut Res 23:5733–5742
Article
CAS
Google Scholar
Gimsing AL, Borggaard OK, Bang M (2004) Influence of soil composition on adsorption of glyphosate and phosphate by contrasting Danish surface soils. Eur J Soil Sci 55:183–191
Article
CAS
Google Scholar
Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Loesung. Z Pflanzenernaehr Dueng Bodenk 105:194–202
Article
CAS
Google Scholar
Lewis KA, Tzilivakis J, Warner DJ et al (2016) An international database for pesticide risk assessments and management. Hum Ecol Risk Assess Int J 22:1050–1064
Article
CAS
Google Scholar
Massei R, Busch W, Wolschke H et al (2018) Screening of pesticide and biocide patterns as risk drivers in sediments of major European river mouths: ubiquitous or river basin-specific contamination? Environ Sci Technol 52:2251–2260
Article
CAS
Google Scholar
Chiaia-Hernandez AC, Krauss M, Hollender J (2013) Screening of lake sediments for emerging contaminants by liquid chromatography atmospheric pressure photoionization and electrospray ionization coupled to high resolution mass spectrometry. Environ Sci Technol 47:976–986
Article
CAS
Google Scholar
Du J, Jing C (2018) Anthropogenic PAHs in lake sediments: a literature review (2002–2018). Environ Sci Process Impacts 20:1649–1666
Article
CAS
Google Scholar
Hijosa-Valsero M, Bécares E, Fernández-Aláez C et al (2016) Chemical pollution in inland shallow lakes in the Mediterranean region (NW Spain): PAHs, insecticides and herbicides in water and sediments. Sci Total Environ 544:797–810
Article
CAS
Google Scholar
Andersson M, Klug M, Eggen O et al (2013) Polycyclic aromatic hydrocarbons (PAHs) in sediments from lake Lille Lungegardsvannet in Bergen, western Norway; appraising pollution sources from the urban history. Sci Total Environ 470–471C:1160–1172
Google Scholar
Posthuma L, Zijp MC, De Zwart D et al. (2020) Chemical pollution imposes limitations to the ecological status of European surface waters. Sci Rep 10
Posthuma L, Dyer SD, De Zwart D et al (2016) Eco-epidemiology of aquatic ecosystems: separating chemicals from multiple stressors. Sci Total Environ 573:1303–1319
Article
CAS
Google Scholar
Mudge JF, Houlahan JE (2019) Wetland macrophyte community response to and recovery from direct application of glyphosate-based herbicides. Ecotox Environ Safe 183:109475
Article
CAS
Google Scholar
Sesin V, Davy CM, Stevens KJ et al (2020) Glyphosate toxicity to native nontarget macrophytes following three different routes of incidental exposure. Integr Environ Assess Manage 17:597–613
Article
CAS
Google Scholar
Price ARG, Readman JW (2013) Booster biocide antifoulants: is history repeating itself. In: Late lessons from early warnings: science, precaution, innovation. Eur Environ Agency 265–278
European Environment Agency (2002) Late lessons from early warnings: the precautionary principle 1896–2000. In: Environmental issue report No. 22/2001. pp. 135–148
European Commission (2016) DURCHFÜHRUNGSBESCHLUSS (EU) 2016/107 DER KOMMISSION vom 27. Januar 2016 zur Nichtgenehmigung von Cybutryn als altem Wirkstoff zur Verwendung in Biozidprodukten der Produktart 21 In, Amtsblatt der Europäischen Union
Burkhardt M, Zuleeg S, Roger V et al. (2011) Biocides in facades runoff and storm water of urban areas
Bollmann U, Vollertsen J, Carmeliet J et al (2014) Dynamics of biocide emissions from buildings in a suburban stormwater catchment—concentrations, mass loads and emission processes. Water Res 56:66–76
Article
CAS
Google Scholar
Beckers L-M, Busch W, Krauss M et al (2018) Characterization and risk assessment of seasonal and weather dynamics in organic pollutant mixtures from discharge of a separate sewer system. Water Res 135:122–133
Article
CAS
Google Scholar
Szoszkiewicz K, Ciecierska H, Kolada A et al (2014) Parameters structuring macrophyte communities in rivers and lakes—results from a case study in North-Central Poland. Knowl Manage Aquat Ecosyst 145:08
Article
Google Scholar
Bytyqi P, Czikkely M, Shala-Abazi A et al (2020) Macrophytes as biological indicators of organic pollution in the Lepenci River Basin in Kosovo. J Freshw Ecol 35:105–121
Article
CAS
Google Scholar
Kaonga CC, Takeda K, Sakugawa H (2016) Concentration and degradation of alternative biocides and an insecticide in surface waters and their major sinks in a semi-enclosed sea, Japan. Chemosphere 145:256–264
Article
CAS
Google Scholar
Lambert SJ, Thomas KV, Davy AJ (2006): Assessment of the risk posed by the antifouling booster biocides Irgarol 1051 and diuron to freshwater macrophytes. Chemosphere 63
Mohr S, Berghahn R, Mailahn W et al (2009) Toxic and accumulative potential of the antifouling biocide and TBT successor Irgarol on freshwater macrophytes: a pond mesocosm study. Environ Sci Technol 43:6838–6843
Article
CAS
Google Scholar
Brinke A, Buchinger S, Reifferscheid G et al (2015) Development of a sediment-contact test with rice for the assessment of sediment-bound pollutants. Environ Sci Pollut Res Int 22:12664–12675
Article
CAS
Google Scholar
Tunić T, Knežević V, Kerkez Đ et al (2015) Some arguments in favor of a Myriophyllum aquaticum growth inhibition test in a water–sediment system as an additional test in risk assessment of herbicides. Environ Toxicol Chem 34:2104–2115
Article
CAS
Google Scholar