Hadas O, Pinkas R, Delphine E, Vardi A, Kaplan A, Sukenik A (1999) Limnological and ecophysiological aspects of Aphanizomenon ovalisporum bloom in Lake Kinneret, Israel. J Plankton Res 21:1439–1453. https://doi.org/10.1093/plankt/21.8.1439
Article
Google Scholar
Kahru M, Leppanen JM, Rud O, Savchuk OP (2000) Cyanobacteria blooms in the Gulf of Finland triggered by saltwater inflow into the Baltic Sea. Mar Ecol Prog Ser 207:13–18. https://doi.org/10.3354/Meps207013
Article
Google Scholar
Kanoshina I, Lips U, Leppanen JM (2003) The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Harmful Algae 2:29–41. https://doi.org/10.1016/S1568-9883(02)00085-9
Article
Google Scholar
Liu YM, Chen W, Li DH, Shen YW, Li GB, Liu YD (2006) First report of aphantoxins in China—waterblooms of toxigenic Aphanizomenon flos-aquae in Lake Dianchi. Ecotox Environ Safe 65:84–92. https://doi.org/10.1016/j.ecoenv.2005.06.012
Article
CAS
Google Scholar
Janson S, Graneli E (2002) Phylogenetic analyses of nitrogen-fixing cyanobacteria from the Baltic Sea reveal sequence anomalies in the phycocyanin operon. Int J Syst Evol Micr 52:1397–1404. https://doi.org/10.1099/ijs.0.02111-0
Article
CAS
Google Scholar
Walve J, Larsson U (2010) Seasonal changes in Baltic Sea seston stoichiometry: the influence of diazotrophic cyanobacteria. Mar Ecol Prog Ser 407:13–25. https://doi.org/10.3354/meps08551
Article
CAS
Google Scholar
Degerholm J, Gundersen K, Bergman B, Soderback E (2006) Phosphorus-limited growth dynamics in two Baltic Sea cyanobacteria, Nodularia sp. and Aphanizomenon sp. FEMS Microbiol Ecol 58:323–332. https://doi.org/10.1111/j.1574-6941.2006.00180.x
Article
CAS
Google Scholar
De Figueiredo DR, Goncalves AMM, Castro BB, Goncalves F, Pereira MJ, Correia A (2011) Differential inter- and intra-specific responses of Aphanizomenon strains to nutrient limitation and algal growth inhibition. J Plankton Res 33:1606–1616. https://doi.org/10.1093/plankt/fbr058
Article
CAS
Google Scholar
Garbisu C, Hall DO, Serra JL (1993) Removal of phosphate by foam-immobilized Phormidium laminosum in batch and continuous-flow bioreactors. J Chem Technol Biot 57:181–189. https://doi.org/10.1002/jctb.280570214
Article
CAS
Google Scholar
Janson S, Carpenter EJ, Bergman B (1994) Fine-structure and immunolocalization of proteins in Aphanizomenon sp. from the Baltic Sea. Eur J Phycol 29:203–211. https://doi.org/10.1080/09670269400650651
Article
Google Scholar
Strojsova A, Vrba J, Nedoma N, Komarkova J, Znachor P (2003) Seasonal study of extracellular phosphatase expression in the phytoplankton of a eutrophic reservoir. Eur J Phycol 38:295–306. https://doi.org/10.1080/09670260310001612628
Article
CAS
Google Scholar
Vahtera E, Laamanen M, Rintala JM (2007) Use of different phosphorus sources by the bloom-forming cyanobacteria Aphanizomenon flos-aquae and Nodularia spumigena. Aquat Microb Ecol 46:225–237. https://doi.org/10.3354/Ame046225
Article
Google Scholar
Vahtera E, Autio R, Kaartokallio H, Laamanen M (2010) Phosphate addition to phosphorus-deficient Baltic Sea plankton communities benefits nitrogen-fixing cyanobacteria. Aquat Microb Ecol 60:43–57. https://doi.org/10.3354/ame01408
Article
Google Scholar
Bar-Yosef Y, Sukenik A, Hadas O, Viner-Mozzini Y, Kaplan A (2010) Enslavement in the water body by toxic Aphanizomenon ovalisporum, inducing alkaline phosphatase in phytoplanktons. Curr Biol 20:1557–1561. https://doi.org/10.1016/j.cub.2010.07.032
Article
CAS
Google Scholar
Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 26:31–36
Article
Google Scholar
Wang SY, Xiao J, Wan LL, Zhou ZJ, Wang ZC, Song CL, Zhou YY, Cao XY (2018) Mutual dependence of nitrogen and phosphorus as key nutrient elements: one facilitates Dolichospermum flos-aquae to overcome the limitations of the other. Environ Sci Technol 52:5653–5661. https://doi.org/10.1021/acs.est.7b04992
Article
CAS
Google Scholar
Stanier RY, Deruelles J, Waterbury JB, Herdman M, Rippka R (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111:1–61. https://doi.org/10.1099/00221287-111-1-1
Article
Google Scholar
Bowe G (2002) An overview of counting methods of algae. In: Ziglio G, van der Beken A (eds) Water quality measurements series: detection methods for algae, protozoa and Helminths in fresh and drinking water (Palumbo F. Wiley, England, pp 71–82
Chapter
Google Scholar
Wu ZX, Shi JQ, Li RH (2009) Comparative studies on photosynthesis and phosphate metabolism of cylindrospermopsis raciborskii with Microcystis aeruginosa and Aphanizomenon flos-aquae. Harmful Algae 8(6):910–915. https://doi.org/10.1016/j.hal.2009.05.002
Article
CAS
Google Scholar
Guo H, Yao JT, Sun ZM, Duan DL (2015) Effect of temperature, irradiance on the growth of the green alga Caulerpa lentillifera (Bryopsidophyceae, Chlorophyta). J Appl Phycol 27:879–885. https://doi.org/10.1007/s10811-014-0358-7
Article
CAS
Google Scholar
Ting CS, Owens TG (1992) Limitations of the pulse-modulated technique for measuring the fluorescence characteristics of algae. Plant Physiol 100:367–373. https://doi.org/10.1104/Pp.100.1.367
Article
CAS
Google Scholar
Beattie DM, Golterman HL, Vijverberg J (1978) Introduction to limnology of Friesian Lakes. Hydrobiologia 58:49–64. https://doi.org/10.1007/Bf00018895
Article
CAS
Google Scholar
Hoppe HG (1993) Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria. In: Kemp PF, Cole JJ, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis Publishers, Boca Raton, pp 423–431. https://doi.org/10.1080/09670260310001612628
Chapter
Google Scholar
Wan LL, Chen XY, Deng QH, Yang L, Li XW, Zhang JY, Song CL, Zhou YY, Cao XY (2019) Phosphorus strategy in bloom-forming cyanobacteria (Dolichospermum and Microcystis) and its role in their succession. Harmful Algae 84:46–55. https://doi.org/10.1016/j.hal.2019.02.007
Article
CAS
Google Scholar
Allan RA, Miller JJ (1980) Influence of S-adenosylmethionine on DAPI-induced fluorescence of polyphosphate in the yeast vacuole. Can J Microbiol 26:912–920. https://doi.org/10.1139/M80-158
Article
CAS
Google Scholar
Tijssen JPF, Beekes HW, Vansteveninck J (1982) Localization of polyphosphates in Saccharomyces-Fragilis, as revealed by 4′,6-Diamidino-2-Phenylindole fluorescence. Biochim Biophys Acta 721:394–398. https://doi.org/10.1016/0167-4889(82)90094-5
Article
CAS
Google Scholar
Jansson M, Olsson H, Pettersson K (1988) Phosphatases—origin, characteristics and function in lakes. Hydrobiologia 170:157–175. https://doi.org/10.1007/Bf00024903
Article
CAS
Google Scholar
Istvanovics V, Pettersson K, Pierson D, Bell R (1992) Evaluation of phosphorus deficiency indicators for summer phytoplankton in Lake Erken. Limnol Oceanogr 37:890–900. https://doi.org/10.4319/lo.1992.37.4.0890
Article
CAS
Google Scholar
Sohm JA, Capone DG (2006) Phosphorus dynamics of the tropical and subtropical North Atlantic: Trichodesmium spp. versus bulk plankton. Mar Ecol Prog Ser 317:21–28. https://doi.org/10.3354/Meps317021
Article
CAS
Google Scholar
Cao XY, Song CL, Zhou YY (2010) Limitations of using extracellular alkaline phosphatase activities as a general indicator for describing P deficiency of phytoplankton in Chinese shallow lakes. J Appl Phycol 22:33–41. https://doi.org/10.1007/s10811-009-9422-0
Article
CAS
Google Scholar
Duhamel S, Dyhrman ST, Karl DM (2010) Alkaline phosphatase activity and regulation in the North Pacific Subtropical Gyre. Limnol Oceanogr 55:1414–1425. https://doi.org/10.4319/lo.2010.55.3.1414
Article
CAS
Google Scholar
Harke MJ, Berry DL, Ammerman JW, Gobler CJ (2012) Molecular response of the bloom-forming cyanobacterium, Microcystis aeruginosa, to phosphorus limitation. Microb Ecol 63:188–198. https://doi.org/10.1007/s00248-011-9894-8
Article
CAS
Google Scholar
Jamet D, Amblard C, Devaux J (2001) Size-fractionated alkaline phosphatase activity in the hypereutrophic Villerest reservoir (Roanne, France). Water Environ Res 73:132–141. https://doi.org/10.2175/106143001x138787
Article
CAS
Google Scholar
Rengefors K, Ruttenberg KC, Haupert CL, Taylor C, Howes BL, Anderson DM (2003) Experimental investigation of taxon-specific response of alkaline phosphatase activity in natural freshwater phytoplankton. Limnol Oceanogr 48:1167–1175. https://doi.org/10.4319/lo.2003.48.3.1167
Article
CAS
Google Scholar
Meseck SL, Alix JH, Wikfors GH, Ward JE (2009) Differences in the soluble, residual phosphate concentrations at which coastal phytoplankton species up-regulate alkaline-phosphatase expression, as measured by flow-cytometric detection of ELF-97A (R) Fluorescence. Estuar Coast 32:1195–1204. https://doi.org/10.1007/s12237-009-9211-7
Article
CAS
Google Scholar
Jauzein C, Labry C, Youenou A, Quere J, Delmas D, Collos Y (2010) Growth and phosphorus uptake by the toxic dinoflagellate Alexandrium Catenella (Dinophyceae) in response to phosphate limitation. J Phycol 46:926–936. https://doi.org/10.1111/j.1529-8817.2010.00878.x
Article
CAS
Google Scholar
Oh SJ, Yamamoto T, Kataoka Y, Matsuda O, Matsuyama Y, Kotani Y (2002) Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae). Fisheries Sci 68:416–424. https://doi.org/10.1046/j.1444-2906.2002.00440.x
Article
CAS
Google Scholar
Lehman JT, Doubek JP, Jackson EW (2013) Effect of reducing allochthonous P load on biomass and alkaline phosphatase activity of phytoplankton in an urbanized watershed, Michigan. Lake Reserv Manage. 29(2):116–125. https://doi.org/10.1080/10402381.2013.800173
Article
CAS
Google Scholar
Prentice MJ, Hamilton DP, Willis A, O’Brien KR, Burford MA (2019) Quantifying the role of organic phosphorus mineralisation on phytoplankton communities in a warm-monomictic lake. Inland Waters 9:10–24. https://doi.org/10.1080/20442041.2018.1538717
Article
CAS
Google Scholar
Wu G, Zhou X (2005) Characterization of phosphorus-releasing bacteria in a small eutrophic shallow lake. Eastern China. Water Res. 39:4623–4632. https://doi.org/10.1016/j.watres.2005.08.036
Article
CAS
Google Scholar
Cao XY, Zhou YY, Wang ZC, Song CL (2016) The contribution of attached bacteria to microcystis bloom: evidence from field investigation and microcosm experiment. Geomicrobiol J 33:607–617. https://doi.org/10.1080/01490451.2015.1074319
Article
CAS
Google Scholar
Yang L, Liu YQ, Cao XY, Zhou ZJ, Wang SY, Xiao J, Song CL, Zhou YY (2017) Community composition specificity and potential role of phosphorus solubilizing bacteria attached on the different bloom-forming cyanobacteria. Microbiol Res 205:56–60. https://doi.org/10.1016/j.micres.2017.08.013
Article
CAS
Google Scholar
Lean DRS, Nalewajko C (1976) Phosphate exchange and organic phosphorus excretion by freshwater algae. J Fish Res Board Can 33(6):1312–1323. https://doi.org/10.1139/F76-169
Article
CAS
Google Scholar
Hagemann M, Moke F, Springer A, Westermann L, Frank M, Wasmund N, Bauwe H (2019) Cyanobacterium Nodularia spumigena strain CCY9414 accumulates polyphosphate under long-term P-limiting conditions. Aquat Microb Ecol 82:265–274. https://doi.org/10.3354/ame01896
Article
Google Scholar
Martin P, Dyhrman ST, Lomas MW, Poulton NJ, Van Mooy BAS (2014) Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus. P Natl Acad Sci USA 111:8089–8094. https://doi.org/10.1073/pnas.1321719111
Article
CAS
Google Scholar
Frischkorn KR, Haley ST, Dyhrman ST (2019) Transcriptional and proteomic choreography under phosphorus deficiency and re-supply in the N-2 fixing cyanobacterium Trichodesmium erythraeum. Front Microbiol. https://doi.org/10.3389/Fmicb.2019.00330
Article
Google Scholar
Miyachi S, Kanai R, Aoki S, Mihara S (1964) Metabolic roles of inorganic polyphosphates in Chlorella cells. Biochim Biophys Acta 93(3):625–634. https://doi.org/10.1016/0304-4165(64)90345-9
Article
CAS
Google Scholar
Powell N, Shilton A, Chisti Y, Pratt S (2009) Towards a luxury uptake process via microalgae—defining the polyphosphate dynamics. Water Res 43:4207–4213. https://doi.org/10.1016/j.watres.2009.06.011
Article
CAS
Google Scholar
Jansson M (1988) Phosphate-uptake and utilization by bacteria and algae. Hydrobiologia 170:177–189. https://doi.org/10.1007/Bf00024904
Article
CAS
Google Scholar
John EH, Flynn KJ (2000) Modelling phosphate transport and assimilation in microalgae; how much complexity is warranted? Ecol Model 125:145–157. https://doi.org/10.1016/S0304-3800(99)00178-7
Article
CAS
Google Scholar
Berman T, Chava S, Kaplan B, Wynne D (1991) Dissolved organic substrates as phosphorus and nitrogen-sources for axenic batch cultures of fresh-water Green-algae. Phycologia 30:339–345. https://doi.org/10.2216/i0031-8884-30-4-339.1
Article
Google Scholar
Van Boekel WHM (1991) Ability of Phaecystis sp. to grow on organic phosphates: direct measurements and prediction with the use of an inhibition constant. J Plankton Res 13:959–970
Article
Google Scholar
Stihl A, Sommer U, Post AF (2001) Alkaline phosphatase activities among populations of the colony-forming diazotrophic cyanobacterium Trichodesmium spp. (cyanobacteria) in the Red Sea. J Phycol 37:310–317. https://doi.org/10.1046/j.1529-8817.2001.037002310.x
Article
CAS
Google Scholar
Hernandez I, Fernandez JA, Niell FX (1995) A Comparative-study of alkaline-phosphatase activity in 2 species of Gelidium (Gelidiales, Rhodophyta). Eur J Phycol 30:69–77. https://doi.org/10.1080/09670269500650811
Article
Google Scholar
Vrba J, Macholdova M, Nedbalova L, Nedoma J, Sorf M (2018) An experimental insight into extracellular phosphatases—differential induction of cell-specific activity in green algae cultured under various phosphorus conditions. Front Microbiol 9:271. https://doi.org/10.3389/fmicb.2018.00271
Article
Google Scholar
Strojsova A, Nedoma J, Strojsova M, Cao XY, Vrba J (2008) The role of cell-surface-bound phosphatases in species competition within natural phytoplankton assemblage: an in situ experiment. J Limnol 67:128–138. https://doi.org/10.4081/jlimnol.2008.128
Article
Google Scholar