Gelinsky E, Hilbeck A (2018) European Court of Justice ruling regarding new genetic engineering methods scientifically justified: a commentary on the biased reporting about the recent ruling. Environ Sci Eur 30(1):52. https://doi.org/10.1186/s12302-018-0182-9
Article
Google Scholar
O’Keefe M, Perrault S, Halpern J, Ikemoto L, M. Y, (2015) “Editing” genes: a case study about how language matters in bioethics. Am J Bioeth 15(12):3–10. https://doi.org/10.1080/15265161.2015.1103804
Article
Google Scholar
Eckerstorfer MF, Dolezel M, Heissenberger A, Miklau M, Reichenbecher W, Steinbrecher RA, Wassmann F (2019) An EU perspective on biosafety considerations for plants developed by genome editing and other new genetic modification techniques (nGMs). Front Bioeng Biotechnol 7:31. https://doi.org/10.3389/fbioe.2019.00031
Article
Google Scholar
Modrzejewski D, Hartung F, Sprink T, Krause D, Kohl C, Wilhelm R (2019) What is the available evidence for the range of applications of genome-editing as a new tool for plant trait modification and the potential occurrence of associated off-target effects: a systematic map. Environ Evid 8:27. https://doi.org/10.1186/s13750-019-0171-5
Article
Google Scholar
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829
Article
CAS
Google Scholar
Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096
Article
CAS
Google Scholar
Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949. https://doi.org/10.1016/j.cell.2014.02.001
Article
CAS
Google Scholar
Rudin N, Sugarman E, Haber JE (1989) Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122(3):519–534
Article
CAS
Google Scholar
Plessis A, Perrin A, Haber JE, Dujon B (1992) Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130(3):451–460
Article
CAS
Google Scholar
Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15(4):1968–1973. https://doi.org/10.1128/MCB.15.4.1968
Article
CAS
Google Scholar
Gorbunova VV, Levy AA (1999) How plants make ends meet: DNA double-strand break repair. Trends Plant Sci 4(7):263–269. https://doi.org/10.1016/S1360-1385(99)01430-2
Article
CAS
Google Scholar
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033
Article
CAS
Google Scholar
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688. https://doi.org/10.1038/nbt.2650
Article
CAS
Google Scholar
Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945. https://doi.org/10.1104/pp.15.00793
Article
CAS
Google Scholar
Podevin N, Davies HV, Hartung F, Nogue F, Casacuberta JM (2013) Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends Biotechnol 31(6):375–383. https://doi.org/10.1016/j.tibtech.2013.03.004
Article
CAS
Google Scholar
Petolino JF, Kumar S (2016) Transgenic trait deployment using designed nucleases. Plant Biotechnol J 14(2):503–509. https://doi.org/10.1111/pbi.12457
Article
CAS
Google Scholar
Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36(8):765–771. https://doi.org/10.1038/nbt.4192
Article
CAS
Google Scholar
Biswas S, Tian J, Li R, Chen X, Luo Z, Chen M, Zhao X, Zhang D, Persson S, Yuan Z, Shi J (2020) Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding. J Genet Genomics 47(5):273–280. https://doi.org/10.1016/j.jgg.2020.04.004
Article
Google Scholar
Li J, Manghwar H, Sun L, Wang P, Wang G, Sheng H, Zhang J, Liu H, Qin L, Rui H, Li B, Lindsey K, Daniell H, Jin S, Zhang X (2019) Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. Plant Biotechnol J 17(5):858–868. https://doi.org/10.1111/pbi.13020
Article
CAS
Google Scholar
Lalonde S, Stone OA, Lessard S, Lavertu A, Desjardins J, Beaudoin M, Rivas M, Stainier DYR, Lettre G (2017) Frameshift indels introduced by genome editing can lead to in-frame exon skipping. PLoS ONE 12(6):e0178700. https://doi.org/10.1371/journal.pone.0178700
Article
CAS
Google Scholar
Kapahnke M, Banning A, Tikkanen R (2016) Random splicing of several exons caused by a single base change in the target exon of CRISPR/Cas9 mediated gene knockout. Cells 5(4):45. https://doi.org/10.3390/cells5040045
Article
CAS
Google Scholar
Kawall K, Cotter J, Then C (2020) Broadening the GMO risk assessment in the EU for genome editing technologies in agriculture. Environ Sci Eur 32(1):106. https://doi.org/10.1186/s12302-020-00361-2
Article
CAS
Google Scholar
Gelvin SB (2017) Integration of Agrobacterium T-DNA into the plant genome. Annu Rev Genet 51:195–217. https://doi.org/10.1146/annurev-genet-120215-035320
Article
CAS
Google Scholar
Forsbach A, Schubert D, Lechtenberg B, Gils M, Schmidt R (2003) A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Mol Biol 52(1):161–176. https://doi.org/10.1023/a:1023929630687
Article
CAS
Google Scholar
Jupe F, Rivkin AC, Michael TP, Zander M, Motley ST, Sandoval JP, Slotkin RK, Chen H, Castanon R, Nery JR, Ecker JR (2019) The complex architecture and epigenomic impact of plant T-DNA insertions. PLoS Genet 15(1):e1007819. https://doi.org/10.1371/journal.pgen.1007819
Article
CAS
Google Scholar
Makarevitch I, Svitashev SK, Somers DA (2003) Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment. Plant Mol Biol 52(2):421–432. https://doi.org/10.1023/a:1023968920830
Article
CAS
Google Scholar
Windels P, De Buck S, Van Bockstaele E, De Loose M, Depicker A (2003) T-DNA integration in Arabidopsis chromosomes. Presence and origin of filler DNA sequences. Plant Physiol 133(4):2061–2068. https://doi.org/10.1104/pp.103.027532
Article
CAS
Google Scholar
Rang AL, Jansen B (2005) Detection of RNA variants transcribed from the transgene in Roundup Ready soybean. Eur Food Res Technol 220:438–443. https://doi.org/10.1007/s00217-004-1064-5
Article
CAS
Google Scholar
Kawall K (2019) New possibilities on the horizon: genome editing makes the whole genome accessible for changes. Front Plant Sci 10:525. https://doi.org/10.3389/fpls.2019.00525
Article
Google Scholar
Schachtsiek J, Stehle F (2019) Nicotine-free, nontransgenic tobacco (Nicotiana tabacum l.) edited by CRISPR-Cas9. Plant Biotechnol J 17(12):2228–2230. https://doi.org/10.1111/pbi.13193
Article
Google Scholar
Kannan B, Jung JH, Moxley GW, Lee SM, Altpeter F (2018) TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnol J 16(4):856–866. https://doi.org/10.1111/pbi.12833
Article
CAS
Google Scholar
Wang W, Akhunova A, Chao S, Trick H, Akhunov E (2018) Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1(1):65–74. https://doi.org/10.1089/crispr.2017.0010
Article
CAS
Google Scholar
Shen L, Hua Y, Fu Y, Li J, Liu Q, Jiao X, Xin G, Wang J, Wang X, Yan C, Wang K (2017) Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci China Life Sci 60(5):506–515. https://doi.org/10.1007/s11427-017-9008-8
Article
CAS
Google Scholar
Sanchez-Leon S, Gil-Humanes J, Ozuna CV, Gimenez MJ, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16(4):902–910. https://doi.org/10.1111/pbi.12837
Article
CAS
Google Scholar
Pele A, Rousseau-Gueutin M, Chevre AM (2018) Speciation success of polyploid plants closely relates to the regulation of meiotic recombination. Front Plant Sci 9:907. https://doi.org/10.3389/fpls.2018.00907
Article
Google Scholar
Mandakova T, Pouch M, Brock JR, Al-Shehbaz IA, Lysak MA (2019) Origin and evolution of diploid and allopolyploid Camelina genomes were accompanied by chromosome shattering. Plant Cell 31(11):2596–2612. https://doi.org/10.1105/tpc.19.00366
Article
CAS
Google Scholar
Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15(5):648–657. https://doi.org/10.1111/pbi.12663
Article
CAS
Google Scholar
Morineau C, Bellec Y, Tellier F, Gissot L, Kelemen Z, Nogue F, Faure JD (2017) Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol J 15(6):729–739. https://doi.org/10.1111/pbi.12671
Article
CAS
Google Scholar
Ozseyhan ME, Kang J, Mu X, Lu C (2018) Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa. Plant Physiol Biochem 123:1–7. https://doi.org/10.1016/j.plaphy.2017.11.021
Article
CAS
Google Scholar
Lyzenga WJ, Harrington M, Bekkaoui D, Wigness M, Hegedus DD, Rozwadowski KL (2019) CRISPR/Cas9 editing of three CRUCIFERIN C homoeologues alters the seed protein profile in Camelina sativa. BMC Plant Biol 19(1):292. https://doi.org/10.1186/s12870-019-1873-0
Article
CAS
Google Scholar
Vollmann J, Eynck C (2015) Camelina as a sustainable oilseed crop: contributions of plant breeding and genetic engineering. Biotechnol J 10(4):525–535. https://doi.org/10.1002/biot.201400200
Article
CAS
Google Scholar
Abramovic H, Abram V (2005) Physico-chemical properties, composition and oxidative stability of Camelina sativa oil. Food Technol Biotechnol 43:63–70
CAS
Google Scholar
Iskandarov U, Kim HJ, Cahoon EB (2014) Camelina: An emerging oilseed platform for advanced biofuels and bio-based materials. Plants BioEnergy. https://doi.org/10.1007/978-1-4614-9329-7_8
Article
Google Scholar
Shonnard D, Williams L, Kalness T (2010) Camelina-derived jet fuel and diesel: sustainable advanced biofuels. Environ Prog Sustain Energy 29(3):382–392. https://doi.org/10.1002/ep.10461
Article
CAS
Google Scholar
Petrie JR, Shrestha P, Belide S, Kennedy Y, Lester G, Liu Q, Divi UK, Mulder RJ, Mansour MP, Nichols PD, Singh SP (2014) Metabolic engineering Camelina sativa with fish oil-like levels of DHA. PLoS ONE 9(1):e85061. https://doi.org/10.1371/journal.pone.0085061
Article
CAS
Google Scholar
Betancor MB, Sprague M, Usher S, Sayanova O, Campbell PJ, Napier JA, Tocher DR (2015) A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish. Sci Rep 5:8104. https://doi.org/10.1038/srep08104
Article
CAS
Google Scholar
Agapito-Tenfen SZ, Okoli AS, Bernstein MJ, Wikmark OG, Myhr AI (2018) Revisiting risk governance of GM plants: the need to consider new and emerging gene-editing techniques. Front Plant Sci 9:1874. https://doi.org/10.3389/fpls.2018.01874
Article
Google Scholar
Hutcheon C, Ditt RF, Beilstein M, Comai L, Schroeder J, Goldstein E, Shewmaker CK, Nguyen T, De Rocher J, Kiser J (2010) Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC Plant Biol 10:233. https://doi.org/10.1186/1471-2229-10-233
Article
CAS
Google Scholar
Kagale S, Koh C, Nixon J, Bollina V, Clarke WE, Tuteja R, Spillane C, Robinson SJ, Links MG, Clarke C, Higgins EE, Huebert T, Sharpe AG, Parkin IA (2014) The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat Commun 5:3706. https://doi.org/10.1038/ncomms4706
Article
CAS
Google Scholar
Luo Z, Tomasi P, Fahlgren N, Abdel-Haleem H (2019) Genome-wide association study (GWAS) of leaf cuticular wax components in Camelina sativa identifies genetic loci related to intracellular wax transport. BMC Plant Biol 19(1):187. https://doi.org/10.1186/s12870-019-1776-0
Article
Google Scholar
Chaudhary R, Koh CS, Kagale S, Tang L, Wu SW, Lv Z, Mason AS, Sharpe AG, Diederichsen A, Parkin IAP (2020) Assessing diversity in the Camelina genus provides insights into the genome structure of Camelina sativa. G3 10(4):1297–1308. https://doi.org/10.1534/g3.119.400957
Article
CAS
Google Scholar
Vollmann J, Grausgruber H, Stift G, Dryzhyruk V, Lelley T (2005) Genetic diversity in camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism. Plant Breed 124(5):446–453. https://doi.org/10.1111/j.1439-0523.2005.01134.x
Article
CAS
Google Scholar
Brock JR, Donmez AA, Beilstein MA, Olsen KM (2018) Phylogenetics of Camelina Crantz. (Brassicaceae) and insights on the origin of gold-of-pleasure (Camelina sativa). Mol Phylogenet Evol 127:834–842. https://doi.org/10.1016/j.ympev.2018.06.031
Article
Google Scholar
Luo Z, Brock J, Dyer JM, Kutchan T, Schachtman D, Augustin M, Ge Y, Fahlgren N, Abdel-Haleem H (2019) Genetic diversity and population structure of a Camelina sativa spring panel. Front Plant Sci 10:184. https://doi.org/10.3389/fpls.2019.00184
Article
Google Scholar
Lu C, Kang J (2008) Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Rep 27(2):273–278. https://doi.org/10.1007/s00299-007-0454-0
Article
CAS
Google Scholar
Liang C, Liu X, Yiu SM, Lim BL (2013) De novo assembly and characterization of Camelina sativa transcriptome by paired-end sequencing. BMC Genomics 14:146. https://doi.org/10.1186/1471-2164-14-146
Article
CAS
Google Scholar
Nguyen HT, Silva JE, Podicheti R, Macrander J, Yang W, Nazarenus TJ, Nam JW, Jaworski JG, Lu C, Scheffler BE, Mockaitis K, Cahoon EB (2013) Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Plant Biotechnol J 11(6):759–769. https://doi.org/10.1111/pbi.12068
Article
CAS
Google Scholar
Kagale S, Nixon J, Khedikar Y, Pasha A, Provart NJ, Clarke WE, Bollina V, Robinson SJ, Coutu C, Hegedus DD, Sharpe AG, Parkin IA (2016) The developmental transcriptome atlas of the biofuel crop Camelina sativa. Plant J 88(5):879–894. https://doi.org/10.1111/tpj.13302
Article
CAS
Google Scholar
Abdullah HM, Akbari P, Paulose B, Schnell D, Qi W, Park Y, Pareek A, Dhankher OP (2016) Transcriptome profiling of Camelina sativa to identify genes involved in triacylglycerol biosynthesis and accumulation in the developing seeds. Biotechnol Biofuels 9:136. https://doi.org/10.1186/s13068-016-0555-5
Article
CAS
Google Scholar
Beilstein MA, Al-Shehbaz IA, Kellogg EA (2006) Brassicaceae phylogeny and trichome evolution. Am J Bot 93(4):607–619. https://doi.org/10.3732/ajb.93.4.607
Article
CAS
Google Scholar
Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA (2008) Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Am J Bot 95(10):1307–1327. https://doi.org/10.3732/ajb.0800065
Article
CAS
Google Scholar
Nikolov LA, Shushkov P, Nevado B, Gan X, Al-Shehbaz IA, Filatov D, Bailey CD, Tsiantis M (2019) Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytol 222(3):1638–1651. https://doi.org/10.1111/nph.15732
Article
Google Scholar
Bansal S, Durrett TP (2016) Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids. Biochimie 120:9–16. https://doi.org/10.1016/j.biochi.2015.06.009
Article
CAS
Google Scholar
Berti M, Cermak S (2016) Camelina uses, genetics, genomics, production, and management. Ind Crops Prod 94:690–710. https://doi.org/10.1016/j.indcrop.2016.09.034
Article
CAS
Google Scholar
Frohlich A, Rice B (2005) Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind Crops Prod 21:25–31
Article
CAS
Google Scholar
Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358–1364. https://doi.org/10.1021/ef700639e
Article
CAS
Google Scholar
Demorest ZL, Coffman A, Baltes NJ, Stoddard TJ, Clasen BM, Luo S, Retterath A, Yabandith A, Gamo ME, Bissen J, Mathis L, Voytas DF, Zhang F (2016) Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol 16(1):225. https://doi.org/10.1186/s12870-016-0906-1
Article
CAS
Google Scholar
Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12(7):934–940. https://doi.org/10.1111/pbi.12201
Article
CAS
Google Scholar
Dar AA, Choudhury AR, Kancharla PK, Arumugam N (2017) The FAD2 gene in plants: occurrence, regulation, and role. Front Plant Sci 8:1789. https://doi.org/10.3389/fpls.2017.01789
Article
Google Scholar
Browse J, Somerville C (1991) Glycerolipid synthesis: biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol 42:467–506. https://doi.org/10.1146/annurev.pp.42.060191.002343
Article
CAS
Google Scholar
Kang J, Snapp AR, Lu C (2011) Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa. Plant Physiol Biochem 49(2):223–229. https://doi.org/10.1016/j.plaphy.2010.12.004
Article
CAS
Google Scholar
Shah S, Xin Z, Browse J (1997) Overexpression of the FAD3 desaturase gene in a mutant of Arabidopsis. Plant Physiol 114(4):1533–1539. https://doi.org/10.1104/pp.114.4.1533
Article
CAS
Google Scholar
Belfield EJ, Ding ZJ, Jamieson FJC, Visscher AM, Zheng SJ, Mithani A, Harberd NP (2018) DNA mismatch repair preferentially protects genes from mutation. Genome Res 28(1):66–74. https://doi.org/10.1101/gr.219303.116
Article
CAS
Google Scholar
Monroe JG, Srikant T, Carbonell-Bejerano P, Exposito-Alonso M, Weng M-L, Rutter MT, Fenster CB, Weigel D (2020) Mutation bias shapes gene evolution in Arabidopsis thaliana. BioRxiv. https://doi.org/10.1101/2020.06.17.156752
Article
Google Scholar
Weng ML, Becker C, Hildebrandt J, Neumann M, Rutter MT, Shaw RG, Weigel D, Fenster CB (2019) Fine-grained analysis of spontaneous mutation spectrum and frequency in Arabidopsis thaliana. Genetics 211(2):703–714. https://doi.org/10.1534/genetics.118.301721
Article
CAS
Google Scholar
SCHER SCENIHR SCCS (2015) Opinion on Synthetic Biology II Risk assessment methodologies and safety aspects. https://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_048.pdf. Accessed 8 June 2020
Khatodia S, Bhatotia K, Passricha N, Khurana SM, Tuteja N (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci 7:506. https://doi.org/10.3389/fpls.2016.00506
Article
Google Scholar
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284. https://doi.org/10.1016/j.molp.2015.04.007
Article
CAS
Google Scholar
Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6(6):2008–2011. https://doi.org/10.1093/mp/sst121
Article
CAS
Google Scholar
Lowder LG, Zhang D, Baltes NJ, Paul JW 3rd, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169(2):971–985. https://doi.org/10.1104/pp.15.00636
Article
CAS
Google Scholar
Cao J, Xiao Q, Yan Q (2018) The multiplexed CRISPR targeting platforms. Drug Discov Today Technol 28:53–61. https://doi.org/10.1016/j.ddtec.2018.01.001
Article
Google Scholar
Zsogon A, Cermak T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP (2018) De novo domestication of wild tomato using genome editing. Nat Biotechnol 36:1211–1216. https://doi.org/10.1038/nbt.4272
Article
CAS
Google Scholar
Faure JD, Napier JA (2018) Europe’s first and last field trial of gene-edited plants? Elife 7:e42379. https://doi.org/10.7554/eLife.42379
Article
Google Scholar
Miquel M, James D Jr, Dooner H, Browse J (1993) Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci U S A 90(13):6208–6212
Article
CAS
Google Scholar
Zhang J, Liu H, Sun J, Li B, Zhu Q, Chen S, Zhang H (2012) Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. PLoS ONE 7(1):e30355. https://doi.org/10.1371/journal.pone.0030355
Article
CAS
Google Scholar
McConn M, Browse J (1998) Polyunsaturated membranes are required for photosynthetic competence in a mutant of Arabidopsis. Plant J 15(4):521–530
Article
CAS
Google Scholar
Heydarian Z, Yu M, Gruber M, Coutu C, Robinson SJ, Hegedus DD (2018) Changes in gene expression in Camelina sativa roots and vegetative tissues in response to salinity stress. Sci Rep 8(1):9804. https://doi.org/10.1038/s41598-018-28204-4
Article
CAS
Google Scholar
Vishwanath SJ, Delude C, Domergue F, Rowland O (2015) Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Rep 34(4):573–586. https://doi.org/10.1007/s00299-014-1727-z
Article
CAS
Google Scholar
Franke R, Schreiber L (2007) Suberin-a biopolyester forming apoplastic plant interfaces. Curr Opin Plant Biol 10(3):252–259. https://doi.org/10.1016/j.pbi.2007.04.004
Article
CAS
Google Scholar
Schreiber L (2010) Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15(10):546–553. https://doi.org/10.1016/j.tplants.2010.06.004
Article
CAS
Google Scholar
Tomasi P, Wang H, Lohrey G, Park S, Dyer JM, Jenks M, Abdel-Haleem H (2017) Characterization of leaf cuticular waxes and cutin monomers of Camelina sativa and closely-related Camelina species. Ind Crops Prod 98:130–138. https://doi.org/10.1016/j.indcrop.2017.01.030
Article
CAS
Google Scholar
Wasternack C, Feussner I (2018) The Oxylipin pathways: biochemistry and function. Annu Rev Plant Biol 69:363–386. https://doi.org/10.1146/annurev-arplant-042817-040440
Article
CAS
Google Scholar
Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111(6):1021–1058. https://doi.org/10.1093/aob/mct067
Article
CAS
Google Scholar
Gfeller A, Dubugnon L, Liechti R, Farmer EE (2010) Jasmonate biochemical pathway. Sci Signal 3(109):cm3. https://doi.org/10.1126/scisignal.3109cm3
Article
CAS
Google Scholar
Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227. https://doi.org/10.1146/annurev.phyto.43.040204.135923
Article
CAS
Google Scholar
Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66. https://doi.org/10.1146/annurev.arplant.59.032607.092825
Article
CAS
Google Scholar
Howe GA, Major IT, Koo AJ (2018) Modularity in jasmonate signaling for multistress resilience. Annu Rev Plant Biol 69:387–415. https://doi.org/10.1146/annurev-arplant-042817-040047
Article
CAS
Google Scholar
Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055
Article
CAS
Google Scholar
Song S, Qi T, Wasternack C, Xie D (2014) Jasmonate signaling and crosstalk with gibberellin and ethylene. Curr Opin Plant Biol 21:112–119. https://doi.org/10.1016/j.pbi.2014.07.005
Article
CAS
Google Scholar
Kanobe C, McCarville MT, O’Neal ME, Tylka GL, MacIntosh GC (2015) Soybean aphid infestation induces changes in fatty acid metabolism in soybean. PLoS ONE 10(12):e0145660. https://doi.org/10.1371/journal.pone.0145660
Article
CAS
Google Scholar
Ragsdale DW, Landis DA, Brodeur J, Heimpel GE, Desneux N (2011) Ecology and management of the soybean aphid in North America. Annu Rev Entomol 56:375–399. https://doi.org/10.1146/annurev-ento-120709-144755
Article
CAS
Google Scholar
Zhu J, Park KC (2005) Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. J Chem Ecol 31(8):1733–1746. https://doi.org/10.1007/s10886-005-5923-8
Article
CAS
Google Scholar
Hulbert AJAS (2011) Nutritional ecology of essential fatty acids: an evolutionary perspective. Aust J Zool 59(6):369–379. https://doi.org/10.1071/ZO11064
Article
Google Scholar
Arien Y, Dag A, Zarchin S, Masci T, Shafir S (2015) Omega-3 deficiency impairs honey bee learning. Proc Natl Acad Sci USA 112(51):15761–15766. https://doi.org/10.1073/pnas.1517375112
Article
CAS
Google Scholar
Usher S, Han L, Haslam RP, Michaelson LV, Sturtevant D, Aziz M, Chapman KD, Sayanova O, Napier JA (2017) Tailoring seed oil composition in the real world: optimising omega-3 long chain polyunsaturated fatty acid accumulation in transgenic Camelina sativa. Sci Rep 7(1):6570. https://doi.org/10.1038/s41598-017-06838-0
Article
CAS
Google Scholar
Ruiz-Lopez N, Haslam RP, Napier JA, Sayanova O (2014) Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J 77(2):198–208. https://doi.org/10.1111/tpj.12378
Article
CAS
Google Scholar
Hixson SM, Shukla K, Campbell LG, Hallett RH, Smith SM, Packer L, Arts MT (2016) Long-chain omega-3 polyunsaturated fatty acids have developmental effects on the crop pest, the cabbage white butterfly Pieris rapae. PLoS ONE 11(3):e0152264. https://doi.org/10.1371/journal.pone.0152264
Article
CAS
Google Scholar
Colombo SM, Campbella LG, Murphy EJ, Martin SL, Arts MT (2018) Potential for novel production of omega-3 long-chain fatty acids by genetically engineered oilseed plants to alter terrestrial ecosystem dynamics. Agric Syst 164:31–37. https://doi.org/10.1016/j.agsy.2018.03.004
Article
Google Scholar
European Food Safety Authority (2010) Guidance on the environmental risk assessment of genetically modified plants. EFSA J 8(11):1879. https://doi.org/10.2903/j.efsa.2010.1879
Article
Google Scholar
Bauer-Panskus A, Miyazaki J, Kawall K, Then C (2020) Risk assessment of genetically engineered plants that can persist and propagate in the environment. Environ Sci Eur. https://doi.org/10.1186/s12302-020-00301-0
Article
Google Scholar
Stewart CN, Halfhill MD, Warwick SI (2002) Transgene introgression from genetically modified crops to their wild relatives. Nat Biotechnol 4:806–817. https://doi.org/10.1038/nrg1179
Article
Google Scholar
Liu Y, Wei W, Ma K, Li J, Liang Y (2013) Consequences of gene flow between oilseed rape (Brassica napus) and its relatives. Plant Sci 211:42–51. https://doi.org/10.1016/j.plantsci.2013.07.002
Article
CAS
Google Scholar
Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30(1):539–563
Article
Google Scholar
Groeneveld JH, Klein AM (2014) Pollination of two oil-producing plant species: Camelina (Camelina sativa L. Crantz) and pennycress (Thlaspi arvense L.) double-cropping in Germany. Glob Change Biol Bioenergy 6(3):242–251. https://doi.org/10.1111/gcbb.12122\r10.1111/gcbb.12080
Article
Google Scholar
Eberle CA, Thom MD, Nemec KT, Forcella F, Lundgren JG, Gesch RW, Riedell WE, Papiernik SK, Wagner A, Peterson DH, Eklund JJ (2015) Using pennycress, camelina, and canola cash cover crops to provision pollinators. Ind Crops Prod 75:20–25. https://doi.org/10.1016/j.indcrop.2015.06.026
Article
Google Scholar
Walsh K, Puttick D, Hills M, Yang R, Topinka K, Hall LH (2012) First report of outcrossing rates in camelina [Camelina sativa (L.) Crantz], a potential platform for bioindustrial oils. Can J Plant Sci 92:681–685. https://doi.org/10.4141/CJPS2011-182
Article
CAS
Google Scholar
Séguin-Swartz G, Nettleton JA, Sauder C, Warwick SI, Gugel RK (2013) Hybridization between Camelina sativa (L.) Crantz (false flax) and North American Camelina species. Plant Breeding 132:390–396
Article
Google Scholar
Julie-Galau S, Bellec Y, Faure JD, Tepfer M (2014) Evaluation of the potential for interspecific hybridization between Camelina sativa and related wild Brassicaceae in anticipation of field trials of GM camelina. Transgenic Res 23(1):67–74. https://doi.org/10.1007/s11248-013-9722-7
Article
CAS
Google Scholar
Martin SL, Sauder CA, James T, Cheung KW, Razeq FM (2015) Sexual hybridization between Capsella bursa-pastoris (L.) Medik (♀) and Camelina sativa (L.) Crantz (♂) (Brassicaceae). Plant Breed 134:212–220. https://doi.org/10.1111/pbr.12245
Article
CAS
Google Scholar
European Court of Justice (2018) Judgement of the Court (Grand Chamber), 25 July 2018 in Case C-528/16. http://curia.europa.eu/juris/document/document.jsf?text=&docid=204387&pageIndex=0&doclang=en&mode=req&dir=&occ=first&part=1&cid=133112. Accessed 10 Feb 2020
European Food Safety Authority (2011) Guidance for risk assessment of food and feed from genetically modified plants. EFSA J 9(5):2150. https://doi.org/10.2903/j.efsa.2011.2150
Article
Google Scholar
Eckerstorfer MF, Engelhard M, Heissenberger A, Simon S, Teichmann H (2019) Plants developed by new genetic modification techniques-comparison of existing regulatory frameworks in the EU and non-EU countries. Front Bioeng Biotechnol 7:26. https://doi.org/10.3389/fbioe.2019.00026
Article
Google Scholar
Ledford H (2016) Gene-editing surges as US rethinks regulations. Nature 532(7598):158–159. https://doi.org/10.1038/532158a
Article
CAS
Google Scholar
USDA-APHIS (2020) Final Rule for biotechnology regulations 7 CFR part 340. https://www.aphis.usda.gov/brs/fedregister/BRS_2020518.pdf. Accessed 8 June 2020
Eriksson D, Custers R, Edvardsson Bjornberg K, Hansson SO, Purnhagen K, Qaim M, Romeis J, Schiemann J, Schleissing S, Tosun J, Visser RGF (2020) Options to reform the European Union legislation on GMOs: scope and definitions. Trends Biotechnol 38(3):231–234. https://doi.org/10.1016/j.tibtech.2019.12.002
Article
CAS
Google Scholar
Nationale Akademie der Wissenschaften Leopoldina Deutsche Forschungsgemeinschaft und Union der deutschen Akademien der Wissenschaften (2019) Towards a scientifically justified, differentiated regulation of genome edited plants in the EU. https://www.leopoldina.org/uploads/tx_leopublication/2019_Stellungnahme_Genomeditierte_Pflanzen_web.pdf. Accessed 5 Jan 2021
Claros MG, Bautista R, Guerrero-Fernandez D, Benzerki H, Seoane P, Fernandez-Pozo N (2012) Why assembling plant genome sequences is so challenging. Biology 1(2):439–459. https://doi.org/10.3390/biology1020439
Article
Google Scholar
Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol 174(2):935–942. https://doi.org/10.1104/pp.17.00426
Article
CAS
Google Scholar
Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes NJ, Mathis L, Voytas DF, Zhang F (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14(1):169–176. https://doi.org/10.1111/pbi.12370
Article
CAS
Google Scholar
Okuzaki A, Ogawa T, Koizuka C, Kaneko K, Inaba M, Imamura J, Koizuka N (2018) CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol Biochem 131:63–69. https://doi.org/10.1016/j.plaphy.2018.04.025
Article
CAS
Google Scholar
Wen S, Liu H, Li X, Chen X, Hong Y, Li H, Lu Q, Liang X (2018) TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid. Plant Mol Biol 97(1–2):177–185. https://doi.org/10.1007/s11103-018-0731-z
Article
CAS
Google Scholar
Nakayasu M, Akiyama R, Lee HJ, Osakabe K, Osakabe Y, Watanabe B, Sugimoto Y, Umemoto N, Saito K, Muranaka T, Mizutani M (2018) Generation of alpha-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol Biochem 131:70–77. https://doi.org/10.1016/j.plaphy.2018.04.026
Article
CAS
Google Scholar
Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Du W, Du J, Francis F, Zhao Y, Xia L (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298. https://doi.org/10.3389/fpls.2017.00298
Article
Google Scholar
Li X, Wang Y, Chen S, Tian H, Fu D, Zhu B, Luo Y, Zhu H (2018) Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front Plant Sci 9:559. https://doi.org/10.3389/fpls.2018.00559
Article
Google Scholar
Ribarits A, Eckerstorfer M, Simon S, Stepanek W (2021) Genome-Edited plants: opportunities and challenges for an anticipatory detection and identification framework. Foods 10(2):430. https://doi.org/10.3390/foods10020430
Article
Google Scholar