Chen Y, Guo X, Feng J et al (2019) Impact of ZnO nanoparticles on the antibiotic resistance genes (ARGs) in estuarine water: ARG variations and their association with the microbial community. Environ Sci Nano. https://doi.org/10.1039/C9EN00338J
Article
Google Scholar
Alipour N, Namazi H (2020) Chelating ZnO-dopamine on the surface of graphene oxide and its application as pH-responsive and antibacterial nanohybrid delivery agent for doxorubicin. Mater Sci Eng C 108:110459. https://doi.org/10.1016/j.msec.2019.110459
Article
CAS
Google Scholar
Keller AA, McFerran S, Lazareva A et al (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15(6):1692. https://doi.org/10.1007/s11051-013-1692-4
Article
Google Scholar
Chen X, O’Halloran J, Jansen MAK (2016) The toxicity of zinc oxide NPs to Lemna minor (L.) is predominantly caused by dissolved Zn. Aquat Toxicol 174:46–53. https://doi.org/10.1016/j.aquatox.2016.02.012
Article
CAS
Google Scholar
Majedi SM, Lee HK, Kelly BC (2012) Chemometric analytical approach for the cloud point extraction and inductively coupled plasma mass spectrometric determination of zinc oxide NPs in water samples. Anal Chem 84(15):6546–6552. https://doi.org/10.1021/ac300833t
Article
CAS
Google Scholar
Wang D, Lin Z, Wang T et al (2016) Where does the toxicity of metal oxide NPs come from: the NPs, the ions, or a combination of both? J Hazard Mater 308:328–334. https://doi.org/10.1016/j.jhazmat.2016.01.066
Article
CAS
Google Scholar
Xiao Y, Vijver MG, Chen G et al (2015) Toxicity and accumulation of Cu and ZnO NPs in Daphnia magna. Environ Sci Technol 49(7):4657–4664. https://doi.org/10.1021/acs.est.5b00538
Article
CAS
Google Scholar
Hund-Rinke K, Schlich K, Klawonn T (2012) Influence of application techniques on the ecotoxicological effects of nanomaterials in soil. Environ Sci Eur. 24:30. https://doi.org/10.1186/2190-4715-24-30
Article
CAS
Google Scholar
Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40(19):3527–3532. https://doi.org/10.1016/j.watres.2006.08.004
Article
CAS
Google Scholar
Bacchetta R, Santo N, Marelli M et al (2017) Chronic toxicity effects of ZnSO4 and ZnO NPs in Daphnia magna. Environ Res 152:128–140. https://doi.org/10.1016/j.envres.2016.10.006
Article
CAS
Google Scholar
Kaya H, Aydın F, Gürkan M et al (2016) A comparative toxicity study between small and large size zinc oxide NPs in tilapia (Oreochromis niloticus): organ pathologies, osmoregulatory responses and immunological parameters. Chemosphere 144:571–582. https://doi.org/10.1016/j.chemosphere.2015.09.024
Article
CAS
Google Scholar
Jiang W, Yang K, Vachet RW et al (2010) Interaction between oxide nanoparticles and biomolecules of the bacterial cell envelope as examined by infrared spectroscopy. Langmuir 26(23):18071–18077. https://doi.org/10.1021/la103738e
Article
CAS
Google Scholar
Zhang C, Wang J, Tan L et al (2016) Toxic effects of nano-ZnO on marine microalgae Skeletonema costatum: attention to the accumulation of intracellular Zn. Aquat Toxicol 178:158–164. https://doi.org/10.1016/j.aquatox.2016.07.020
Article
CAS
Google Scholar
Kao YY, Chen YC, Cheng TJ et al (2012) Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 125:462–472. https://doi.org/10.1093/toxsci/kfr319
Article
CAS
Google Scholar
Zhang J, Song W, Guo J et al (2012) Toxic effect of different ZnO particles on mouse alveolar macrophages. J Hazard Mater 219:148–155. https://doi.org/10.1016/j.jhazmat.2012.03.069
Article
CAS
Google Scholar
Uwizeyimana H, Wang M, Chen W et al (2017) The eco-toxic effects of pesticide and heavy metal mixtures towards earthworms in soil. Environ Toxicol Pharmacol 55:20–29. https://doi.org/10.1016/j.etap.2017.08.001
Article
CAS
Google Scholar
Zhu X, Zhou J, Cai Z (2011) TiO2 nanoparticles in the marine environment: impact on the toxicity of tributyltin to abalone (Haliotis diversicolor supertexta) embryos. Environ Sci Technol 45(8):3753–3758. https://doi.org/10.1021/es103779h
Article
CAS
Google Scholar
Liu Y, Nie Y, Wang J et al (2018) Mechanisms involved in the impact of engineered nanomaterials on the joint toxicity with environmental pollutants. Ecotoxicol Environ Saf 162:92–102. https://doi.org/10.1016/j.ecoenv.2018.06.079
Article
CAS
Google Scholar
Wang D, Lin Z, Yao Z et al (2014) Surfactants present complex joint effects on the toxicities of metal oxide nanoparticles. Chemosphere 108:70–75. https://doi.org/10.1016/j.chemosphere.2014.03.010
Article
CAS
Google Scholar
Escher BI, Hermens JLM (2002) Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects. Environ Sci Technol 36:4201–4217. https://doi.org/10.1021/es015848h
Article
CAS
Google Scholar
Spurgeon DJ, Jones OAH, Dorne JL et al (2010) Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures. Sci Total Environ 408:3725–3734. https://doi.org/10.1016/j.scitotenv.2010.02.038
Article
CAS
Google Scholar
Altenburger R, Nendza M, Schüürmann G (2003) Mixture toxicity and its modeling by quantitative structure–activity relationships. Environ Toxicol Chem 22:1900–1915. https://doi.org/10.1897/01-386
Article
CAS
Google Scholar
Wang D, Gao Y, Lin Z, Yao Z, Zhang W (2014) The joint effects on Photobacterium phosphoreum of metal oxide nanoparticles and their most likely coexisting chemicals in the environment. Aquat Toxicol 154:200–206. https://doi.org/10.1016/j.aquatox.2014.05.023
Article
CAS
Google Scholar
Ye N, Wang Z, Fang H et al (2017) Combined ecotoxicity of binary zinc oxide and copper oxide nanoparticles to Scenedesmus obliquus. Environ Lett 52:555–560. https://doi.org/10.1080/10934529.2017.1284434
Article
CAS
Google Scholar
Venkatachalam P, Jayaraj M, Manikandan R et al (2016) Zinc oxide nanoparticles (ZnO NPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59. https://doi.org/10.1016/j.plaphy.2016.08.022
Article
CAS
Google Scholar
Zou X, Xiao X, Yu H et al (2017) Hormetic effects of metal ions upon V. fischeri and the application of a new parameter for the quantitative assessment of hormesis. J Hazard Mater 322:454–460. https://doi.org/10.1016/j.jhazmat.2016.09.045
Article
CAS
Google Scholar
Heinlaan M, Ivask A, Blinova I et al (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316. https://doi.org/10.1016/j.chemosphere.2007.11.047
Article
CAS
Google Scholar
Zou X, Lin Z, Deng Z et al (2012) The joint effects of sulfonamides and their potentiator on Photobacterium phosphoreum: differences between the acute and chronic mixture toxicity mechanisms. Chemosphere 86:30–35. https://doi.org/10.1016/j.chemosphere.2011.08.046
Article
CAS
Google Scholar
Tsiridis V, Petala M, Samaras P et al (2006) Interactive toxic effects of heavy metals and humic acids on Vibrio fischeri. Ecotoxicol Environ Saf 63:158–167. https://doi.org/10.1016/j.ecoenv.2005.04.005
Article
CAS
Google Scholar
Li L, Liu D, Zhang Q et al (2019) Occurrence and ecological risk assessment of selected antibiotics in the freshwater lakes along the middle and lower reaches of Yangtze River Basin. J Environ Manage 249:109396. https://doi.org/10.1016/j.jenvman.2019.109396
Article
CAS
Google Scholar
Zhang K, He D, Cui X et al (2019) Impact of anthropogenic organic matter on the distribution patterns of sediment microbial community from the Yangtze River, China. Geomicrobiol J 36(10):881–893. https://doi.org/10.1080/01490451.2019.1641772
Article
CAS
Google Scholar
Wu S, Zhang S, Gong Y et al (2020) Identification and quantification of titanium nanoparticles in surface water: a case study in Lake Taihu, China. J Hazard Mater 382:121045. https://doi.org/10.1016/j.jhazmat.2019.121045
Article
CAS
Google Scholar
He Z, Li F, Dominech S et al (2019) Heavy metals of surface sediments in the Changjiang (Yangtze River) Estuary: distribution, speciation and environmental risks. J Geochem Explor 198:18–28. https://doi.org/10.1016/j.gexplo.2018.12.015
Article
CAS
Google Scholar
Zou X, Xiao X, Zhou H et al (2018) 2018 Effects of soil acidification on the toxicity of organophosphorus pesticide on Eisenia fetida and its mechanism. J Hazard Mater 359:365–372. https://doi.org/10.1016/j.jhazmat.2018.04.036
Article
CAS
Google Scholar
Backhaus T, Altenburger R, Boedeker W et al (2000) Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri. Environ Toxicol Chem 19(9):2348–2356. https://doi.org/10.1002/etc.5620190927
Article
CAS
Google Scholar
Xu S, Nirmalakhandan N (1998) Use of QSAR models in predicting joint effects in multi-component mixtures of organic chemicals. Water Res 32(8):2391–2399. https://doi.org/10.1016/S0043-1354(98)00006-2
Article
CAS
Google Scholar
Broderius SJ, Kahl MD, Hoglund MD (1995) Use of joint toxic response to define the primary mode of toxic action for diverse industrial organic chemicals. Environ Toxicol Chem 14:1591–1605. https://doi.org/10.1002/etc.5620140920
Article
CAS
Google Scholar
Backhaus T, Arrhenius Blanck H (2004) Toxicity of a mixture of dissimilarly acting substances to natural algal communities: predictive power and limitations of independent action and concentration addition. Environ Sci Technol 38:6363–6370. https://doi.org/10.1021/es0497678
Article
CAS
Google Scholar
Renaud O, Victoria-Feser MP (2010) A robust coefficient of determination for regression. J Stat Plan Inference 140(7):1852–1862. https://doi.org/10.1016/j.jspi.2010.01.008
Article
Google Scholar
Jin S, Wang D, Xu C et al (2013) Short-term traffic safety forecasting using Gaussian mixture model and Kalman filter. J Zhejiang Univ Sci A. 14(4):231–243
Article
Google Scholar
Hackenberger DK, Stjepanović N, Lončarić Ž et al (2019) Effects of single and combined exposure to nano and bulk zinc-oxide and propiconazole on Enchytraeus albidus. Chemosphere 224:572. https://doi.org/10.1016/j.chemosphere
Article
CAS
Google Scholar
Zhang S, Su L, Zhang X et al (2019) Combined Toxicity of nitro-substituted benzenes and Zinc to Photobacterium phosphoreum: evaluation and QSAR analysis. Int J Environ Res Public Health. 16(6):1041. https://doi.org/10.3390/ijerph16061041
Article
CAS
Google Scholar
Cedergreen N, Christensen AM, Kamper A et al (2008) A review of independent action compared to concentration addition as reference models for mixtures of compounds with different molecular target sites. Environ Toxicol Chem 27(7):1621–1632. https://doi.org/10.1897/07-474.1
Article
CAS
Google Scholar
Azevedo SL, Holz T, Rodrigues J et al (2017) A mixture toxicity approach to predict the toxicity of Ag decorated ZnO nanomaterials. Sci Total Environ 579:337–344. https://doi.org/10.1016/j.scitotenv.2016.11.095
Article
CAS
Google Scholar
Wang N, Wang XC, Ma X (2015) Characteristics of concentration–inhibition curves of individual chemicals and applicability of the concentration addition model for mixture toxicity prediction. Ecotoxicol Environ Saf 113:176–182. https://doi.org/10.1016/j.ecoenv.2014.12.008
Article
CAS
Google Scholar
Fang Q, Shi Q, Guo Y et al (2016) Enhanced bioconcentration of bisphenol A in the presence of nano-TiO2 can lead to adverse reproductive outcomes in zebrafish. Environ Sci Technol 50(2):1005–1013. https://doi.org/10.1021/acs.est.5b05024
Article
CAS
Google Scholar
Hu X, Kang J, Lu K et al (2014) Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Sci Rep 4:6122. https://doi.org/10.1038/srep06122
Article
CAS
Google Scholar
Dhasmana A, Jamal QMS, Mir SS et al (2014) Titanium dioxide nanoparticles as guardian against environmental carcinogen benzo [alpha] pyrene. PLoS ONE 9(9):e107068. https://doi.org/10.1371/journal.pone.0107068
Article
CAS
Google Scholar
Limbach LK, Wick P, Manser P et al (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41(11):4158–4163. https://doi.org/10.1021/es062629t
Article
CAS
Google Scholar
Essalhi M, Khet M (2014) Self-sustained webs of polyvinylidene fluoride electrospun nano-fibers: effects of polymer concentration and desalination by direct contact membrane distillation. J Membr Sci 454:133–143. https://doi.org/10.1016/j.memsci.2013.11.056
Article
CAS
Google Scholar
Wang F, Yao J, Liu H et al (2015) Cu and Cr enhanced the effect of various carbon nanotubes on microbial communities in an aquatic environment. J Hazard Mater 292:137–145. https://doi.org/10.1016/j.jhazmat.2015.03.032
Article
CAS
Google Scholar
De La Torre-Roche R, Hawthorne J, Musante C et al (2013) Impact of Ag nanoparticle exposure on p, p′-DDE bioaccumulation by Cucurbita pepo (Zucchini) and Glycine max (Soybean). Environ Sci Technol 47(2):718–725. https://doi.org/10.1021/es3041829
Article
CAS
Google Scholar
Ivask A, Bondarenko O, Jepihhina N et al (2010) Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398(2):701–716. https://doi.org/10.1007/s00216-010-3962-7
Article
CAS
Google Scholar
Yi X, Zhang K, Han G et al (2018) Toxic effect of triphenyltin in the presence of nano zinc oxide to marine copepod Tigriopus japonicus. Environ Pollut 243:687–692. https://doi.org/10.1016/j.envpol.2018.09.038
Article
CAS
Google Scholar
Lakshmi Prasanna V, Vijayaraghavan R (2015) Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir 31(33):9155–9162. https://doi.org/10.1021/acs.langmuir.5b02266
Article
CAS
Google Scholar
Tang Y, Li S, Lu Y et al (2015) The influence of humic acid on the toxicity of nano-ZnO and Zn2+ to the Anabaena sp. Environ Toxicol 30(8):895–903. https://doi.org/10.1002/tox.21964
Article
CAS
Google Scholar
Turel I (2002) The interactions of metal ions with quinolone antibacterial agents. Coord Chem Rev 232(1–2):27–47. https://doi.org/10.1016/S0010-8545(02)00027-9
Article
CAS
Google Scholar
Kim KT, Lee YG, Kim SD (2006) Combined toxicity of copper and phenol derivatives to Daphnia magna: effect of complexation reaction. Environ Int 32(4):487–492. https://doi.org/10.1016/j.envint.2005.11.002
Article
CAS
Google Scholar
Kinniburgh DG, van Riemsdijk WH, Koopal LK et al (1999) Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids Surf A 151(1–2):147–166. https://doi.org/10.1016/S0927-7757(98)00637-2
Article
CAS
Google Scholar
Ma W, Han Y, Xu C et al (2018) Biotoxicity assessment and toxicity mechanism on coal gasification wastewater (CGW): a comparative analysis of effluent from different treatment processes. Sci Total Environ 637:1–8. https://doi.org/10.1016/j.scitotenv.2018.04.404
Article
CAS
Google Scholar