- Ökologische Raumgliederung Europas
- Beitragsserie
- Published:
Berechnung einer landschaftsökologischen Raumgliederung Europas
Calculation of an ecological land classification of Europe
Environmental Sciences Europe volume 20, pages 25–35 (2008)
Zusammenfassung
Hintergrund und Ziel
Dieser erste Teil der Beitragsserie stellt die Berechnung einer ökologischen Raumgliederung Europas vor. Sie soll u.a. der Optimierung europäischer Umweltbeobach-tungsmessnetze dienen.
Material und Methoden
Als Grundlage der Berechnung der Raumgliederung dienen flächenhafte Daten zur potenziell natürlichen Vegetation, zur Bodenart, zur Höhe und zum Klima. Die Berechnungen wurden mit zwei Klassifikationsverfahren Durchgeführt: Classification and Regression Trees und Chisquare Interaction Detection. Hierbei wurde für Gebiete, die auf der Grundlage der Hauptformationen der potenziell natürlichen Vegetation aufgeteilt wurden, die jeweilige flächenproportionale Anzahl an Endklassen berechnet. Anschließend wurden die einzelnen Raumklassen zu einer europäischen Gesamtraumgliederung Zusammengefügt.
Ergebnisse
Die mit Classification and Regression Trees erzielten Ergebnisse wurden mit denen aus der Chisquare Interaction Detection anhand mehrerer Kriterien verglichen und erwiesen sich als vorzugswürdig. Die abgeleiteten Raumklassen können hinsichtlich ihrer ökologischen Eigenschaften beschrieben werden. Dies wird anhand der größten von 40 Endklassen der Gliederung für Europa beispielhaft gezeigt.
Diskussion
Die Ergebnisse der Classification Trees sollen in einem weiteren Beitrag dieser Serie mit anderen ökologischen Raumgliederungen Europas verglichen werden. Im Mittelpunkt der Diskussion über die verwendeten Daten steht die potenziell natürliche Vegetation. Als Integralindikator für heute vorliegende ökologische Bedingungen stellt sie eine nützliche Berechnungs-grundlage dar.
Schlussfolgerungen
Das Verfahren Classification and Regression Trees ist für ökologische Raumgliederungen gut geeignet. Es Ermöglicht eine reproduzierbare, vom Bearbeiter weitgehend unabhängige und insofern objektivierte Berechnung und Kartierung der Raumklassen. Eine so berechnete Karte ist ein wichtiges Instrument für die Umweltbeobachtung, weil sie dabei auf einem durch die Eingangsdaten definierten Differenzierungsniveau hilft, die raumstrukturelle Repräsentativität der Beobachtungsstellen zu überprüfen und zu quantifizieren.
Empfehlungen
Die ökologische Raumgliederung Europas sollte für die Analyse und Bewertung derjenigen Umweltmessnetze genutzt werden, deren Daten für die Beschreibung und Bewertung des Umweltzustands in Europa zusammengeführt und ausgewertet werden. In diesem Zusammenhang ist eine Einbindung der Raumgliederung sowie bestimmter Messnetze samt ihrer Metadaten in ein WebGIS von Vorteil.
Ausblick
Jeweils ein weiterer Beitrag dieser Reihe wird die Raumklassen der hier eingeführten Gliederung Europas in 40 ökologische Klassen eingehend beschreiben und mit vorhandenen Raumgliederungen vergleichen. Ein vierter Artikel soll Repräsentanzanalysen für einige europäische Umweltmessnetze präsentieren.
Abstract
Goal, Scope, and Background
In this first article of the series the calculation of the ecological regionalisation of Europe is described. Amongst others, the ecological regionalisation should be used for the optimisation of European environmental monitoring networks.
Materials and Methods
The land classification was calculated from surface data on the potential natural vegetation, soil texture and climate with both Classification and Regression Trees and Chisquare Interaction Detection. Europe was divided into zones on the basis of the main formations of the potential natural vegetation. According to the percentage of the surface area covered by each of the areas the respective number of ecologically defined regions were separately calculated. Subsequently the spatial classes were integrated into a comprehensive classification of Europe.
Results
The ecoregionalisations calculated by Classification and Regression Trees and Chisquare Interaction Detection were compared with respect to several criteria. Accordingly, the results derived by means of Classification and Regression Trees could be proved to be preferable to those computed by means of Chisquare Interaction Detection. Each of the land classes can be characterized regarding its ecological properties. This is exemplified by the biggest classes of the land classification with 40 classes.
Discussion
The results gathered by means of Classification and Regression Trees should be detailed in a further article. The discussion on the data used concentrates on the potential natural vegetation. Referring to the literature the potential natural vegetation can be seen as reasonable basis for the calculation in terms of ecological theory.
Conclusions
Classification and Regression Trees could be proved to be an appropriate method for the calculation of ecoregionalisations which fulfil the quality criteria such as, e.g., reproducibility. Such a classification is an important instrument for monitoring the environment, because it helps to test quantitatively the representativity of monitoring sites according to the spatial resolution of the data used for the ecoregionalisation.
Recommendations
The ecological land classification should be used for the assessment of monitoring networks from which the data are compiled for evaluations of the environmental condition in Europe. In this context, the implementation of the regionalisation and the measurement networks in a WebGIS could be useful.
Outlook
In the following article of the series an elaborate description of 40 ecoregions of Europe will be given. In a further article existing ecoregionalisations of Europe will be compared to the classification computed by means of Classification and Regression Trees. Another article will focus on the investigation of the representativity of environmental monitoring networks with respect to the ecological coverage presented in this article.
Literatur
Allen JM, Starr TB (1982): Hierarchy: Perspectives for ecological complexity. Chicago University Press, Chicago
Baltes-Götz B (2004): Entscheidungsbaumanalyse mit AnswerTree 3.1. Universitätsrechenzentrum Trier, 〈http://www.uni-trier.de/urt/user/baltes/docs/at/v31/at31.pdf〉
Beier R (2000): Die Validität von Umweltdaten. In: Fränzle O, Müller F, Schröder W (Hrsg), Handbuch der Umweltwissenschaften. Grundlagen und Anwendungen der Ökosystemforschung. ecomed, Landsberg am Lech, Kap. V-1.2 (6. Erg.Lfg.), 1–17
Bel L, Allard D, Bar-Hen A, Laurent JM, Cheddadi R (2005): Using spatial estimates in the Cart algorithm. Application to ecological data. Institut National de la Recherche Agronomique, Unité Biometrique. Research Report 16, Avignon
BGR (2006): Bodenkundliche Kartieranleitung. 5. verbesserte und erweiterte Auflage. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) in Zusammenarbeit mit den Staatlichen Geologischen Diensten der Bundesrepublik Deutschland, Schweizerbart, Stuttgart, 1–438
Bohn U, Neuhäusl R, unter Mitarbeit von Gollub G, Hettwer C, Neuhäuslová Z (2000 / 2003): Karte der natürlichen Vegetation Europas. Maßstab 1: 2.500.000. Teil 1 Erläuterungstext mit CD-ROM, Teil 2 Legende, Teil 3 Karten (9 Kartenblätter 1: 2,5 Mio., Legendenblatt, Übersichtskarte 1: 10 Mio.). Landwirtschaftlicher Verlag, Münster
Bormann, FH, Likens GE (1981): Patterns and process in a forested ecosystem. Springer, Berlin, S. 1–299
Breiman L, Freidman JH, Olshen RA, Stone CJ (1984): Classification and Regression Tree. Wadsworth, Belmont
Burak A (2005): Eine prozessorientierte landschaftsökologische Gliederung Deutschlands: ein konzeptioneller und methodischer Beitrag zur Typisierung von Landschaften in chorischer Dimension. Forschungen zur deutschen Landeskunde 254, Flensburg
Chytrý M (1998): Potential replacement vegetation. An approach to vegetation mapping of cultural landscapes. Appl Veg Sci 1, 177–188
Comber AJ, Fisher PF, Wadsworth R (2004): Integrating land cover data with different ontologies: Identifying change from inconsistency. Int J Geogr Inf Sci 18, 691–708
CRU (Climatic Research Unit)(2002): Global Climate dataset, http://www.cru.uea.ac.uk/:_timm/data/index.html
Daschkeit A, Kothe P, Schröder W (1993): Repräsentanzanalyse zur Auswahl von Bodendauerbeobachtungsflächen in Brandenburg. Abschlußbericht im Auftrag des Zentrums für Agrarlandschafts-und Landnutzungsforschung e.V., Institut für Bodenforschung, Eberswalde-Finow
Durwen KJ, Weller F, Tilk C, Beck H, Klein S, Beuttler A (1996): Digitaler landschaftsökologischer Atlas Baden-Württemberg. Springer, Berlin
Englert C, Schmidt G, Schröder W (2007): Bildung eines Frühlings-Indikators für Deutschland auf Grundlage pänologischer Daten. Strobl J, Blaschke Th, Griesebner G (Hrsg): Angewandte Geoinformatik 2007. Beiträge zum 19. Agit-Symposium, 177–186
ESRI (2003): Data and Maps. Redlands, CA, USA
FAO (Food and Agriculture Organization of the United Nations) (1996): The Digitized Soil Map of the World Including Derived Soil Properties. CD-ROM. FAO, Rome
Ferretti M (1997): Forest health assessment and monitoring. Issues for consideration. Environ Monit Assess 48, 45–72
Ferretti M (2001): Ecosystem monitoring. From the integration between measurements to the integration between networks. Publicazione del Corso di Cultura in Ecologia, Università degli studi di Padova, 3–54
Foster DR (1988a): Disturbance history, community organization and vegetation dynamics of the old-growth Pisgah Forest, southwestern New Hampshire, USA. J Ecol 76, 105–134
Foster DR (1988b): Species and stand response to catastrophic wind in central New England. J Ecol 76, 135–151
Foster DR, Boose ER (1992): Patterns of forest damage resulting from catastrophic wind in central New England, USA. J Ecol 80, 79–98
Fränzle O, Straskraba M, Jorgensen SE (1995): Ecology and ecotoxicology. Ullmann’s Encyclopedia of Industrial Chemistry B 7, Weinheim, S. 19–154
Gauer J, Aldinger E (2005): Waldökologische Naturräume Deutschlands. Mitteilungen des Vereins für Forstliche Standortskunde 43, 1–324 + deutschlandweite Karte im Maßstab 1: 1 000 000
Gosselain V, Hudon C, Cattaneo A, Gagnon P, Planas D, Rochefort D (2005): Physical variables driving epiphytic algal biomass in a dense macrophyte bed of the St. Lawrence River (Quebec, Canada). Hydrobiologia 534, 11–22
GLOBE Task Team et al. (Hastings D A, Dunbar P K, Elphingstone G M, Bootz M, Murakami H, Maruyama H, Masaharu H, Holland P, Payne J, Bryant N A, Logan T L, Muller J-P, Schreier G, MacDonald J S) (eds) (1999): The Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, U.S.A. Digital data base on the World Wide Web 〈URL: http://www.ngdc.noaa.gov/mgg/topo/globe.html〉
Graef F, Schmidt G, Schröder W, Stachow U (2003): Prüfung der Repräsentativität von Bodendauerbeobachtungsflächen an ökologischen Räumen Brandenburgs mit Cart (Classification and Regression Trees). Mitt Deut Bodenkundl Gesellsch 102, 481–482
Graef F, Schmidt G, Schröder W, Stachow U (2005): Determinig ecoregions for environmental and GMO monitoring networks. Environ Monit Assess 108, 189–203
Hanxi Y, Yegang W (1987): Tree composition, age structure and regeneration strategy of the mixed Broadleaved / Pinus koraiensis forest in Chanbai Mountain Reserve. In: Hanx Y, Ihan W, Jeffers JNR, Ward PA (eds), The temperate Forest, ITE symposium No. 20. Lavenham Press, Lavenham, pp 12–20
Härdtle W (1989): Potentielle natürliche Vegetation. Ein Beitrag zur Kartierungsmethode am Beispiel der topographischen Karte 1623 Owschlag. Mitt Arbeitsgemeinsch Geobot Schl-Holst Hamburg 40, 1–72
Härdtle W (1995): On the theoretical concept of the potential natural vegetation and proposals for an up-to-date modification. Folia Geobot Phytotax 30, 263–276
Hytteborn H (1987): Three different types of forest dynamics. In: Hanx Y, Ihan W, Jeffers JNR, Ward PA (eds), The temperate Forest, ITE symposium No. 20. Lavenham Press, Lavenham, 32–39
Kalkhoven JTR, van der Werf S (1988): Mapping the potential natural vegetation. In: Küchler AW, Zonneveld IS (eds), Vegetation mapping. Kluwer, Dordrecht, 375–386
Klijn F, de Haes HAU (1994): A hierarchical approach to ecosystems and its applications for ecological land classification. Landscape Ecol 9, 89–104
Koop H (1989): Forest dynamics. Springer, Berlin, S. 1–299
Kowarik I (1987): Kritische Anmerkungen zum theoretischen Konzept der potentiellen natürlichen Vegetation mit Anregungen zu einer zeitgemäßen Modifikation. Tuexenia 7, 53–67
Kuhnt G, Garniel A, Kothe P Schröder W (1992): Umsetzung des Bodeninformationssystems: Begleitstudie zur bundesweiten Bodenzustandserhebung im Walde. Band 3: Standortbestimmung für die begleitende Bodenprobennahme und-analyse sowie Überprüfung der Meßnetzvalidität. Hrsg v. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover
Lawrence R, Labus M (2003): Early detection of douglas-fir beetle infestation with subcanopy resolution hyperspectral imagery. Western J Appl Forest 18, 202–206
Leibundgut H (1988): Unsere Laubwälder. Paul Haupt, Bern, S. 1–107
Leuschner C (1997): Das Konzept der potentiellen natürlichen Vegetation (PNV). Schwachstellen und Entwicklungsperspektiven. Flora 192, 379–391
Mabbutt JA (1968): Review of concepts of land evaluation. In: Stewart GA (ed), Land evaluation. MacMillan, Melbourne
Marks R, Müller MJ, Leser H, Klink HJ (Hrsg) (1989): Anleitung zur Bewertung des Leistungsvermögens des Landschaftshaushalts. Forschungen zur Deutschen Landeskunde 229, Trier
Mayer H (1984): Die Wälder Europas. Gustav Fischer Verlag, Stuttgart, S. 1–691
Mayer H, Neumann M (1981): Struktureller und entwicklungs-dynamischer Vergleich der Fichten-Tannen-Buchen-Urwälder Rothwald / Niederösterreich und Corkova Uvala / Kroatien. Forstwiss Centralbl 100, 111–132
Mayer H, Reimoser F (1978): Die Auswirkungen des Ulmensterbens im Buchen-Naturwaldreservat Dobra. Forstwiss Centralbl 97, 314–321
Mertens M, Nestler I, Huwe B (2002): GIS-based regionalization of soil profiles with Classification and Regression Trees (CART). J Plant Nutr Soil Sci, 165(1), 39–43
Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA, Watkins JW (2005): A climatic stratification of the environment of Europe. Glob Ecol Biogeogr 14, 549–563
Miller JR, Turner MG, Smithwick EA, Dent CL, Stanley EH (2004): Spatial extrapolation. The science of predicting ecological patterns and processes. BioScience 54, 310–320
Moog O, Schmidt-Kloiber A Ofenbock T, Gerritsen J (2004): Does the ecoregion approach support the typological demands of the EU Water Framework Directive? Hydrobiologia 516, 21–33
Morgan JN, Messenger RC (1973): THAID: A sequential analysis program for the analysis of nominal scale dependent variables. Ann Arbor, Michigan, Survey Research Center, Institute for Social Research, University of Michigan
Morgan JN, Sonquist JA (1963): Problems in the analysis of survey data, and a proposal. J Am Stat Assoc 58, 415–435
Müller-Hohenstein K (1981): Die Landschaftsgürtel der Erde. 2. Auflage, Stuttgart
New M, Lister D, Hulme M, Makin I (2002): A high-resolution data set of surface climate over global land areas. Clim Res 21, 1–25
Norcross BL, Blanchard A, Holladay BA (1999): Comparison of models for defining nearshore flatfish nursery areas in Alaskan waters. Fish Oceanogr 8, 50–67
Painho M, Augusto G (2005): A Digital Map of European Ecological Regions. In: Bohn U, Hettwer C, Gollub G. (Bearb. Ed) (2005), Anwendung und Auswertung der Karte der natürlichen Vegetation Europas. / Application and Analysis of the Map of the Natural Vegetation of Europe — Bonn (Bundesamt für Naturschutz); BfN-Scripten 156, 27–36
Pesch R, Jerosch K, Schlüter M, Schröder W (2007): Using decision trees to predict benthic communities within and near the German Exclusive Economic Zone (EEZ) of the North Sea. Environ Monit Assess (in press)
Pesch R, Schröder W, Dieffenbach-Fries H, Genßler L (2008): Optimierung des Moosmonitoring-Messnetzes in Deutschland. UWSF — Z Umweltchem Ökotox 20(1) 49–61
Pesch R, Schröder W (2006): Integrative exposure assessment through classification and regression trees on bioaccumulation of metals, related sampling site characteristics and ecoregions. Ecol Inf 1, 55–65
Pesch R, Schröder W (2007): Entwicklung der Metall-Bioakkumulation in Deutschland zwischen 1990 und 2000 auf zwei naturräumlichen Differenzierungsstufen. Strobl J, Blaschke Th, Griesebner G (Hrsg): Angewandte Geoinformatik 2007. Beiträge zum 19. Agit-Symposium, S. 527–536
Prusa E (1985): Die böhmischen und mährischen Urwälder. Vegetace CSSR A15. Accademia Verlag der Tschechoslowakischen Akademie der Wissenschaft, Praha, S. 1–578
Ricotta C, Carranza ML, Avena G, Blasi C (2002): Are potential natural vegetation maps a meaningful alternative to neutral landscape models? Applied Vegetation Science 5, 271–275
Rinker A, Deunert F, Schröder W (2008): Phosphor und Stickstoff in Böden Schleswig-Holsteins bei steigenden Lufttemperaturen. UWSF — Z Umweltchem Ökotox (im Gutachten)
Rodwell JS, Cooper L, Winstanley D (1995): Using computerized maps of actual and potential vegetation for nature conservation. Coll Phytosociol 23, 95–102
Runkle JR (1985): Disturbance regimes in temperate forests. In: Pickett STA, White PS (eds), The Ecology of natural disturbance and patch dynamics. Academic Press, London, pp 218–234
Ruxton BP (1968): Order and disorder in land. In: Stewart GA (ed), Land evaluation. Papers of a CSIRO symposium. Organized in cooperation with UNESCO, 26–31 August 1968. Macmillan, Melbourne, pp 29–39
Ryan WF (1995): Forecasting severe ozone episodes in the Baltimore metropolitan area. Atmos Environ 29, 2387–2398
Schäfer D, Seibel S, Hoffmann-Kroll R (2000): Raumbezug und Repräsentativität in der Ökologischen Flächenstichprobe. UWSF — Z Umweltchem Ökotox 12, 286–290
Schröder W (1989): Ökosystemare und statistische Untersuchungen zu Waldschäden in Nordrhein-Westfalen: Methodenkritische Ansätze zur Operationalisierung einer wissenschafts-theoretisch Begründeten Konzeption. Dissertation Geographisches Institut der Universität Kiel
Schröder W, Daschkeit A (2003): Umweltwissenschaft als Prototyp Interdisziplinärer Forschung. In: Fränzle O, Müller F, Schröder W (Hrsg), Handbuch der Umweltwissenschaften. Grundlagen und Anwendungen der Ökosystemforschung. ecomed, Landsberg am Lech, München, Zürich, Kap. II-2.5 (9. Erg.Lfg.), 1–32
Schröder W, Englert C, Pesch R, Schmidt G (2007): Phänologische Änderungen bei Obstbäumen und anderen Pflanzen sowie weitere mögliche Folgen des Klimawandels für die Landwirtschaft. In: Landinfo 5, 15–28
Schröder W, Fränzle O, Dachkeit A, Bartels F, Kaske A, Kerrines A, Schmidt G, Stech C (1998): Organisation und Methodik des Bodenmonitoring. Berlin, UBA-Texte 21/98
Schröder W, Garbe-Schönberg CD, Fränzle O (1991): Die Validität von Umweltdaten — Kriterien für ihre Zuverlässigkeit: Repräsentativität, Qualitätssicherung und-kontrolle. UWSF — Z Umweltchem Ökotox 3, 237–241
Schröder W, Grabkowsky B, Schmidt G (2007): Aufschlüsselung statistischer Beziehungen zwischen dem Nadelverlust von Fichten und anderen Informationen dreier Forstmonitoring-Programme Nordrhein-Westfalens. Schweiz Z Forstwes 158, 50–64
Schröder W, Pesch R (2004): Spatial and temporal trends of metal accumulation in mosses. J Atmos Chem 49, 23–38
Schröder W, Pesch R (2005a): Geographische Umweltmessnetzanalyse und-planung. Geogr Helv 60, 77–86
Schröder W, Pesch R (2005b): Correlation and time series of metals in mosses with selected sampling site specific and ecoregional characteristics in Germany. Env Sci Pollut Res 12, 159–167
Schröder W, Pesch R (2007): Synthesizing bioaccumulation data from the German Metals in Mosses Surveys and relating them to ecoregions. Sci Total Environ 374, 311–327
Schröder W, Pesch R, Pehlke H, Busch M (2005): Flächenhafte Typologisierung des Meeresgrunds mit Hilfe geostatistischer und multivariat-statistischer Verfahren. Abschlussbericht zu dem Forschungsvorhaben FKZ 03F0370 im Förderschwerpunkt Informationssysteme im Erdmanagement: Von Geodaten zu Geodiensten des BMBF/DFG-Sonderprogramm Geotechnologien, Bonn, Rostock, 188 S
Schröder W, Pesch R, Schmidt G (2004): Soil Monitoring in Germany: Spatial Representativity and Methodical Comparability. J Soils Sediments 1, 49–58
Schröder W, Schmidt G (2000): Raumgliederung für die Ökologische Umweltbeobachtung des Bundes und der Länder. UWSF — Z Umweltchem Ökotox 12, 237–243
Schröder W, Schmidt G (2003): Medienübergreifende Umweltbeobachtung in Baden-Württemberg. Ergebnisse eines Modellprojekts. In: Landesanstalt für Umweltschutz (Hrsg), Medienübergreifende Umweltbeobachtung. Stand und Perspektiven. Karlsruhe, S. 39–60
Schröder W, Schmidt G (2006): A methodological approach of site selection and data analysis to provide model input data for an up-scaling of population effects of transgenetic oilseed rape in Northern Germany. Ecol Ind 6, 168–183
Schröder W, Schmidt G, Hornsmann I (2006a): Landschaftsökologische Raumgliederung Deutschlands. In: Fränzle O, Müller F, Schröder W (Hrsg), Handbuch der Umweltwissenschaften. Grundlagen und Anwendungen der Ökosystemforschung. ecomed, Landsberg am Lech, München, Zürich, Kap. V-1.9, 16. Erg.Lfg., 1–101
Schröder W, Schmidt G, Pesch R, Eckstein T (2002): Harmonisierung der Umweltbeobachtung. Instrumente zur Prüfung methodischer Vergleichbarkeit und räumlicher Repräsentanz. In: Fränzle O, Müller F, Schröder W (Hrsg), Handbuch der Umweltwissenschaften. Grundlagen und Anwendungen der Ökosystemforschung. ecomed, Landsberg am Lech, Kap. V-1.3 (8. Erg.Lfg.), 1–22
Schröder W, Schmidt G, Zipperle J (2006b): Geodaten, Messdaten und Analyseabläufe zur Messflächenauswahl bei unterschiedlichen Skalen. Überlegungen zum GVO-Messnetz in Baden-Württemberg. BfN-Skripten 189, 29–41
Schröder W, Vetter L, Fränzle O (1992): Einfluß statistischer Verfahren auf die Bestimmung repräsentativer Standorte für Umweltuntersuchungen am Beispiel der neuen Bundesländer. Petermanns Geographische Mitt 136, 309–318
Schultz J (2000): Handbuch der Ökozonen. Stuttgart
Stevens SS (1946): On the theory of scales of measurement. Science 103, 677–680
Tüxen R (1956): Die heutige potentiell natürliche Vegetation als Gegenstand der Vegetationskartierung. Angew Pflanzensoziologie 13, 5–43
Turner MG, Dale VH, Gardner RH (1989): Predicting across scales. Theory development and testing. Landscape Ecol 3, 245–252
UNECE (United Nations Economic Commission for Europe) (2004): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Part II Visual Assessment of Crown Condition updated: 06/2004. Brussels
UNECE (2005): Forest condition in Europe. Technical report. Geneva, Hamburg
Vetter L, Maass R, Schröder W (1991): Die Bedeutung der Repräsentanz für die Auswahl von Untersuchungsstandorten am Beispiel der Waldschadensforschung. Petermanns Geographische Mitt, 135, 165–175
Walter H, Breckle SW (1999): Vegetation und Klimazonen. 7. Auflage, Stuttgart
Walmsley JL, Barthelmie RJ, Burrows WR (2001): The statistical prediction of offshore winds from land-based data for windenergy applications. Bound-Lay Meteorol 101, 409–433
Weller F (1983): Agrarökologische und Naturräumliche Gliederung — Ein Vergleich. Verhandlungen der Gesellschaft für Ökologie XI, 445–453
Weller F (1990): Ökologische Standorteignungskarte für den Landbau in Baden-Württemberg 1: 250 000. Ministerium für Ländlichen Raum, Ernährung, Landwirtschaft und Forsten Baden-Württemberg (Hrsg), Stuttgart
WGE (Working Group on Effects) (2004): Review and assessment of air pollution effects and their recorded trends. Working Group on Effects, Convention on Long-range Transboundary Air Pollution. National Environment Research Council, UK
White ID, Mottershead, DN, Harrison SJ (1984): Environmental Systems. George Allen & Unwin, London
Zerbe S (1992): Zur Notwendigkeit von vegetationskundlich-ökologischen Untersuchungen zur Stabilität und Dynamik bodensauerer Hainsimsen-Buchenwälder. In: Henle K, Kaule G (Hrsg), Arten-und Biotopschutzforschung für Deutschland. Berichte aus Ökologischer Forschung Band 4, 293–297
Zerbe S (1996): Stellt die potentielle natürliche Vegetation (PNV) eine sinnvolle Zielvorstellung für den naturnahen Waldbau dar? Forstwiss Centralbl 11, 1–15
Zerbe S (1998): Potential natural vegetation: Validity and applicability in Landscape planning and nature conservation. Applied Vegetation Science 1, 165–172
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hornsmann, I., Schmidt, G. & Schröder, W. Berechnung einer landschaftsökologischen Raumgliederung Europas. Environ Sci Eur 20, 25–35 (2008). https://doi.org/10.1065/uwsf2007.10.227
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1065/uwsf2007.10.227
Schlagwörter
- CART
- Europa
- geostatistische Verfahren
- PNV
- potenziell natürliche Vegetation, Raumgliederung, ökologische
- Raumklassen
- standort-ökologische Raumgliederung
- Umweltbeobachtung
- WebGIS
Keywords
- CART
- ecoregions
- environmental monitoring
- Europe
- geostatistical method
- land classification
- potential natural vegetation
- WebGIS