Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065
Article
CAS
Google Scholar
Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077. https://doi.org/10.1126/science.1127291
Article
CAS
Google Scholar
Arslan M, Ullah I, Müller JA, Shahid N, Afzal M (2017) Organic micropollutants in the environment: ecotoxicity potential and methods for remediation. In: Anjum NA, Gill SS, Tuteja N (eds) Enhancing cleanup of environmental pollutants, vol 1. Biological approaches. Springer, Cham, pp 65–99
Chapter
Google Scholar
Gavrilescu M, Demnerova K, Aamand J, Agathos S, Fava F (2015) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. N Biotechnol 32:147–156. https://doi.org/10.1016/j.nbt.2014.01.001
Article
CAS
Google Scholar
Falas P, Wick A, Castronovo S, Habermacher J, Ternes TA, Joss A (2016) Tracing the limits of organic micropollutant removal in biological wastewater treatment. Water Res 95:240–249. https://doi.org/10.1016/j.watres.2016.03.009
Article
CAS
Google Scholar
Margot J, Rossi L, Barry DA, Holliger C (2015) A review of the fate of micropollutants in wastewater treatment plants. Wiley Interdiscip Rev Water 2:457–487. https://doi.org/10.1002/wat2.1090
Article
CAS
Google Scholar
Gabet-Giraud V, Miège C, Choubert JM, Ruel SM, Coquery M (2010) Occurrence and removal of estrogens and beta blockers by various processes in wastewater treatment plants. Sci Total Environ 408:4257–4269. https://doi.org/10.1016/j.scitotenv.2010.05.023
Article
CAS
Google Scholar
Knopp G, Prasse C, Ternes TA, Cornel P (2016) Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters. Water Res 100:580–592. https://doi.org/10.1016/j.watres.2016.04.069
Article
CAS
Google Scholar
Bourgin M, Beck B, Boehler M, Borowska E, Fleiner J, Salhi E, Teichler R, von Gunten U, Siegrist H, McArdell CS (2018) Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: abatement of micropollutants, formation of transformation products and oxidation by-products. Water Res 129:486–498. https://doi.org/10.1016/j.watres.2017.10.036
Article
CAS
Google Scholar
Eggen RIL, Hollender J, Joss A, Schärer M, Stamm C (2014) Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environ Sci Technol 48:7683–7689. https://doi.org/10.1021/es500907n
Article
CAS
Google Scholar
Magdeburg A, Stalter D, Schlusener M, Ternes T, Oehlmann J (2014) Evaluating the efficiency of advanced wastewater treatment: target analysis of organic contaminants and (geno-)toxicity assessment tell a different story. Water Res 50:35–47. https://doi.org/10.1016/j.watres.2013.11.041
Article
CAS
Google Scholar
Hoeger B, van den Heuvel MR, Hitzfeld BC, Dietrich DR (2004) Effects of treated sewage effluent on immune function in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 70:345–355. https://doi.org/10.1016/j.aquatox.2004.10.010
Article
CAS
Google Scholar
Thellmann P, Greiner-Perth K, Jacob S, Knoll M, Schäfer M, Stängle M, Ziegler M, Scheurer M, Köhler HR, Triebskorn R (2017) Does waste water treatment plant upgrading with powdered activated carbon result in reduced water and sediment toxicity of the receiving stream? Int Water Wastewater Treat. https://doi.org/10.16966/2381-5299.141
Article
Google Scholar
Henneberg A, Triebskorn R (2015) Efficiency of advanced wastewater treatment technologies for the reduction of hormonal activity in effluents and connected surface water bodies by means of vitellogenin analyses in rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta f fario). Environ Sci Eur 27:22. https://doi.org/10.1186/s12302-015-0056-3
Article
CAS
Google Scholar
Giebner S, Ostermann S, Straskraba S, Oetken M, Oehlmann J, Wagner M (2016) Effectivity of advanced wastewater treatment: reduction of in vitro endocrine activity and mutagenicity but not of in vivo reproductive toxicity. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-7540-1
Article
Google Scholar
Peschke K, Burmester J, Hermann M, Köhler H-R, Reitter K, Scheurer M, Wurm K, Triebskorn R (2016) Reaktionen von Flohkrebsen und Makrozoobenthos auf die Nachrüstung einer Kläranlage mit einer Pulveraktivkohlestufe. gwf-Wasser/Abwasser 157:370–379
Google Scholar
Wilhelm S, Henneberg A, Köhler HR, Rault M, Richter D, Scheurer M, Suchail S, Triebskorn R (2017) Does wastewater treatment plant upgrading with activated carbon result in an improvement of fish health? Aquat Toxicol 192:184–197. https://doi.org/10.1016/j.aquatox.2017.09.017
Article
CAS
Google Scholar
Hicks KA, Fuzzen ML, McCann EK, Arlos MJ, Bragg LM, Kleywegt S, Tetreault GR, McMaster ME, Servos MR (2017) Reduction of intersex in a wild fish population in response to major municipal wastewater treatment plant upgrades. Environ Sci Technol 51:1811–1819. https://doi.org/10.1021/acs.est.6b05370
Article
CAS
Google Scholar
Beijer K, Björlenius B, Shaik S, Lindberg RH, Brunström B, Brandt I (2017) Removal of pharmaceuticals and unspecified contaminants in sewage treatment effluents by activated carbon filtration and ozonation: evaluation using biomarker responses and chemical analysis. Chemosphere 176:342–351. https://doi.org/10.1016/j.chemosphere.2017.02.127
Article
CAS
Google Scholar
Stalter D, Magdeburg A, Weil M, Knacker T, Oehlmann J (2010) Toxication or detoxication? In vivo toxicity assessment of ozonation as advanced wastewater treatment with the rainbow trout. Water Res 44:439–448. https://doi.org/10.1016/j.watres.2009.07.025
Article
CAS
Google Scholar
Vieira CED, Costa PG, Cabrera LC, Primel EG, Fillmann G, Bianchini A, dos Reis Bueno, Martinez C (2017) A comparative approach using biomarkers in feral and caged neotropical fish: implications for biomonitoring freshwater ecosystems in agricultural areas. Sci Total Environ 586:598–609. https://doi.org/10.1016/j.scitotenv.2017.02.026
Article
CAS
Google Scholar
Camargo MMP, Martinez CBR (2007) Histopathology of gills, kidney and liver of a neotropical fish caged in an urban stream. Neotrop Ichthyol 5:327–336. https://doi.org/10.1590/S1679-62252007000300013
Article
Google Scholar
Smolders R, Bervoets L, Wepener V, Blust R (2003) A conceptual framework for using mussels as biomonitors in whole effluent toxicity. Hum Ecol Risk Assess 9:741–760. https://doi.org/10.1080/713609965
Article
CAS
Google Scholar
Peakall DB, Walker CH (1994) The role of biomarkers in environmental assessment (3). Vertebrates. Ecotoxicology 3:173–179. https://doi.org/10.1007/BF00117082
Article
CAS
Google Scholar
Depledge MH, Fossi MC (1994) The role of biomarkers in environmental assessment (2). Invertebrates. Ecotoxicology 3:161–172. https://doi.org/10.1007/bf00117081
Article
CAS
Google Scholar
Walker CH (1995) Biochemical biomarkers in ecotoxicology—some recent developments. Sci Total Environ 171:189–195. https://doi.org/10.1016/0048-9697(95)04720-6
Article
CAS
Google Scholar
Al-Sabti K, Metcalfe CD (1995) Fish micronuclei for assessing genotoxicity in water. Mutat Res Toxicol 343:121–135. https://doi.org/10.1016/0165-1218(95)90078-0
Article
CAS
Google Scholar
Bolognesi C, Hayashi M (2011) Micronucleus assay in aquatic animals. Mutagenesis 26:205–213. https://doi.org/10.1093/mutage/geq073
Article
CAS
Google Scholar
Whyte JJ, Jung RE, Schmitt CJ, Tillitt DE (2000) Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Crit Rev Toxicol 30:347–570. https://doi.org/10.1080/10408440091159239
Article
CAS
Google Scholar
Burkina V, Zlabek V, Zamaratskaia G (2015) Effects of pharmaceuticals present in aquatic environment on phase I metabolism in fish. Environ Toxicol Pharmacol 40:430–444. https://doi.org/10.1016/j.etap.2015.07.016
Article
CAS
Google Scholar
Fernandez C, Carbonell G, Babin M (2013) Effects of individual and a mixture of pharmaceuticals and personal-care products on cytotoxicity, EROD activity and ROS production in a rainbow trout gonadal cell line (RTG-2). J Appl Toxicol 33:1203–1212. https://doi.org/10.1002/jat.2752
Article
CAS
Google Scholar
Gagnon MM, Rawson CA (2017) Bioindicator species for EROD activity measurements: a review with Australian fish as a case study. Ecol Indic 73:166–180. https://doi.org/10.1016/j.ecolind.2016.09.015
Article
CAS
Google Scholar
Schwientek M, Rugner H, Beckingham B, Kuch B, Grathwohl P (2013) Integrated monitoring of particle associated transport of PAHs in contrasting catchments. Environ Pollut 172:155–162. https://doi.org/10.1016/j.envpol.2012.09.004
Article
CAS
Google Scholar
Triebskorn R (ed) (2017) Weitergehende Abwasserreinigung: Ein wirksames und bezahlbares Instrument zur Verminderung von Spurenstoffen und Keimen im Wasserkreislauf—gemeinsamer Schlussbericht der vom Bundesministerium für Bildung und Forschung sowie vom Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Würrtemberg geförderten Projekte SchussenAktiv, SchussenAktivplus und SchussenAktivplus+. Universitätsbibliothek Tübingen, Tübingen
EU (2006) Council Directive 2006/88/EC
Vincze K, Scheil V, Kuch B, Köhler HR, Triebskorn R (2015) Impact of wastewater on fish health: a case study at the Neckar River (Southern Germany) using biomarkers in caged brown trout as assessment tools. Environ Sci Pollut Res 22:11822–11839. https://doi.org/10.1007/s11356-015-4398-6
Article
CAS
Google Scholar
Rocha PS, Luvizotto GL, Kosmehl T, Böttcher M, Storch V, Braunbeck T, Hollert H (2009) Sediment genotoxicity in the Tietê River (São Paulo, Brazil): in vitro comet assay versus in situ micronucleus assay studies. Ecotoxicol Environ Saf 72:1842–1848. https://doi.org/10.1016/j.ecoenv.2009.04.013
Article
CAS
Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
Article
CAS
Google Scholar
R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.http://www.R-project.org/
Sleiderink HM, Oostingh I, Goksøyr A, Boon JP (1995) Sensitivity of cytochrome P450 1A induction in dab (Limanda limanda) of different age and sex as a biomarker for environmental contaminants in the southern North Sea. Arch Environ Contam Toxicol 28:423–430. https://doi.org/10.1007/bf00211623
Article
CAS
Google Scholar
Larsen HE, Celander M, Goksøyr A (1992) The cytochrome P450 system of Atlantic salmon (Salmo salar): II. Variations in hepatic catalytic activities and isozyme patterns during an annual reproductive cycle. Fish Physiol Biochem 10:291–301. https://doi.org/10.1007/BF00004478
Article
CAS
Google Scholar
Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Softw 69:1–33. https://doi.org/10.18637/jss.v069.i01
Article
Google Scholar
de Mendiburu F (2015) agricolae: statistical procedures for agricultural research. R package version 1.2-3. http://cran.r-project.org/package=agricolae
Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70
Google Scholar
Maier D, Benisek M, Blaha L, Dondero F, Giesy JP, Köhler HR, Richter D, Scheurer M, Triebskorn R (2016) Reduction of dioxin-like toxicity in effluents by additional wastewater treatment and related effects in fish. Ecotoxicol Environ Saf 132:47–58. https://doi.org/10.1016/j.ecoenv.2016.04.036
Article
CAS
Google Scholar
Oris JT, Roberts AP (2007) Statistical analysis of cytochrome P4501A biomarker measurements in fish. Environ Toxicol Chem 26(8):1742–1750. https://doi.org/10.1897/07-039R.1
Article
CAS
Google Scholar
Kim IY, Hyun CK (2006) Comparative evaluation of the alkaline comet assay with the micronucleus test for genotoxicity monitoring using aquatic organisms. Ecotoxicol Environ Saf 64:288–297. https://doi.org/10.1016/j.ecoenv.2005.05.019
Article
CAS
Google Scholar
Řehulka J, Minařík B, Machala M (2016) Effects of exposure to three environmental chemicals on the selected biochemical parameters of the blood plasma of rainbow trout, Oncorhynchus mykiss (Walbaum). Acta Musei Silesiae Sci Nat 65:15–32. https://doi.org/10.1515/cszma-2016-0002
Article
Google Scholar
Ergene S, Çavaş T, Çelik A, Köleli N, Aymak C (2007) Evaluation of river water genotoxicity using the piscine micronucleus test. Environ Mol Mutagen 48:421–429. https://doi.org/10.1002/em.20291
Article
CAS
Google Scholar
Batista NJC, de CarvalhoMeloCavalcante AA, de Oliveira MG, Medeiros ECN, Machado JL, Evangelista SR, Dias JF, dos Santos CEII, Duarte A, da Silva FR, da Silva J (2016) Genotoxic and mutagenic evaluation of water samples from a river under the influence of different anthropogenic activities. Chemosphere 164:134–141. https://doi.org/10.1016/j.chemosphere.2016.08.091
Article
CAS
Google Scholar
Liney KE, Hagger JA, Tyler CR, Depledge MH, Galloway TS, Jobling S (2006) Health effects in fish of long-term exposure to effluents from wastewater treatment works. Environ Heal Perspect 114(Suppl):81–89. https://doi.org/10.1289/ehp.8058
Article
Google Scholar
Rocco L, Izzo A, Zito G, Peluso C, Stingo V (2011) Genotoxicity in zebrafish (Danio rerio) exposed to two pharmacological products from an impacted Italian river. J Environ Anal Toxicol 1:103. https://doi.org/10.4172/2161-0525.1000103
Article
Google Scholar
Gómez-Oliván LM, Galar-Martinez M, García-Medina S, Valdés-Alanis A (2014) Genotoxic response and oxidative stress induced by diclofenac, ibuprofen and naproxen in Daphnia magna. Drug Chem Toxicol 37:391–399
Article
CAS
Google Scholar
Ragugnetti M, Adams ML, Guimarães ATB, Sponchiado G, de Vasconcelos EC, de Oliveira CMR (2011) Ibuprofen genotoxicity in aquatic environment: an experimental model using Oreochromis niloticus. Water Air Soil Pollut 218:361–364. https://doi.org/10.1007/s11270-010-0698-0
Article
CAS
Google Scholar
Tixier C, Singer HP, Oellers S, Müller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37:1061–1068. https://doi.org/10.1021/es025834r
Article
CAS
Google Scholar
Parolini M, Magni S, Traversi I, Villa S, Finizio A, Binelli A (2015) Environmentally relevant concentrations of galaxolide (HHCB) and tonalide (AHTN) induced oxidative and genetic damage in Dreissena polymorpha. J Hazard Mater 285:1–10. https://doi.org/10.1016/j.jhazmat.2014.11.037
Article
CAS
Google Scholar
Launay MA, Dittmer U, Steinmetz H (2016) Organic micropollutants discharged by combined sewer overflows—characterisation of pollutant sources and stormwater-related processes. Water Res 104:82–92. https://doi.org/10.1016/j.watres.2016.07.068
Article
CAS
Google Scholar
Beijer K, Abrahamson A, Brunström B, Brandt I (2010) CYP1A inhibition in fish gill filaments: a novel assay applied on pharmaceuticals and other chemicals. Aquat Toxicol 96:145–150. https://doi.org/10.1016/j.aquatox.2009.10.018
Article
CAS
Google Scholar
Laville N, Ait-Aissa S, Gomez E, Casellas C, Porcher JM (2004) Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes. Toxicology 196:41–55. https://doi.org/10.1016/j.tox.2003.11.002
Article
CAS
Google Scholar
Ribalta C, Solé M (2014) In vitro interaction of emerging contaminants with the cytochrome P450 system of mediterranean deep-sea fish. Environ Sci Technol 48(20):12327–12335. https://doi.org/10.1021/es5029603
Article
CAS
Google Scholar
McCallum ES, Krutzelmann E, Brodin T, Fick J, Sundelin A, Balshine S (2017) Exposure to wastewater effluent affects fish behaviour and tissue-specific uptake of pharmaceuticals. Sci Total Env 605–606:578–588. https://doi.org/10.1016/j.scitotenv.2017.06.073
Article
CAS
Google Scholar
Díaz-Garduño B, Perales JA, Biel-Maeso M, Pintado-Herrera MG, Lara-Martin PA, Garrido-Pérez C, Martín-Díaz ML (2018) Biochemical responses of Solea senegalensis after continuous flow exposure to urban effluents. Sci Total Environ 615:486–497. https://doi.org/10.1016/j.scitotenv.2017.09.304
Article
CAS
Google Scholar
Faller P, Kobler B, Peter A, Sumpter JP, Burkhardt-Holm P (2003) Stress status of gudgeon (Gobio gobio) from rivers in Switzerland with and without input of sewage treatment plant effluent. Environ Toxicol Chem 22:2063–2072. https://doi.org/10.1897/02-356
Article
CAS
Google Scholar
Dorgerloh, M. (1993). Hallcomid M-8-10—acute toxicity to rainbow trout (Oncorhynchus mykiss) in a static test. Unpublished study performed and sponsored by Bayer AG, Leverkmen, Germany and submitted by The C.P. Hall Company, Chicago, IL. Study No. E 280 0720-9. https://www3.epa.gov/pesticides/chem_search/cleared_reviews/csr_PC-99999_9-Jun-03_b.pdf. Accessed 14 June 2018
Ayllon F, Garcia-Vazquez E (2001) Micronuclei and other nuclear lesions as genotoxicity indicators in rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Saf 49:221–225. https://doi.org/10.1006/eesa.2001.2065
Article
CAS
Google Scholar
Marlasca MJ, Sanpera C, Riva MC, Sala R, Crespo S (1998) Hepatic alterations and introduction of micronuclei in rainbow trout (Oncorhynchus mykiss) exposed to a textile industry effluent. Histol Histopathol 13:703–712
CAS
Google Scholar
Stalter D, Magdeburg A, Oehlmann J (2010) Comparative toxicity assessment of ozone and activated carbon treated sewage effluents using an in vivo test battery. Water Res 44:2610–2620. https://doi.org/10.1016/j.watres.2010.01.023
Article
CAS
Google Scholar