Maertens A, Anastas N, Spencer PJ, Stephnes M, Goldberg A, Hartung T (2014) Food for thought: Green Toxicology. ALTEX Altern Anim Exp 31:243–249
Google Scholar
Anastas P, Eghbali N (2010) Green Chemistry: principles and practice. Chem Soc Rev 39:301–312
Article
CAS
Google Scholar
Anastas PT, Warner JC (1998) Principles of Green Chemistry. In Green chemistry: theory and practice, pp 29–56
Tang SY, Bourne RA, Smith RL, Poliakoff M (2008) The 24 principles of Green Engineering and Green Chemistry: “IMPROVEMENTS PRODUCTIVELY”. Green Chem 10:268–269
Article
CAS
Google Scholar
Draths K, Frost J (1995) Environmentally compatible synthesis of catechol from d-glucose. J Am Chem Soc 117:2395–2400
Article
CAS
Google Scholar
Draths K, Knop DR, Frost J (1999) Shikimic acid and quinic acid: replacing isolation from plant sources with recombinant microbial biocatalysis. J Am Chem Soc 121:1603–1604
Article
CAS
Google Scholar
Kambourakis S, Draths K, Frost J (2000) Synthesis of gallic acid and pyrogallol from glucose: replacing natural product isolation with microbial catalysis. J Am Chem Soc 122:9042–9043
Article
CAS
Google Scholar
Siegenthaler K, Künkel A, Skupin G, Yamamoto M (2011) Ecoflex® and Ecovio®: biodegradable, performance-enabling plastics. In: Rieger B, Künkel A, Coates GW, Reichardt R, Dinjus E, Zevaco TA (eds) Synthetic biodegradable polymers. Springer, Berlin, pp 91–136
Chapter
Google Scholar
Yamamoto M, Witt U, Skupin G, Beimborn D, Müller R (2005) Biodegradable aliphatic–aromatic Polyesters: “Ecoflex®”. Biopolym Online
Siracusa V, Rocculi P, Romani S, Dalla Rosa M (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643
Article
CAS
Google Scholar
US EPA (2016) Presidential green chemistry challenge: 2011 designing greener chemicals award: the Sherwin–Williams Company—water-based acrylic alkyd technology. https://www.epa.gov/greenchemistry/presidential-green-chemistry-challenge-2011-designing-greener-chemicals-award
Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of Green Chemistry. Acc Chem Res 35:686–694
Article
CAS
Google Scholar
Constable DJ, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL Jr, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A (2007) Key Green Chemistry research areas—a perspective from pharmaceutical manufacturers. Green Chem 9:411–420
Article
CAS
Google Scholar
Constable DJ, Jimenez-Gonzalez C, Henderson RK (2007) Perspective on solvent use in the pharmaceutical industry. Org Process Res Dev 11:133–137
Article
CAS
Google Scholar
Anastas ND (2012) Green Toxicology. In: Zhang W, Cue B (eds) Green techniques for organic synthesis and medicinal chemistry. John Wiley & Sons, West Sussex, pp 1–23
Chapter
Google Scholar
Gee D, Grandjean P, Foss Hansen S, van den Hove S, MacGarvin M, Martin J, Nielsen G, Quist D, Stanners D (2013) Late lessons from early warnings II: science, precaution, innovation. Environmental Issue Report European Environmental Agency, Copenhagen, Denmark EEA Report No 1/2013, pp 1–764
Harremoës P, Gee D, MacGarvin M, Stirling A, Keys J, Wynee B, Guedes Vaz S (2001) Late lessons from early warnings: the precautionary principle 1896–2000. European Environment Agency, Luxembourg Publications EU Communities 22:1–211
Google Scholar
Von Krauss MK, Harremoës P (2001) MTBE in petrol as a substitute for lead. Eur Environ Agency 22:110
Google Scholar
Blacker AJ, Williams MT (2011) Pharmaceutical process development: current chemical and engineering challenges. Royal Society of Chemistry, London
Book
Google Scholar
OECD (2010) Cutting costs in chemicals management: how OECD helps governments and industry. Organisation for Economic Co-operation and Development, pp 1–48
Hartung T (2009) Toxicology for the twenty-first century. Nature 460:208–212
Article
CAS
Google Scholar
U.S. EPA (2016) Toxicity ForeCaster (ToxCast™) data. https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
Mulvihill MJ, Beach ES, Zimmerman JB, Anastas PT (2011) Green Chemistry and Green Engineering: a framework for sustainable technology development. Annu Rev Environ Resour 36:271–293
Article
Google Scholar
U.S. EPA (2016) ecological structure activity relationships (ECOSAR) predictive model. https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model
U.S. EPA (2016) Toxicity Estimation Software Tool (TEST). https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
Hartung T, Hoffmann S (2009) Food for thought… on in silico methods in toxicology. Altex 26:155–166
Article
Google Scholar
Hartung T, Rovida C (2009) Chemical regulators have overreached. Nature 460:1080–1081
Article
CAS
Google Scholar
Rovida C, Hartung T (2009) Re-evaluation of animal numbers and costs for in vivo tests to accomplish REACH legislation requirements for chemicals—a report by the transatlantic think tank for toxicology (t4). Altex 26:187–208
Article
Google Scholar
OECD (2016) The OECD QSAR toolbox. http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm
CEFIC (2014) AMBIT: chemoinformatics data management system. http://cefic-lri.org/lri_toolbox/ambit/
Luechtefeld T, Maertens A, Russo DP, Rovida C, Zhu H, Hartung T (2016) Global analysis of publicly available safety data for 9,801 substances registered under REACH from 2008 to 2014. Altex 33:95–109
Google Scholar
Hartung T (2016) Making big sense from big data in toxicology by read-across. Altex 33:83–93
Article
Google Scholar
Luechtefeld T, Maertens A, Russo DP, Rovida C, Zhu H, Hartung T (2016) Analysis of public oral toxicity data from REACH registrations 2008–2014. Altex 33:111–122
Google Scholar
Luechtefeld T, Maertens A, Russo DP, Rovida C, Zhu H, Hartung T (2016) Analysis of Draize eye irritation testing and its prediction by mining publicly available 2008–2014 REACH data. Altex 33:123–134
Google Scholar
Luechtefeld T, Maertens A, Russo DP, Rovida C, Zhu H, Hartung T (2016) Analysis of publically available skin sensitization data from REACH registrations 2008–2014. Altex 33:135–148
Google Scholar
Zhu H, Bouhifd M, Donley E, Egnash L, Kleinstreuer N, Kroese ED, Liu Z, Luechtefeld T, Palmer J, Pamies D, Shen J, Strauss V, Wu S, Hartung T (2016) Supporting read-across using biological data. Altex 33:167–182
Google Scholar
Patlewicz G, Ball N, Becker RA, Booth ED, Cronin MT, Kroese D, Steup D, van Ravenzwaay B, Hartung T (2014) Food for thought: read-across approaches–misconceptions, promises and challenges ahead. Altex 31:387–396
Article
Google Scholar
Ball N, Cronin MT, Shen J, Blackburn K, Booth ED, Bouhifd M, Donley E, Egnash L, Hastings C, Juberg DR, Kleensang A, Kleinstreuer N, Kroese ED, Lee AC, Luechtefeld T, Maertens A, Marty S, Naciff JM, Palmer J, Pamies D, Penman M, Richarz AN, Russo DP, Stuard SB, Patlewicz G, van Ravenzwaay B, Wu S, Zhu H, Hartung T (2016) Toward good read-across practice (GRAP) guidance. Altex 33:149–166
Google Scholar
OECD (2013) Guidance document on developing and assessing adverse outcome pathways. OECD environment, health and safety publications: series on testing and assessment Test No. 184, pp 1–45
Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann B, Lettieri T, Munn S, Nepelska M, Ottinger MA, Vergauwen L, Whelan M (2014) Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci 142:312–320
Article
CAS
Google Scholar
Kramer VJ, Etterson MA, Hecker M, Murphy CA, Roesijadi G, Spade DJ, Spromberg JA, Wang M, Ankley GT (2011) Adverse outcome pathways and ecological risk assessment: bridging to population-level effects. Environ Toxicol Chem 30:64–76
Article
CAS
Google Scholar
Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741
Article
CAS
Google Scholar
Kleensang A, Maertens A, Rosenberg M, Fitzpatrick S, Lamb J, Auerbach S, Brennan R, Crofton KM, Gordon B, Fornace AJ Jr, Gaido K, Gerhold D, Haw R, Henney A, Ma’ayan A, McBride M, Monti S, Ochs MF, Pandey A, Sharan R, Stierum R, Tugendreich S, Willett C, Wittwehr C, Xia J, Patton GW, Arvidson K, Bouhifd M, Hogberg HT, Luechtefeld T, Smirnova L, Zhao L, Adeleye Y, Kanehisa M, Carmichael P, Andersen ME, Hartung T (2014) Pathways of toxicity. Altex 31:53–61
Article
Google Scholar
Peers S, Hervey T, Kenner J, Ward A (2014) The EU Charter of fundamental rights: a commentary. Bloomsbury Publishing, London
Book
Google Scholar
Lilienblum W, Dekant W, Foth H, Gebel T, Hengstler J, Kahl R, Kramer P, Schweinfurth H, Wollin K (2008) Alternative methods to safety studies in experimental animals: role in the risk assessment of chemicals under the new European Chemicals Legislation (REACH). Arch Toxicol 82:211–236
Article
CAS
Google Scholar
Worth A, Barroso J, Bremer S, Burton J, Casati S, Coecke S, Corvi R, Desprez B, Dumont C, Gouliarmou V (2014) Alternative methods for regulatory toxicology—a state-of-the-art review. Joint Res Counc Sci Policy Rep EUR 26797:1–470
Google Scholar
Kolle SN, Sullivan KM, Mehling A, van Ravenzwaay B, Landsiedel R (2013) Erratum to “Applicability of in vitro tests for skin irritation and corrosion to regulatory classification schemes: substantiating test strategies with data from routine studies” [Regul. Toxicol. Pharmacol. (2012) 402–414]. Regul Toxicol Pharmacol 65:366–378
Article
Google Scholar
OECD (2015) OECD guideline for the testing of chemicals: acute dermal irritation/corrosion. Paris, France: Organisation for Economic Co-operation and Development Test No. 404, pp 1–8
OECD (2016) OECD guideline for the testing of chemicals: in vitro skin corrosion: reconstructed human epidermis (RHE) test method. Paris, France: Organisation for Economic Co-operation and Development Test No. 431, pp 1–26
OECD (2015) OECD guideline for the testing of chemicals: in vitro skin irritation: reconstructed human epidermis test method. Paris, France: Organisation for Economic Co-operation and Development Test No. 439, pp 1–21
Gautheron P, Dukik M, Alix D, Sina JF (1992) Bovine Corneal Opacity and Permeability test: an in vitro assay of ocular irritancy. Toxicol Sci 18:442–449
Article
CAS
Google Scholar
OECD (2013) OECD guideline for the testing of chemicals: Bovine Corneal Opacity and Permeability test method for identifying i) chemicals inducing serious eye damage and ii) chemicals not requiring classification for eye irritation or serious eye damage. Paris, France: Organisation for Economic Co-operation and Development Test No. 437, pp 1–27
Kolle SN, Kandárová H, Wareing B, van Ravenzwaay B, Landsiedel R (2011) In-house validation of the EpiOcular™ eye irritation test and its combination with the Bovine Corneal Opacity and Permeability test for the assessment of ocular irritation. ATLA Altern Lab Anim 39:365–387
CAS
Google Scholar
OECD (2013) OECD guideline for the testing of chemicals: isolated chicken eye test method for identifying i) chemicals inducing serious eye damage and ii) chemicals not requiring classification for eye irritation or serious eye damage. Paris, France: Organisation for Economic Co-operation and Development Test No. 438, pp 1–20
OECD (2012) OECD guideline for the testing of chemicals: acute eye irritation/corrosion. Paris, France: Organisation for Economic Cooperation and Development Test No. 405, pp 1–19
OECD (2015) OECD guideline for the testing of chemicals: reconstructed human cornea-like epithelium (RhCE) test method for identifying chemicals not requiring classification and labelling for eye irritation or serious eye damage. Paris, France: Organisation for Economic Co-operation and Development Test No. 492, pp 1–27
Rovida C, Alepee N, Api AM, Basketter DA, Bois FY, Caloni F, Corsini E, Daneshian M, Eskes C, Ezendam J, Fuchs H, Hayden P, Hegele-Hartung C, Hoffmann S, Hubesch B, Jacobs MN, Jaworska J, Kleensang A, Kleinstreuer N, Lalko J, Landsiedel R, Lebreux F, Luechtefeld T, Locatelli M, Mehling A, Natsch A, Pitchford JW, Prater D, Prieto P, Schepky A, Schuurmann G, Smirnova L, Toole C, van Vliet E, Weisensee D, Hartung T (2015) Integrated testing strategies (ITS) for safety assessment. Altex 32:25–40
Article
Google Scholar
Mehling A, Eriksson T, Eltze T, Kolle S, Ramirez T, Teubner W, van Ravenzwaay B, Landsiedel R (2012) Non-animal test methods for predicting skin sensitization potentials. Arch Toxicol 86:1273–1295
Article
CAS
Google Scholar
OECD (2015) OECD guideline for the testing of chemicals: in chemico skin sensitisation: direct peptide reactivity assay (DPRA). Paris, France: Organisation for Economic Co-operation and Development Test No. 422C, pp 1–19
Andreas N, Caroline B, Leslie F, Frank G, Kimberly N, Allison H, Heather I, Robert L, Stefan O, Hendrik R (2011) The intra-and inter-laboratory reproducibility and predictivity of the KeratinoSens assay to predict skin sensitizers in vitro: results of a ring-study in five laboratories. Toxicol In Vitro 25:733–744
Article
CAS
Google Scholar
OECD (2015) OECD guideline for the testing of chemicals: in vitro skin sensitisation: ARE-Nrf2 luciferase test method. Paris, France: Organisation for Economic Co-operation and Development Test No. 442D, pp 1–20
Ramirez T, Mehling A, Kolle SN, Wruck CJ, Teubner W, Eltze T, Aumann A, Urbisch D, van Ravenzwaay B, Landsiedel R (2014) LuSens: a keratinocyte based ARE reporter gene assay for use in integrated testing strategies for skin sensitization hazard identification. Toxicol In Vitro 28:1482–1497
Article
CAS
Google Scholar
Ramirez T, Stein N, Aumann A, Remus T, Edwards A, Norman KG, Ryan C, Bader JE, Fehr M, Burleson F (2016) Intra-and inter-laboratory reproducibility and accuracy of the LuSens assay: a reporter gene-cell line to detect keratinocyte activation by skin sensitizers. Toxicol In Vitro 32:278–286
Article
CAS
Google Scholar
OECD (2016) OECD guideline for the testing of chemicals: in vitro skin sensitisation Human Cell Line Activation Test (h-CLAT). Paris, France: Organisation for Economic Co-operation and Development Test No. 422E, p 1–21
Urbisch D, Mehling A, Guth K, Ramirez T, Honarvar N, Kolle S, Landsiedel R, Jaworska J, Kern PS, Gerberick F (2015) Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul Toxicol Pharmacol 71:337–351
Article
CAS
Google Scholar
OECD (2010) OECD guideline for the testing of chemicals: skin sensitisation local lymph node assay. Paris, France: Organisation for Economic Co-operation and Development Test No. 429, pp 1–20
Ashikaga T, Sakaguchi H, Sono S, Kosaka N, Ishikawa M, Nukada Y, Miyazawa M, Ito Y, Nishiyama N, Itagaki H (2010) A comparative evaluation of in vitro skin sensitisation tests: the human cell-line activation test (h-CLAT) versus the local lymph node assay (LLNA). ATLA Altern Lab Anim 38:275–284
CAS
Google Scholar
Schrage A, Hempel K, Schulz M, Kolle SN, van Ravenzwaay B, Landsiedel R (2011) Refinement and reduction of acute oral toxicity testing: a critical review of the use of cytotoxicity data. ATLA Altern Lab Anim 39:273–295
CAS
Google Scholar
OECD (2012) OECD environment, health and safety publications series on testing and assessment: guidance document on standardised test guidelines for evaluating chemicals for endocrine disruption. Paris, France: Organisation for Economic Co-operation and Development Test No. 150, pp 1–524
Kolle SN, Ramirez T, Kamp HG, Buesen R, Flick B, Strauss V, van Ravenzwaay B (2012) A testing strategy for the identification of mammalian, systemic endocrine disruptors with particular focus on steroids. Regul Toxicol Pharmacol 63:259–278
Article
CAS
Google Scholar
OECD (2016) Series on testing and assessment: testing for endocrine disrupters. http://www.oecd.org/chemicalsafety/testing/seriesontestingandassessmenttestingforendocrinedisrupters.htm
Hu C, Dillon J, Kearn J, Murray C, O’Connor V, Holden-Dye L, Morgan H (2013) NeuroChip: a microfluidic electrophysiological device for genetic and chemical biology screening of Caenorhabditis elegans adult and larvae. PLoS ONE 8:e64297
Article
Google Scholar
Sung JH, Srinivasan B, Esch MB, McLamb WT, Bernabini C, Shuler ML, Hickman JJ (2014) Using physiologically-based pharmacokinetic-guided “body-on-a-chip” systems to predict mammalian response to drug and chemical exposure. Exp Biol Med 239:1225–1239
Article
Google Scholar
Defranchi E, Novellino A, Whelan M, Vogel S, Ramirez T, Van Ravenzwaay B, Landsiedel R (2011) Feasibility assessment of micro-electrode chip assay as a method of detecting neurotoxicity in vitro. Front Neuroeng 4:1–12
Article
Google Scholar
Vassallo A, Chiappalone M, Lopes RDC, Scelfo B, Novellino A, Defranchi E, Palosaari T, Weisschu T, Ramirez T, Martinoia S (2017) A multi-laboratory evaluation of microelectrode array-based measurements of neural network activity for acute neurotoxicity testing. Neurotoxicology. doi:10.1016/j.neuro.2016.03.019
Jelinek R (1982) Use of chick embryo in screening for embryotoxicity. Teratog Carcinog Mutagen 2:255–261
Article
CAS
Google Scholar
Weigt S, Huebler N, Strecker R, Braunbeck T, Broschard TH (2011) Zebrafish (Danio rerio) embryos as a model for testing proteratogens. Toxicology 281:25–36
Article
CAS
Google Scholar
OECD (2013) OECD guideline for the testing of chemicals: fish embryo acute toxicity (FET) test. Paris, France: Organisation for Economic Co-operation and Development Test No. 236, pp 1–22
Genschow E, Spielmann H, Scholz G, Seiler A, Brown N, Piersma A, Brady M, Clemann N, Huuskonen H, Paillard F (2002) The ECVAM international validation study on in vitro embryotoxicity tests: results of the definitive phase and evaluation of prediction models. ATLA Altern Lab Anim 30:151–176
CAS
Google Scholar
Seiler AE, Spielmann H (2011) The validated embryonic stem cell test to predict embryotoxicity in vitro. Nat Protoc 6:961–978
Article
CAS
Google Scholar
Spielmann H (1997) The embryonic stem cell test (EST), an in vitro embryotoxicity test using two permanent mouse cell lines: 3T3 fibroblasts and embryonic stem cells. In Vitro Toxicol 10:119–127
CAS
Google Scholar
Li H, Rietjens IM, Louisse J, Blok M, Wang X, Snijders L, van Ravenzwaay B (2015) Use of the ES-D3 cell differentiation assay, combined with the BeWo transport model, to predict relative in vivo developmental toxicity of antifungal compounds. Toxicol In Vitro 29:320–328
Article
CAS
Google Scholar
Van Ravenzwaay B, Cunha GC, Leibold E, Looser R, Mellert W, Prokoudine A, Walk T, Wiemer J (2007) The use of metabolomics for the discovery of new biomarkers of effect. Toxicol Lett 172:21–28
Article
Google Scholar
Balcke G, Kolle S, Kamp H, Bethan B, Looser R, Wagner S, Landsiedel R, van Ravenzwaay B (2011) Linking energy metabolism to dysfunctions in mitochondrial respiration—a metabolomics in vitro approach. Toxicol Lett 203:200–209
Article
CAS
Google Scholar
Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21:745–754
Article
CAS
Google Scholar
Steger-Hartmann T (2014) In silico toxicology—current approaches and future perspectives to predict toxic effects with computational tools. In: Pfannkuch F, Suter-Dick L (eds) Predictive toxicology: from vision to reality. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 13–32
Google Scholar
BIO Intelligence Service (2013) Study on the environmental risks of medicinal products: final report. Prepared for Executive Agency for Health and Consumers 1–310
Steger-Hartmann T, Länge R, Heuck K (2011) Incorporation of in silico biodegradability screening in early drug development—a feasible approach? Environ Sci Pollut R 18:610–619
Article
CAS
Google Scholar
Steger-Hartmann T, Länge R, Schweinfurth H, Tschampel M, Rehmann I (2002) Investigations into the environmental fate and effects of iopromide (ultravist), a widely used iodinated X-ray contrast medium. Water Res 36:266–274
Article
CAS
Google Scholar
Steger-Hartmann T, Länge R, Schweinfurth H (1999) Environmental risk assessment for the widely used iodinated X-ray contrast agent iopromide (Ultravist). Ecotoxicol Environ Saf 42:274–281
Article
CAS
Google Scholar
Steger-Hartmann T, Kümmerer K, Schecker J (1996) Trace analysis of the antineoplastics ifosfamide and cyclophosphamide in sewage water by two-step solid-phase extraction and gas chromatography-mass spectrometry. J Chromatogr A 726:179–184
Article
CAS
Google Scholar
Kümmerer K, Al-Ahmad A, Bertram B, Wießler M (2000) Biodegradability of antineoplastic compounds in screening tests: influence of glucosidation and of stereochemistry. Chemosphere 40:767–773
Article
Google Scholar
Lacombe D (2012) Glufosfamide: can we improve the process of anticancer agent development? Expert Opin Investig Drugs 21:749–754
Article
CAS
Google Scholar
Kümmerer K (2007) Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and Green Chemistry. Green Chem 9:899–907
Article
Google Scholar
Orphanet (2016). www.orpha.net
Clinical Trials (2015). https://www.clinicaltrials.gov/
Calvaresi EC, Hergenrother PJ (2013) Glucose conjugation for the specific targeting and treatment of cancer. Chem Sci 4:2319–2333
Article
CAS
Google Scholar
Hansen SF, Maynard A, Baun A, Tickner JA, Bowman DM (2013) Nanotechnology—early lessons from early warnings. In: Gee D, Grandjean P, Hansen F, van den Hove S, MacGarvin M, Martin J, Nielsen G, Quist D, Stanners D (eds) Late lessons from early warnings II: science, precaution, innovation. European Environment Agency, Copenhagen, pp 530–559
Google Scholar
Wagner S, Gondikas A, Neubauer E, Hofmann T, von der Kammer F (2014) Spot the difference: engineered and natural nanoparticles in the environment—release, behavior, and fate. Angew Chem Int Ed 53:12398–12419
CAS
Google Scholar
IARC (2010) IARC monographs on the evaluation of carcinogenic risks to humans. World Health Organization, International Agency for Research on Cancer, Lyon, France Vol 93: Carbon Black, Titanium Dioxide, and Talc, pp 1–466
Allen BL, Kichambare PD, Gou P, Vlasova II, Kapralov AA, Konduru N, Kagan VE, Star A (2008) Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett 8:3899–3903
Article
CAS
Google Scholar
Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, Vlasova II, Belikova NA, Yanamala N, Kapralov A (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nature Nanotech 5:354–359
Article
CAS
Google Scholar
Murphy FA, Poland CA, Duffin R, Donaldson K (2012) Length-dependent pleural inflammation and parietal pleural responses after deposition of carbon nanotubes in the pulmonary airspaces of mice. Nanotoxicology 7:1157–1167
Article
Google Scholar
Hartung T (2010) Food for thought… on alternative methods for nanoparticle safety testing. Altex 27:87–95
Article
Google Scholar
Hartung T, Sabbioni E (2011) Alternative in vitro assays in nanomaterial toxicology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:545–573
Article
CAS
Google Scholar
ECHA (2015) Read-Across Assessment Framework (RAAF). European Chemicals Agency: Helsinki, Finland ECHA-15-R-07-EN:1–38
OECD (2014) Guidance on grouping of chemicals, second edition; series on testing and assessment. Environment Directorate, Organisation for Economic Co-operation and Development (OECD); Paris, France Test No. 194, pp 1–141
Arts JH, Hadi M, Irfan M, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Petry T, Sauer UG (2015) A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul Toxicol Pharm 71:S1–S27
Article
CAS
Google Scholar
Stone V, Pozzi-Mucelli S, Tran L, Aschberger K, Sabella S, Vogel U, Poland C, Balharry D, Fernandes T, Gottardo S (2014) ITS-NANO-Prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Part Fibre Toxicol 11:1–11
Article
Google Scholar
Lynch I, Weiss C, Valsami-Jones E (2014) A strategy for grouping of nanomaterials based on key physico-chemical descriptors as a basis for safer-by-design NMs. Nano Today 9:266–270
Article
CAS
Google Scholar
Walser T, Studer C (2015) Sameness: the regulatory crux with nanomaterial identity and grouping schemes for hazard assessment. Regul Toxicol Pharmacol 72:569–571
Article
CAS
Google Scholar
Arts JH, Irfan M, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Neubauer N, Petry T, Sauer UG (2016) Case studies putting the decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) into practice. Regul. Toxicol. Pharmacol. 76:234-261
Oomen AG, Bleeker EA, Bos PM, van Broekhuizen F, Gottardo S, Groenewold M, Hristozov D, Hund-Rinke K, Irfan M, Marcomini A (2015) Grouping and read-across approaches for risk assessment of nanomaterials. Int J Environ Res Public Health 12:13415-13434
Hiraku Y, Guo F, Ma N, Yamada T, Wang S, Kawanishi S, Murata M (2016) Multi-walled carbon nanotube induces nitrative DNA damage in human lung epithelial cells via HMGB1-RAGE interaction and Toll-like receptor 9 activation. Part Fibre Toxicol 13:1–21
Google Scholar
Stern ST, Adiseshaiah PP, Crist RM (2012) Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 9:1–15
Article
Google Scholar
Tollefsen KE, Scholz S, Cronin MT, Edwards SW, de Knecht J, Crofton K, Garcia-Reyero N, Hartung T, Worth A, Patlewicz G (2014) Applying adverse outcome pathways (AOPs) to support integrated approaches to testing and assessment (IATA). Regul Toxicol Pharm 70:629–640
Article
Google Scholar