European Environment Agency (2018) European waters—Assessment of status and pressures 2018. European Environment Agency, Copenhagen. https://doi.org/10.2800/303664
Book
Google Scholar
Schäfer RB, Kühn B, Malaj E, König A, Gergs R (2016) Contribution of organic toxicants to multiple stress in river ecosystems. Freshw Biol 61:2116–2128. https://doi.org/10.1111/fwb.12811
Article
CAS
Google Scholar
Malaj E, von der Ohe PC, Grote M, Kühne R, Mondy CP, Usseglio-Polatera P, Brack W, Schäfer RB (2014) Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc Natl Acad Sci 111:9549–9554. https://doi.org/10.1073/pnas.1321082111
Article
CAS
Google Scholar
Stehle S, Schulz R (2015) Agricultural insecticides threaten surface waters at the global scale. Proc Natl Acad Sci 112:5750–5755. https://doi.org/10.1073/pnas.1500232112
Article
CAS
Google Scholar
Berger E, Haase P, Oetken M, Sundermann A (2016) Field data reveal low critical chemical concentrations for river benthic invertebrates. Sci Total Environ 544:864–873. https://doi.org/10.1016/j.scitotenv.2015.12.006
Article
CAS
Google Scholar
Münze R, Hannemann C, Orlinskiy P, Gunold R, Paschke A, Foit K, Becker J, Kaske O, Paulsson E, Peterson M, Jernstedt H, Kreuger J, Schüürmann G, Liess M (2017) Pesticides from wastewater treatment plant effluents affect invertebrate communities. Sci Total Environ 599–600:387–399. https://doi.org/10.1016/j.scitotenv.2017.03.008
Article
CAS
Google Scholar
European Parliament and Council (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, L327. European Parliament and Council, Brussels
Google Scholar
European Parliament and Council (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy, L 226. European Parliament and Council, Brussels
Google Scholar
European Commission (2019) Commission staff working document. European Overview—river basin management plans. Accompanying the document ‘Report from the Commission to the European Parliament and the Council implementation of the Water Framework Directive (2000/60/EC) and the Floods Directive (2007/60/EC), Second River Basin Management Plans, First Flood Risk Management Plans’
Sousa JCG, Ribeiro AR, Barbosa MO, Pereira FR, Silva AMT (2018) A review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater 344:146–162. https://doi.org/10.1016/j.jhazmat.2017.09.058
Article
CAS
Google Scholar
Vryzas Z, Vassiliou G, Alexoudis C, Papadopoulou-Mourkidou E (2009) Spatial and temporal distribution of pesticide residues in surface waters in northeastern Greece. Water Res 43:1–10. https://doi.org/10.1016/j.watres.2008.09.021
Article
CAS
Google Scholar
Chon H-S, Ohandja D-G, Voulvoulis N (2010) Implementation of E.U. Water framework directive: source assessment of metallic substances at catchment levels. J Environ Monit 12:36–47. https://doi.org/10.1039/b907851g
Article
CAS
Google Scholar
Christoffels E, Brunsch A, Wunderlich-Pfeiffer J, Mertens FM (2016) Monitoring micropollutants in the Swist river basin. Water Sci Technol 74:2280–2296. https://doi.org/10.2166/wst.2016.392
Article
CAS
Google Scholar
Petrucci G, Gromaire M-C, Shorshani MF, Ghebbo G (2014) Nonpoint source pollution of urban stormwater runoff: a methodology for source analysis. Environ Sci Pollut Res 21:10225–10242. https://doi.org/10.1007/s11356-014-2845-4
Article
CAS
Google Scholar
Gerrity D, Trenholm RA, Snyder SA (2011) Temporal variability of pharmaceuticals and illicit drugs in wastewater and the effects of a major sporting event. Water Res 45:5399–5411. https://doi.org/10.1016/j.watres.2011.07.020
Article
CAS
Google Scholar
Nelson ED, Do H, Lewis RS, Carr SA (2011) Diurnal variability of pharmaceutical, personal care product, estrogen and alkylphenol concentrations in effluent from a tertiary wastewater treatment facility. Environ Sci Technol 45:1228–1234. https://doi.org/10.1021/es102452f
Article
CAS
Google Scholar
Mandaric L, Diamantini E, Stella E, Cano-Paoli K, Valle-Sistac J, Molins-Delgado D, Bellin A, Chiogna G, Majone B, Diaz-Cruz MS, Sabater S, Barceló D, Petrovic M (2017) Contamination sources and distribution patterns of pharmaceuticals and personal care products in Alpine rivers strongly affected by tourism. Sci Total Environ 590–591:484–494. https://doi.org/10.1016/j.scitotenv.2017.02.185
Article
CAS
Google Scholar
Musolff A, Leschik S, Möder M, Strauch G, Reinstorf F, Schirmer M (2009) Temporal and spatial patterns of micropollutants in urban receiving waters. Environ Pollut 157:3069–3077. https://doi.org/10.1016/j.envpol.2009.05.037
Article
CAS
Google Scholar
Osorio V, Marcé R, Pérez S, Ginebreda A, Cortina JL, Barceló D (2012) Occurrence and modeling of pharmaceuticals on a sewage-impacted Mediterranean river and their dynamics under different hydrological conditions. Sci Total Environ 440:3–13. https://doi.org/10.1016/j.scitotenv.2012.08.040
Article
CAS
Google Scholar
Gardner MJ (2014) Lognormality of trace contaminant concentrations in sewage effluents. Environ Monit Assess 186:4819–4827. https://doi.org/10.1007/s10661-014-3740-7
Article
CAS
Google Scholar
Ott WR (1990) A physical explanation of the lognormality of pollutant concentrations. J Air Waste Manag Assoc 40:1378–1383. https://doi.org/10.1080/10473289.1990.10466789
Article
CAS
Google Scholar
Doppler T, Lück A, Camenzuli L, Krauss M, Stamm C (2014) Critical source areas for herbicides can change location depending on rain events. Agric Ecosyst Environ 192:85–94. https://doi.org/10.1016/j.agee.2014.04.003
Article
CAS
Google Scholar
Zgheib S, Moilleron R, Chebbo G (2012) Priority pollutants in urban stormwater: part 1—case of separate storm sewers. Water Res 46:6683–6692. https://doi.org/10.1016/j.watres.2011.12.012
Article
CAS
Google Scholar
Gasperi J, Zgheib S, Cladière M, Rocher V, Moilleron R, Chebbo G (2012) Priority pollutants in urban stormwater: part 2—case of combined sewers. Water Res 46:6693–6703. https://doi.org/10.1016/j.watres.2011.09.041
Article
CAS
Google Scholar
Launay MA, Dittmer U, Steinmetz H (2016) Organic micropollutants discharged by combined sewer overflows—characterisation of pollutant sources and stormwater-related processes. Water Res 104:82–92. https://doi.org/10.1016/j.watres.2016.07.068
Article
CAS
Google Scholar
Weyrauch P, Matzinger A, Pawlowsky-Reusing E, Plume S, von Seggern D, Heinzmann B, Schroeder K, Rouault P (2010) Contribution of combined sewer overflows to trace contaminant loads in urban streams. Water Res 44:4451–4462. https://doi.org/10.1016/j.watres.2010.06.011
Article
CAS
Google Scholar
Bundschuh M, Zubrod JP, Klemm P, Elsaesser D, Stang C, Schulz R (2013) Effects of peak exposure scenarios on Gammarus fossarum using field relevant pesticide mixtures. Ecotoxicol Environ Saf 95:137–143. https://doi.org/10.1016/j.ecoenv.2013.05.025
Article
CAS
Google Scholar
Zhao X-M, Yao L-A, Ma Q-L, Zhou G-J, Wang L, Fang Q-L, Xu Z-C (2018) Distribution and ecological risk assessment of cadmium in water and sediment in Longjiang River, China: implication on water quality management after pollution accident. Chemosphere 194:107–116. https://doi.org/10.1016/j.chemosphere.2017.11.127
Article
CAS
Google Scholar
Thompson SK (2012) Sampling, 3rd edn. Wiley, Hoboken
Book
Google Scholar
Choi S-D (2014) Time trends in the levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in pine bark, litter, and soil after a forest fire. Sci Total Environ 470–471:1441–1449. https://doi.org/10.1016/j.scitotenv.2013.07.100
Article
CAS
Google Scholar
Vergnoux A, Malleret L, Asia L, Doumenq P, Theraulaz F (2011) Impact of forest fires on PAH level and distribution in soils. Environ Res 111:193–198. https://doi.org/10.1016/j.envres.2010.01.008
Article
CAS
Google Scholar
Stracquadanio M, Dinelli E, Trombini C (2003) Role of volcanic dust in the atmospheric transport and deposition of polycyclic aromatic hydrocarbons and mercury. J Environ Monit 5:984–988. https://doi.org/10.1039/b308587b
Article
CAS
Google Scholar
Kozielska B, Konieczyński J (2015) Polycyclic aromatic hydrocarbons in particulate matter emitted from coke oven battery. Fuel 144:327–334. https://doi.org/10.1016/j.fuel.2014.12.069
Article
CAS
Google Scholar
Liberti L, Notarnicola M, Primerano R, Zannetti P (2006) Air pollution from a large steel factory: polycyclic aromatic hydrocarbon emissions from coke-oven batteries. J Air Waste Manag Assoc 56:255–260. https://doi.org/10.1080/10473289.2006.10464461
Article
CAS
Google Scholar
Lima ALC, Farrington JW, Reddy CM (2005) Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environ Forensics 6:109–131. https://doi.org/10.1080/15275920590952739
Article
CAS
Google Scholar
Napier F, D’Arcy B, Jefferies C (2008) A review of vehicle related metals and polycyclic aromatic hydrocarbons in the UK environment. Desalination 226:143–150. https://doi.org/10.1016/j.desal.2007.02.104
Article
CAS
Google Scholar
Baumann W, Ismeier M (1998) Natural rubber and rubber: Facts and figures on environmental protection (Kautschuk und Gummi: Daten und Fakten zum Umweltschutz), vol 1–2. Springer, Berlin
Google Scholar
Wagner BO, Mücke W, Schenck H-P (1989) Environmental monitoring: Environmental concentrations of organic chemicals—literature research and evaluation (Umwelt-Monitoring: Umweltkonzentrationen organischer Chemikalien—Literatur-Recherche und -Auswertung). Ecomed Verlagsgesellschaft mbH, Landsberg am Lech
Google Scholar
Baumann W, Herberg-Liedtke B (1996) Chemicals in metal processing—facts and figures on environmental protection (Chemikalien in der Metallbearbeitung—Daten und Fakten zum Umweltschutz). Springer, Berlin. https://doi.org/10.1007/978-3-642-61004-2
Book
Google Scholar
Brooke D, Johnson I, Mitchell R, Watts C (2005) Environmental risk evaluation report: 4-tert-octylphenol. Environment Agency, Bristol
Google Scholar
Fuchs S, Rothvoß S, Toshovski S (2018) Ubiquitous pollutants—Entry path inventories, environmental behaviour and entry path modellingg (Ubiquitäre Schadstoffe—Eintragsinventare, Umweltverhalten und Eintragsmodellierung. Forschungsbericht 21 200 0 UBA-FB 002648). Research Report 3714 21 200 0 UBA-FB 002648. Federal Environment Agency, Dessau-Rosslau
Joint Research Center (2008) Bis (2-ethylhexyl) phthalate (DEHP) Summary Risk Assessment Report
European Chemicals Agency (2008) Inclusion of substances of very high concern in the candidate list (Decision by the Executive Director). European Chemicals Agency, Helsinki
Google Scholar
Commission European (2011) Commission regulation (EU) No 143/2011 of 17 February 2011 amending Annex XIV to regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (‘REACH’), L44. European Commission, Brussels
Google Scholar
Tukey JW (1977) Exploratory data analysis. Addison-Wesley Publishing Company, Reading
Google Scholar
R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/
Behmel S, Damour M, Ludwig R, Rodriguez MJ (2016) Water quality monitoring strategies—a review and future perspectives. Sci Total Environ 571:1312–1329. https://doi.org/10.1016/j.scitotenv.2016.06.235
Article
CAS
Google Scholar
Birgand F, Faucheux C, Gruau G, Augeard B, Moatar F, Bordenave P (2010) Uncertainties in assessing annual nitrate loads and concentration indicators. Part 1: impact of sampling frequency and load estimation alogorithms. Trans Am Soc Agric Biol Eng 53:437–446
Google Scholar
Skeffington RA, Halliday SJ, Wade AJ, Bowes MJ, Loewenthal M (2015) Using high-frequency water quality data to assess sampling strategies for the EU Water Framework Directive. Hydrol Earth Syst Sci 19:2491–2504. https://doi.org/10.5194/hess-19-2491-2015
Article
Google Scholar
Valkama P, Ruth O (2017) Impact of calculation method, sampling frequency and Hysteresis on suspended solids and total phosphorus load estimations in cold climate. Hydrol Res 48:1594–1610. https://doi.org/10.2166/nh.2017.199
Article
CAS
Google Scholar
Johnes PJ (2007) Uncertainties in annual riverine phosphorus load estimation: impact of load estimation methodology, sampling frequency, baseflow index and catchment population density. J Hydrol 332:241–258. https://doi.org/10.1016/j.jhydrol.2006.07.006
Article
Google Scholar
Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077. https://doi.org/10.1126/science.1127291
Article
CAS
Google Scholar
Lorenz S, Rasmussen JJ, Süß A, Kalettka T, Golla B, Horney P, Stähler M, Hommel B, Schäfer RB (2017) Specifics and challenges of assessing exposure and effects of pesticides in small water bodies. Hydrobiologia 793:213–224. https://doi.org/10.1007/s10750-016-2973-6
Article
CAS
Google Scholar
Stehle S, Knäbel A, Schulz R (2013) Probabilistic risk assessment of insecticide concentrations in agricultural surface waters: a critical appraisal. Environ Monit Assess 185:6295–6310. https://doi.org/10.1007/s10661-012-3026-x
Article
CAS
Google Scholar
Giulivo M, Stella E, Capri E, Esnaola A, López de Alda M, Diaz-Cruz S, Mandaric L, Muñoz I, Bellin A (2019) Assessing the effects of hydrological and chemical stressors on macroinvertebrate community in an Alpine river: the Adige River as a case study. River Res Appl 35:78–87. https://doi.org/10.1002/rra.3367
Article
Google Scholar
Muñoz I, López-Doval J, Ricart M, Villagrasa M, Brix R, Geiszinger A, Ginebreda A, Guasch H, López de Alda M, Romaní A, Sabater S, Barceló D (2009) Bridging levels of pharmaceuticals in river water with biological community structure in the Llobregat river basin (northeast Spain). Environ Toxicol Chem 28:2706–2714. https://doi.org/10.1897/08-486.1
Article
Google Scholar
Sabater S, Barceló D, De Castro-Català N, Ginebreda A, Kuzmanovic M, Petrovic M, Picó Y, Ponsatí L, Tornés E, Muñoz I (2016) Shared effects of organic microcontaminants and environmental stressors on biofilms and invertebrates in impaired rivers. Environ Pollut 210:303–314. https://doi.org/10.1016/j.envpol.2016.01.037
Article
CAS
Google Scholar
Smeti E, von Schiller D, Karaouzas I, Laschou S, Vardakas L, Sabater S, Tornés E, Monllor-Alcaraz LS, Guillem-Argiles N, Martinez E, Barceló D, López de Alda M, Kalogianni E, Elosegi A, Skoulikidis N (2019) Multiple stressor effects on biodiversity and ecosystem functioning in a Mediterranean temporary river. Sci Total Environ 647:1179–1187. https://doi.org/10.1016/j.scitotenv.2018.08.105
Article
CAS
Google Scholar
Hernandez-Suarez S, Nejadhashemi AP (2018) A review of macroinvertebrate- and fish-based stream health modelling techniques. Ecohydrology 11:1–24. https://doi.org/10.1002/eco.2022
Article
Google Scholar