Skip to main content
Fig. 4 | Environmental Sciences Europe

Fig. 4

From: Exposure to low-dose nanopolystyrene induces the response of neuronal JNK MAPK signaling pathway in nematode Caenorhabditis elegans

Fig. 4

Involvement of octopamine and dopamine signals in the regulation of response to nanopolystyrene. a Effect of RNAi knockdown of cat-2 on expression of intestinal dop-1 in nanopolystyrene-exposed nematodes. qRT-PCR was performed in isolated intact intestines (n = 40). Exposure concentration of nanopolystyrene was 1 μg/L. Exposure was performed from L1 larvae to adult day-3. Bars represent mean ± SD. **P <0.01 vs. wild-type. b Effect of RNAi knockdown of tbh-1 on expressions of intestinal ser-6 and octr-1 in nanopolystyrene-exposed nematodes. qRT-PCR was performed in isolated intact intestines (n = 40). Exposure concentration of nanopolystyrene was 1 μg/L. Exposure was performed from L1 larvae to adult day-3. Bars represent mean ± SD. **P <0.01 vs. wild-type. c Effect of intestinal RNAi knockdown of dop-1, octr-1, or ser-6 on expressions of pmk-1, mdt-15, or sbp-1 in nanopolystyrene-exposed nematodes. Exposure concentration of nanopolystyrene was 1 μg/L. Exposure was performed from L1 larvae to adult day-3. Bars represent mean ± SD. **P <0.01 vs. VP303. d Effect of intestinal RNAi knockdown of dop-1, octr-1, or ser-6 on expression of daf-16 in nanopolystyrene-exposed nematodes. Exposure concentration of nanopolystyrene was 1 μg/L. Exposure was performed from L1 larvae to adult day-3. Bars represent mean ± SD. **P <0.01 vs. VP303. e A diagram showing the molecular basis of neuronal JNK MAPK signaling in regulating the response to nanopolystyrene in nematodes

Back to article page