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Abstract 

Background:  The agricultural and construction sectors demand enormous amounts of natural resources and 
generate environmental impacts that negatively affect ecosystems. One of the main problems is the generation and 
inadequate management of waste. For this reason, under the approaches of the new sustainable and circular models, 
waste valorization has been prioritised as a strategy for advancing towards the sustainability of production systems. 
This research aims to carry out a general analysis of Agricultural Waste Biomass (AWB) in the production of bio-based 
products for the construction sector. Bibliometric techniques were applied for the general analysis of the scientific 
production obtained from Scopus. A systematic review identified the main research approaches. In addition, Euro‑
pean projects were reviewed to assess the practical application. This study is novel and provides relevant contribu‑
tions to new trends in the valorisation of AWB in the building sector and the sustainability benefits. For policymakers, 
it is a source of information on the contribution of new policies to scientific advances and the aspects that need to be 
strengthened to improve sustainable and circular practices in both sectors.

Results:  The results show that 74% of the research has been published within the last 5 years. Regarding the main 
types of AWBs, rice husk ash and sugar cane bagasse ash are the most commonly used in manufacturing a wide 
variety of bio-based building products. Cement, concrete and bricks are the main bio-based products obtained from 
AWB. However, a new approach to utilisation was identified in road construction.

Conclusions:  The findings indicate that the AWB is an important resource with great potential for the construction 
sector. Similarly, that policies on sustainable and circular development have driven scientific progress on new alterna‑
tives for the valorisation of AWB to improve sustainability in the construction sector. Although the practical applica‑
tion has also been driven through European projects, development at this level is still low. Therefore, it is necessary 
to strengthen partnerships between these two sectors and improve government strategies on sustainability and 
circularity to overcome existing constraints.
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Background
Agriculture and the construction industry are essential 
sectors for a country’s economic growth. Both have a 
significant impact on employment generation and the 
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quality of life of the population. However, the growth 
and dynamics of these two sectors have made these 
locations large consumers of natural resources and 
generators of polluting emissions [1, 2]. Over the last 
5 years, there has been an accelerated increase in meth-
ane concentration in the atmosphere, mainly due to the 
expansion and intensification of agriculture and inad-
equate waste management [3]. The extraction of mate-
rials and manufacture of building products consumes 
enormous amounts of energy and generates between 
5 and 12% of total GHGs emissions [1]. The genera-
tion and management of waste created by both indus-
tries is one of the main challenges for these sectors. It 
is estimated that more than 3,300 megatons of waste 
biomass from the main crops [4]. Thirty-five percent of 
total European Union (EU) waste generation is in the 
construction sector [1]. In many countries, the manage-
ment and disposal of waste from these sectors poses a 
serious problem, mainly from an environmental and 
social point of view [5, 6].

To address these important challenges, the 2030 
Agenda included some of 15 Sustainable Development 
Goals (SDGs) some that promote sustainable and circular 
production and consumption (SDGs 11 and 12). Waste 
reduction is also one of the main targets [7]. Under the 
circular economy and bioeconomy (CE-CB) approach, 
construction and demolition waste and AWB are pri-
ority inputs with great potential for new, high value-
added products [8]. The valorisation of this secondary 
raw material generates economic benefits. It contributes 
significantly to the sustainable management of natu-
ral resources, reducing dependence on non-renewable 
resources and negative environmental impacts [9, 10].

Based on the above, the last 5 years have seen the devel-
opment of a growing number of legal instruments and 
strategies promoting the manufacture of bio-based prod-
ucts from AWB for use in the construction sector. For 
example, the 2018 EU bioeconomy strategy highlights the 
need to substitute fossil raw materials in the construc-
tion industry. It also points out that bio-based materials 
contribute to the defossilisation of this industrial sector 
[4]. The EU’s new circular economy plan, "For a cleaner 
and more competitive Europe" 2020, prioritises the con-
struction and building value chain and highlights the 
need to introduce recycled materials in certain construc-
tion products [11]. The document "Circular Economy. 
Principles for Buildings Design" of 2020, guides builders 
in the construction value chain on the principles for the 
circular design of buildings. This guide points out the 
need to minimise the use of natural resources in build-
ing products. It calls for reused or recycled materials that 
offer environmental benefits and also meets the technical 
requirements and standards of the primary material [12].

With the aim of improving the circularity, energy effi-
ciency and other aspects of environmental sustainabil-
ity of EU products, the new proposal for an Ecodesign 
Regulation for sustainable products was presented in 
March 2022. This proposal sets out ecodesign require-
ments for specific product groups including those in the 
construction sector [13]. The revision of the Construc-
tion Products Regulation is one of the sector-specific ini-
tiatives that are part of the Sustainable Product Package. 
This regulation includes measures based on the Circu-
lar Economy, such as the use of recyclable materials and 
those produced from recycling. In addition, the prioriti-
sation of materials with a low environmental footprint 
[1].

These important sustainability challenges for agricul-
ture and the construction industry require a more sig-
nificant effort from a scientific–technical point of view to 
identify waste valorisation alternatives, such as AWB, to 
produce more efficient and sustainable bio-based prod-
ucts. Therefore, the main objective of this research is 
to carry out a general analysis of the use of AWB in the 
production of new bio-based products for the construc-
tion sector. Specifically, this study aims to answer the 
following research questions: 1. What has been the evo-
lution of the scientific production related to the valorisa-
tion of AWB in the production of bio-based products for 
the construction sector? (Objective 1) 2. What are the 
main research approaches to the type of AWB and bio-
based products obtained? 3. Is sustainability a relevant 
aspect of the research? (Objective 2) 4. Have EC and CB 
policies and strategies contributed to advancing scien-
tific production and projects on AWB valorisation in the 
construction industry? (Objective 3). In this paper, Agri-
cultural Waste Biomass (AWB) includes crop residues, 
those resulting directly from harvesting and agro-indus-
trial waste, obtained after crop processing. Similarly, 
the term biomaterial refers to materials made from bio-
logical resources. The term bio-based product is used to 
describe products partially derived from biomaterials. 
This is in line with the bioeconomy policy approaches of 
the European Union (EU) [4, 14].

Previous studies have evaluated the use of some types 
of AWBs in the manufacture of specific bio-based prod-
ucts in construction. Examples include activated binders, 
insulation products, alternative cementitious materials in 
concrete, bricks, and reinforced concrete panels [5, 15–36]. 
Other studies have analysed the feasibility of its use in spe-
cific regions [31, 37]. However, the authors are not aware of 
extensive and comprehensive research on the use of AWB 
in the construction industry. That is the central research 
gap identified. This study is novel mainly because it uses 
a large sample that does not limit countries, publication 
periods, types of AWB, bio-based products, applications or 
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other related aspects. It uses the most extensive database as 
a source of information, which is also considered one of the 
most appropriate for evaluating scientific production [38].

The contributions of this research from a theoretical 
and practical point of view are significant, providing rel-
evant information on a greater variety of AWB that can 
be used, as well as new trends in the manufacture of bio-
based products for construction. This is a valuable input for 
actors related to agriculture and the construction industry 
who will be able to learn about new alternatives for the val-
orisation of AWB and different types of bio-based products 
with multiple applications in the construction of build-
ings and civil works. Moreover, they will be able to iden-
tify the main advantages in terms of sustainability derived 
from this type of circular practice. For policymakers, it is 
a source of information on how sustainability policies and 
strategies influence scientific advances in this field.

Methods
Bibliometric analysis process
The first stage of the study consisted of analysing the main 
characteristics of the scientific production (90 studies from 
Scopus) using bibliometric techniques. The VOSviewer 
software, version 1.6.18, was used for the graphical repre-
sentation of the data.

Systematic review process
After the general analysis, the 90 studies in the sample were 
analysed in detail to obtain information on the main types 
of AWBs, biomaterials and bio-based products, and the 
most evaluated properties and parameters. Limitations and 
improvement alternatives for bio-based products and their 
feasibility from an environmental, economic and social 
point of view were also part of the categories analysed.

Analysis of European projects
The Community Research and Development Information 
Service (CORDIS) database [39] was searched for projects 
whose main objective was the valorisation of AWB in the 
construction sector. Forty-six projects were obtained and 
reviewed to obtain the final sample. Nine projects were 
analysed in detail to identify: the objective, the main types 
of AWB, bio-based products, and the implementation 
period. Figure 1 shows in detail the activities that were part 
of each of the stages.

Results and discussion
Main characteristics of scientific production
Types of publications and evolution of scientific production
The studies included in Fig.  2 correspond to articles 
(69%), reviews (22%) and book chapters (9%). The first 
two articles, "New Building Materials from Indus-
trial and Agricultural Wastes" and "Low Cost Building 

Materials Using Industrial and Agricultural Wastes", 
were published in 1978 [40, 41]. The last article was 
published in December 2021 "Development of White 
Brick Fuel Cell Using Rice Husk Ash Agricultural Waste 
for Sustainable Power Generation: A Novel Approach" 
[42]. A significant increase in publications is evident 
from 2016 onwards. This trend is similar to that of 
another study on the application of agricultural waste 
ash in cement, which showed an increase in the num-
ber of publications since 2016 [33].

Of the studies analysed, 74 percent were published 
between 2017 and 2021. These results coincide with those 
of similar studies, which indicate that in the last 5 years, 
there has been an increase in the scientific research on 
the use of AWB in concrete [26, 33]. This leads to the 
conclusion that the policies and strategies on sustain-
able development, which have become more relevant 
since 2015 with the 2030 Agenda, have boosted scientific 
research on this subject. Furthermore, it supports previ-
ous research findings that highlight the important role of 
the SDGs and circular economy and bioeconomy strate-
gies on the increase of publications on AWB valorisation 
in the last 5 years [8, 43].

Publications by country
India is the country with the highest number of publica-
tions (22%), followed by Malaysia (13%) and Egypt (10%). 
The countries shown in Fig. 3 published 84% of the pub-
lications in the sample. Other studies rank India as the 
country with the third-highest number of publications on 
agro-waste in concrete production [26, 33]. These results 
align with a previous study that analysed AWB valorisa-
tion alternatives and identified India as one of the coun-
tries with the highest scientific production on the subject 
[43]. China and India are two of the world’s leading pro-
ducers and consumers of cement. India’s cement produc-
tion increased significantly in 2017 compared to 2016 
[25]. In addition, these two countries have focused their 
bioeconomy policies on industrial and high-tech innova-
tion [43].

In Malaysia, the construction sector is of great impor-
tance and has seen significant growth in recent years [44, 
45]. Similarly, the regulations governing the construction 
industry in this country promote sustainable and envi-
ronmentally friendly construction [46, 47]. Furthermore, 
the government prioritises this type of construction in 
its “Green Public Procurement (GPP)” guidelines [45]. 
For example, it encourages the use of organic fiber in the 
cladding materials of public buildings [48]. This could be 
a reason for the particular interest of these countries in 
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the use of AWB as a sustainable raw material for the con-
struction sector.

Keyword analysis
The co-occurrence of the keywords network was made 
using all keywords as analysis unit (author keywords and 
index keywords). Terms that are part of the search equa-
tion were excluded from the VOSviewer keyword list. 
The keyword network (Fig. 4) groups 41 terms in 5 clus-
ters. Cluster 1 (red) is the central cluster with 13 items. 
The most relevant terms in this cluster are “compressive 

strength”, “water absorption”, “mechanical properties”, 
“thermal conductivity”, and “thermal insulation”. These 
descriptors reflect the importance given by the studies 
to the analysis of the physical, mechanical and thermal 
properties of AWB and the bio-based products obtained 
from its use. This cluster also includes "rice husk ash" as 
the main type of by-product obtained from rice husks’ 
incineration and widely used to manufacture sustainable 
building materials [49–51].

India is one of the world’s leading producers and 
consumers of rice [34, 52], which also explains the 

Fig. 1  Stages of methodology used
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Fig. 2  Evolution of publications on this subject per year

Fig. 3  Number of publications by country
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country’s interest in valorising this type of AWB. Clus-
ter 2 (green) groups 11 items, mainly related to bioma-
terials and bio-based products obtained from AWB. For 
example, "supplementary cementitious mat", "cements", 
"binders", and "concrete". Similarly, this cluster high-
lights the term "silica" as one of the main components 
of AWB ashes and is of particular interest in manufac-
turing bio-based products [19, 33, 53, 54].

Cluster 3 (blue) consists of 8 items, including "sus-
tainable development", "sustainability", "recycling", 
"waste disposal" and "developing countries". These 
descriptors are associated with the main benefits that 
can be derived from the use of AWB in the construc-
tion sector. Cluster 4 (yellow), with eight items, inte-
grates the word "straw" as another main type of AWB 
used in the construction sector, mainly in the form of 
"fibers" because of its high "cellulose" content, which 
makes it an ideal by-product for the “reinforcement” 
of building materials [55–57]. The keyword "bagasse" 
forms cluster 5 (purple). This term refers to the by-
product of the extraction of sugar cane juice [54]. 
The ash obtained from the burning of this sugar cane 
bagasse has important qualities that improve the prop-
erties of different building materials [50, 51, 54]. India 

is the second-largest producer of sugar cane after Brazil 
[16]. This also suggests a correlation with the number 
of studies corresponding to this country.

Main approaches to scientific production—systematic review
Type of  agricultural waste biomass used and  main 
form of  by‑products  Figure  5 shows the main types of 
AWBs assessed in the investigations. A total of 32 AWB 
types were identified. Forty-eight percent of the studies 
used rice husk, and thirty-four percent used sugar cane 
bagasse. These are the two main AWBs generated in the 
highest volumes worldwide [34, 50]. In the investigations, 
straw from cereal crops was the third most analysed type 
of AWB (28%). The main type of cereal crop from which 
the straw is derived is wheat (65%), followed by rice (50%). 
To a lesser extent, barley, sorghum, rye and oats was stud-
ied. Another study analysing approaches and alternatives 
for AWB utilisation identified cereal straw as the most rel-
evant, mainly from wheat and maize [43].

Coconut husk is also one of the main types of AWB 
used in the research (24%). To a lesser extent, maize cob 
(20%) and oil palm (18%) and maize husk (6%) were iden-
tified as relevant. A further 24 types of AWB were used, 
including; cork, banana and pineapple leaves and/or 

Fig. 4  Keyword network based on co-occurrence
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peels, maize, soybean and cotton stalks, pomace and/or 
oil mill residues and coffee husks, nuts, cassava and grape 
sprouts, among others. The vast majority of crop parts 
(leaves, stems, fruits, seeds, sprouts) are used to manu-
facture new bio-based products. Contrary to [21], it is 
evident that more than half of the studies in the sample 
used more than one type of AWB [16, 58–62]. This was 
possibly to improve the properties of the final products 
[63].

Rice husks and straw, wheat straw, maize stalks and 
cob, and coconut husks were the main types of AWB used 
as raw materials in the first investigations in 1978 [40, 
41]. Regarding the main form in which this type of AWB 
is used, it was found that more than half of the studies 
in the sample (55%) used it in form of ash. Twenty-nine 
percent used this biomass in the form of fiber. Other 
forms identified were granules and/or small particulate 
shredded material (20%). Most of the studies analysed 
the physical, chemical, thermal and other properties of 
the by-products (ash, fibers and AWB particles). This 
was mainly to characterise them, evaluate their poten-
tial, determine the best alternatives for their use and/or 
define optimum substitution percentages [19, 55, 56, 64].

The main parameters evaluated were; specific grav-
ity, surface area, bulk density, particle size and fineness, 

water absorption, porosity, microstructure, and thickness 
[5, 18, 24, 26–29, 33, 35, 62, 65–67]. Concerning chemi-
cal properties, they analysed the cellulose, hemicellulose, 
and lignin content. Similarly, percentages of Loss on 
Ignition (LOI) and chemical components, such as SiO2, 
Al2O3, CaO, Fe2O3, Na2O, P2O5, MgO, MnO, K2O [6, 
16–20, 25–29, 35, 50, 52, 53, 55, 56, 60, 62, 68–81]. Other 
main properties evaluated were thermal conductivity, 
microstructure and sound absorption [5, 18, 21, 22, 26, 
28, 33, 60, 65, 74, 82].

Main biomaterials  Fifty-one percent of the research 
focuses on obtaining bindings, aggregates and/or addi-
tives in soil, cement and/or concrete. Supplementary 
Cementitious Materials (SCMs) are the most studied in 
this first category. Seventy percent of the research evalu-
ated the potential use of AWBs as an alternative material 
for the total and/or partial replacement of cement in con-
crete [6, 15, 17–19, 24–27, 33–35, 40, 50, 52, 54, 59, 62, 
64, 68, 71–75, 83–88]. The relevance of this type of bio-
materials is also reflected in their evolution. From 1978 to 
the present day, they have been studied as an alternative 
for the valorisation of AWB in the construction sector. 
One of the first biomaterials obtained from agricultural 
waste by the Central Building Research Institute in India 

Fig. 5  Main types and forms of AWB used
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in 1978 were pozzolanic reaction additives for cement 
production. Contrary to [84] and in line with the findings 
of [24], there is a large and long-standing field of research 
in AWB-based SCMs for use in concrete production.

In this same category, 24% of the studies in the period 
2004 to 2021 used AWBs as a total and/or partial sub-
stitute material for conventional fine and/or coarse 
aggregates in concrete [21, 28, 29, 36, 66, 67, 83, 89–
92]. A smaller percentage (3%), between 2019 and 2021, 
analysed the potential of AWBs as additives and/or 
aggregates for soil stabilisation and/or improvement of 
geotechnical properties [69, 70, 93]. Other studies used 
a similar classification for the categories of use of agri-
cultural residues in concrete [15, 66]. The second cate-
gory integrates the studies (22%) that evaluated the use 
of AWBs as biomaterials for brick production. Accord-
ing to the number of studies and the publication period 
(1978–2021), this is the second most common type of 
AWB used in the construction sector.

The third category (20%) integrates studies that eval-
uated materials and/or bio-composites for specific use 
in structural and/or reinforcement applications. The 
composite materials mentioned in most of the stud-
ies in this category are made from a mixture of plastic 
polymers and natural fibers [14]. Ten percent of the 
research in the period 2013 to 2021 analysed AWBs 
as specific materials for thermal and/or acoustic insu-
lation of buildings (category 4). A smaller percentage 
(4%), category 5, grouped more recent studies (2016–
2021). These studies evaluated the potential use of 
AWBs as a full and/or partial substitute for traditional 
asphalt binders and/or aggregates used in road con-
struction. In 1978, agricultural residues were also used 
as substitutes for hydraulic components in bricks and 
other products, such as boards and panels without syn-
thetic binders. Some of these biomaterials were incor-
porated into walls and shade roofs for livestock [40, 41].

Main bio‑based products  Table 1 summarises the main 
bio-based products evaluated by the sample studies. These 
bio-based products were manufactured from mixtures of 
the above biomaterials with other types of waste and/or 
materials. For example; bamboo fiber and leaves [27, 33, 
60, 75], bauxite process wastes [63], sheep wool [61], fluid 
catalytic cracking residue, ceramic sanitary ware, waste 
from beer filtration [68], construction demolition waste 
(C&DW) [51, 69], granulated tires [58, 94], glass powder/
fiber [62, 95], sawdust [15, 19, 29, 40, 53], wood [17, 19, 
27, 85, 86], sunflower stalks and seed [91, 96], egg shell 
powder [93], cow dung [23], reclaimed asphalt pavement, 
reclaimed asphalt shingles [94], water treatment plant 
sludge [79, 97], and recycled plastics [98].

Materials traditionally used in the construction sec-
tor, such as lime, sand, and Portland Cement, were also 
used to prepare the mixtures from which the bio-based 
products in Table 1 were obtained [6, 50, 69–71, 74, 90, 
91]. This extensive listing of each category highlights the 
wide variety of bio-based products in which AWBs can 
be used. Furthermore, the diversity of industrial and/or 
other wastes with which they can be combined further 
enhances the overall waste valorisation.

Most of these bio-based products have traditionally 
been used in the construction sector, especially in cat-
egories 1 and 2. However, it is noticeable how the ter-
minology has evolved in recent years. The most recent 
research refers to agro-concrete/cement, agro/bricks, 
sustainable cement/concrete, sustainable bricks, green 
concrete, ecological concrete, eco-friendly bricks, ther-
mally efficient bricks, zero cement concrete, sustainable 
bio-modified asphalt, sustainable green highways [18, 
26, 50, 54, 63, 67, 77, 91, 100]. These new concepts align 
with recent policy approaches on sustainable develop-
ment and, more specifically, with the circular economy 
and bioeconomy [4, 11].

In addition, novel uses and futuristic bio-based 
products for the construction sector are evident. For 
example, bricks made from rice husk ash can be used 
as an alternative sustainable energy source [42]. Cat-
egory 3 integrates an extensive and varied list of bio-
based products, demonstrating the potential of AWB 
for use as a biopolymer in various applications in the 
construction sector [108]. Furthermore, 78 percent of 
the studies in this category have been published in the 
last 5  years, confirming the important evolution and 
relevance of bio-composites for structural and/or rein-
forcement applications. Bio-based products for build-
ings’ thermal and/or acoustic insulation have mainly 
been analysed in the last 4 years.

Bio-based products in category 5 are entirely novel. A 
few recent, related pieces of research show that it is an 
emerging approach. This is also an indicator of impor-
tant new alternatives that may emerge for the valorisa-
tion of AWBs as high value-added biomaterials. In this 
category are also terms from new models of sustain-
able development, such as "Sustainable bio-modified 
asphalt" [80]. Furthermore, they refer to using these 
bio-based products to construct sustainable green-
ways [114]. Other studies identified biomaterials and/or 
bio-based products similar to those in Table 1, mainly 
from categories 1 to 4 [15, 21]. However, none of them 
includes those used for road construction.

The influence of AWBs on the properties of bio-based 
products depends on their characteristics, the pro-
cesses they undergo and the proportions in which they 
are mixed with other materials, among other aspects 
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Table 1  Main types of bio-based products

Biomaterials by category Type of bio-based products References

Category 1 Binding materials, aggregates and/or addi‑
tives for soil, cement and/or concrete

Sustainable cement
Green, ecological and/or sustainable concrete
Concrete blocks
Hardened concrete
Agro-concrete/cement
Ordinary Portland cement (OPC) concrete
Lightweight aggregate concrete
Cement concrete
Geopolymer concrete
Clayey sand and soil
Cement mortars
Activated cement mortar
Cement-based panels
Wood-cement blocks
Roofing tiles
Clay and laterite soils

[6, 17, 26–29, 33, 34, 50–52, 54, 62, 66–69, 71, 
72, 75, 81, 83, 86, 88–91, 99]

Category 2 Brick materials Ceramic bricks
Clay bricks
Clay matrix bricks
Fired clay bricks
Agro bricks
Earth bricks
Light fired clay bricks
Lightweight bricks
Thermally efficient burnt clay bricks
Eco-friendly clay bricks
Eco-friendly porous ceramic bricks
Unfired earth blocks/bricks
White brick fuel cell
Building block for masonry wall

[5, 15, 16, 21, 29, 41, 53, 55, 57, 63, 76, 77, 79, 
85, 96, 100–104]

Category 3 Materials/biocomposites for structural and/
or reinforcement applications

Natural fiber/polymer composites (NFPCs)
Polymer matrices for lightweight structural 
applications
Reinforced polypropylene composites
(wall panel)
Bio-epoxy resin reinforced green composites
Bio-based polymers
Wallpaper
Hybrid polypropylene composites
False ceiling tiles
Fiber-cement
Concrete walls
Cement-bonded particleboard
Binderless fibre-board
Reinforced polypropylene
Reinforced composites
Particleboard
Fibreboards
Unitary (or ‘‘monolithic”) structural compo‑
nents and assemblies
Earth Plaster Composites
Panels, door shutters, door frames, roofing 
sheets and dough molding compounds
Roofing tiles, ceiling plates, thin sheets, wall 
panels
Lightweight building components
Structural sheathing materials
Composite boards/panels

[20, 41, 55, 56, 60, 78, 82, 95, 98, 99, 105–112]



Page 10 of 23Duque‑Acevedo et al. Environmental Sciences Europe           (2022) 34:70 

[33, 92]. Therefore, most of the studies in the sample 
analysed considers physical, chemical, mechanical and 
other properties of the bio-based products. This was 
to identify the effects of AWBs and determine compli-
ance with the standards of the regulations governing 
the quality of building materials [90]. Table  2 summa-
rises the main parameters evaluated for each of the 
properties.

In line with the findings of other studies, it was iden-
tified that the main tests bio-based products were sub-
jected to are compressive strength, density and water 
absorption [5, 25, 100]. Compliance with these param-
eters is essential to guarantee the obtained bio-based 
products’ quality, longevity, and durability [26, 29, 
100–102].

Main types and properties of AWBs used by category  Rice 
husk and sugarcane bagasse are two of the main types of 
AWB used as biomaterials for the production of cement, 
concrete and bricks. The main form in which this biomass 
is used is ash, followed by a smaller percentage of fiber. 
These findings are in line with other researchers that high-
lighted rice husk ash and sugar cane bagasse as the most 
studied alternative materials used in building materials, 
mainly in the concrete industry [18, 21, 26, 29, 33, 35, 86]. 
Table 3 summarises the three main types of AWBs that 
are used for each category. It also highlights the most rel-
evant aspects that impact the improvement of the proper-
ties of the bio-based products obtained.

A study analysing the use of industrial and agricul-
tural wastes in cement identified general properties and 
applications of AWBs similar to those of category 1 [35]. 
Of the three types of AWB prioritised for each category 
according to the number of studies that have used them, 
it is evident that rice husk ash is the most versatile type 
of waste that can be used in all applications in each cat-
egory. One of the first researches from 1978 highlights 
rice husk as a highly reactive pozzolanic material, which 

makes it a good alternative for producing new cementi-
tious materials [40].

Several studies indicate that the main component of 
agricultural residue ash is silica [19, 33, 53]. However, 
some of them point out that silica in rice husk ash and 
bagasse ash is significantly higher (between 60 and 95%) 
[24, 26, 49, 54, 86, 92]. In turn, the pozzolanic nature of 
these ashes [71] makes them efficient biomaterials for 
improving the physical, mechanical and thermal proper-
ties of bio-based products. Among them: strength, dura-
bility, workability, porosity, thermal conductivity, and 
other properties that are highlighted for each type of bio-
materials in Table 3.

Cereal straw fibres have significant use in the produc-
tion of bricks and biomaterials used as fillers in poly-
meric matrices for structural reinforcement (increased 
strength and stiffness) and thermal and/or acoustic insu-
lation [55–57, 82, 95, 99, 107, 109–111]. Fiber length and 
width affect bio-based products’ physical, mechanical, 
and thermal properties [56, 109, 111]. In the manufacture 
of bio-composites, these fibres replace all or part of the 
wood [56, 110]. Coconut husks are another by-product 
with great potential due to their high natural fiber con-
tent [56]. A study identified coconut and rice husks as 
one of the main AWBs used to produce biopolymers for 
construction applications [20]. In line with the findings of 
other studies, it is evident that fibrous AWBs such as rice 
husks, cereal straw and bagasse are suitable for thermal 
and acoustic insulation applications [21, 37, 65].

Some of the research in the sample does not specifi-
cally highlight additional positive effects on bio-based 
products resulting from AWBs. However, most of them 
confirm that the use of AWBs to manufacture bio-based 
products is technically feasible from a technical point 
of view. Mainly because these bio-based products meet 
the properties and performance requirements for build-
ing materials. In addition, they are similar to commercial 
products and conform to regulatory specifications [5, 18, 

Table 1  (continued)

Biomaterials by category Type of bio-based products References

Category 4 Materials for thermal and/or acoustic insula‑
tion in buildings

Joints between walls, windows, floor, and roof
Recycled waste panels
Insulation panels
Bio-based insulations
Structural materials for low-energy buildings
Thermal insulating plate
Reinforced panels
Particleboards
Bio-Based Plastics

[21–23, 58, 61, 65, 97, 109, 113]

Category 5 Road construction materials Sustainable bio-modified asphalt
Asphaltic concrete
Modified Asphalt Binders

[80, 94, 114, 115]
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26, 28, 66–68, 75, 79]. On the other hand, concerning the 
properties of bio-based products, most studies emphasise 
that a generalised substitution of AWBs is not possible. 
Therefore, it is essential to achieve mixture compositions 
with optimal AWB substitution percentages [33, 49, 54, 
64, 86, 105].

To improve the properties and/or guarantee the per-
formance of most of the bio-based products in Table  1, 
studies suggest substitution percentages between 5 and 
15% by weight of AWBs [6, 16, 18, 19, 21, 25, 33, 50, 51, 
53, 66, 69, 77, 90, 100, 103, 115]. These findings align 
with a study that identified similar percentages, between 
5 and 10% AWB for fired clay bricks [100]. Several stud-
ies in the sample identified that higher substitution levels 
could generate counter (negative) effects on bio-based 
products’ properties and/or performance [19, 25, 53, 
67]. However, higher percentages of AWB (30–50% of oil 
palm shell) were suggested for the construction of roads 
with medium and/or low traffic [114]. In addition, in 
other applications used to improve the thermal perfor-
mance of buildings (21–63%) [23, 58]. On the other hand, 
lower AWB percentages (2–4%) were considered for soil 
stabilisation [70, 93].

Main limitations and/or disadvantages of the use of AWB 
in  bio‑based products  As indicated in Table  4, several 
of the studies analysed point out some limitations and/or 

disadvantages derived from the use of AWBs as biomate-
rials for the production of bio-based products. Increased 
water absorption and reduced workability are some of the 
main disadvantages identified [15, 53, 92, 113]. Some of 
the limitations and/or disadvantages in Table 4 coincide 
with those identified by other studies that analysed them 
for specific applications, such as thermal and acoustic 
insulation [22, 32].

On the other hand, most of the studies in Table 4 also 
identified mechanisms to avoid and/or reduce the nega-
tive effects of AWBs on bio-based products. Applying 
appropriate processing methods including both pre-
and/or additional treatment processes is crucial. These 
include immersion of fibers and/or ashes in chemicals, 
cooking, drying, filtering and/or screening [26, 33, 91, 
106, 109, 111, 113]. Some research has also suggested the 
incorporation of other types of materials and/or micro-
organisms [19, 25, 72]. In line with the approaches of 
[21], the findings of this study confirm that the indicated 
pretreatments and/or additional processes are necessary 
under certain circumstances and/or for certain types of 
biomaterials or bio-based products. A wide variety of 
biomaterials and bio-based products (Table  1) can be 
obtained through direct utilisation or minimal transfor-
mation processes.

These identified corrective actions and/or improve-
ment alternatives (Table 4) reinforce the approach on the 

Table 2  Main properties and parameters of the bio-based products

Properties Parameter References

Physical Sorptivity
Bulk density
Microstructure
Specific Gravity
Drying shrinkage
Apparent Porosity
Water absorption

[5, 6, 15, 18, 22, 25, 33, 36, 51, 53, 56, 58, 60, 63, 64, 76, 77, 79, 80, 87, 88, 91, 92, 94, 96, 97, 
99, 101, 103–109, 111, 113–115]

Mechanical Durability
Workability
Flowability
Flexural strength
Tensile strength
Impact strength
Young’s modulus
Thickness swelling
Compressive strength

[5, 6, 15–18, 21, 22, 25–27, 29, 33, 51, 55, 56, 58, 60–63, 67, 69–74, 81, 87–89, 91–93, 95, 
96, 98, 99, 101–108, 110, 112, 113, 115]

Chemical Loss on ignition
Chloride resistance
Resistance to chloride
Acid and sulphate resistance
Heavy metals content/leaching toxicity

[6, 18, 26, 33, 36, 51, 53, 63, 77, 97]

Others Mineralogical analysis
Sound absorption
Thermal conductivity
High temperature resistance
Thermogravimetric analysis

[5, 6, 16, 21–23, 29, 53, 55, 57, 58, 61, 63, 67, 72, 76, 77, 92, 97–99, 101–106, 108–110, 113]
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feasibility of using AWB as a biomaterial for the produc-
tion of bio-based products. However, it is important to 
consider that some of the studies in the sample suggest 
that further research is needed to improve the utilisation 
of AWB, understand its influence on bio-based products 
and ensure its application in large-scale structures [24–
26, 29, 33, 67, 73, 95].

Feasibility of  the  use of  bio‑based products  Table  5 
shows the main aspects highlighted by the sample studies 
for each dimension of sustainability. The environmental 
dimension is the most relevant. More than sixty percent 
of the analysed studies highlight, in a general and/or spe-
cific way, contributions towards the improvement of the 
environment derived from the use of AWBs in the con-
struction sector. Positive impacts on air, soil and water 
resources are comprehensively listed in Table 5. Among 
the main benefits mentioned are reduction of carbon 
dioxide emissions and global warming [24, 25, 52, 54, 68, 
83, 86, 91, 104]. Similarly, aspects related to the efficient 
management of AWB, such as volume reduction, recy-
cling, recovery, reduction of landfills and open burning 
[5, 33, 63, 77, 85, 101]. Reducing energy consumption 
and increasing energy efficiency is another environmental 
highlight [5, 55, 58, 77, 104]. On the other hand, some of 
the studies refer to the green economy and the circular 
economy as basic strategies, which are also supported 
and/or promoted by the valorisation of AWB in the build-
ing sector [27, 58, 75, 86].

Second, economic aspects were also analysed in the 
research. Some studies carried out profitability analyses 
and/or technical/economic feasibility studies [18, 73, 81, 
106]. These analyses indicate that the manufacture of 
bio-based products is cost-effective and they can be suit-
able products to compete in the market. Furthermore, 
their use reduces the cost of construction. A key aspect 
they highlight to make costs feasible is using local AWB 
to reduce pre-treatment and/or transport costs [18, 73]. 
This aspect contributes to the socio-economic viability of 
bio-based products [104]. Although they do not perform 

this analysis, other studies highlight that bio-based prod-
ucts made from AWB help the obtainment of economic 
benefits derived from reducing the cost of biomaterials, 
structures and/or construction in general [15, 63, 77, 85, 
100, 101].

The findings for this economic dimension confirm the 
theorisation of a study that analysed the use of AWB in 
concrete production [18]. This concerns the low num-
ber of studies that have conducted economic analyses 
to estimate the costs of producing bio-based products 
from AWBs and determine their feasibility. However, 
this study adds new evidence that this type of analysis 
has been conducted for various AWBs. For example, in 
addition to rice husk ash, as indicated by [18], costs have 
been evaluated for the use of coconut husk [73], sugar-
cane bagasse [81] and pineapple leaf fibers [106]. How-
ever, given the large variety of AWB types identified (32 
types); it is evident that a low percentage has been evalu-
ated from an economic point of view. This could be one 
of the key factors necessary to boost bio-based products’ 
application and commercialisation. So far, as derived 
from the findings of this study have mainly been devel-
oped at an experimental level. One study points out that 
some bio-based products used for insulation are in their 
early stages of development and will still have a long way 
to go before reaching the market [22].

A smaller percentage of the publications (11%) high-
light some aspects related to the social dimension. 
Mainly, the reduction of housing and infrastructure 
costs in rural areas and/or developing countries [86, 89, 
99, 114], the creation of new jobs [22, 104], among other 
aspects associated with the health and well-being of the 
population. One of the publications from 1978 already 
pointed out that the use of AWB in the manufacture of 
building materials contributed to solving waste disposal 
problems and reducing the costs of transporting mate-
rials. It also generated savings in production costs and 
energy consumption [40]. This broad analysis of contri-
butions for all dimensions reinforces the theorisation of 
this first publication. It indicates the relevance that the 

Table 4  Limitations and improvement alternatives for bio-based products

Limitations and/or disadvantages Alternatives to reduce adverse effects References

Increase LOI
Reduction of workability
Lower strength activity index (SAI)
Higher drying shrinkage
High water absorption
Susceptibility towards chemical attack
Effect of moisture content on internal bonding
Dimensional stability
Lower durability
Crack formation

Additional treatments
Chemical and/or heat treatment of fibres
Pre-treatment methods (screening, burning, 
drying, firing)
Incorporation of nanomaterials nano silica, nano 
alumina
Inclusion of bacteria in rice husk
Addition of stone dust

[15, 19, 21, 22, 24–26, 32, 33, 36, 52, 56, 61, 91, 105, 
106, 109–111, 113]
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integration of environmental and social aspects as pil-
lars of sustainable development has gained in research. 
However, it is essential that such studies include broader 
feasibility analyses, integrating all dimensions (economic, 
social and environmental) from local contexts.

Furthermore, these findings coincide with the findings 
of other studies regarding the potential of AWBs for the 
production of bio-based products and their contribu-
tion to sustainability [21, 52, 104]. Although this suggests 
positive aspects in advancing the application of bio-based 
products on an industrial scale, it is important to bear in 
mind some considerations. For example, identifying and 
quantifying locally available agricultural residues is key. 
This is to ensure that there are no supply constraints [22, 
26, 75].

European Union projects
Table 6 summarises the projects related to the valorisa-
tion of AWB in the construction sector. Of these projects, 
67% were financed by the first EU framework programme 
for research and innovation—Horizon 2020. The oldest 

project, dating back to 1994, was carried out with the 
"Research and Technological Development in the Field 
of Industrial and Materials Technologies FP3-CRAFT 
(1990–1994)" programme. This project used straw and 
husks to obtain mineral binders [116]. The second older 
project carried out between 2004 and 2007 was part of 
the EU’s "Focusing and Integrating Community Research" 
programme (2002–2006). Rice straw was also one of the 
main inputs for this project, which produced composites 
for structural components as a bio-based product [117]. 
The SYNPOL project, which produced biopolymers from 
rice straw, was part of the FP7-KBBE programme "Coop-
eration: Food, Agriculture and Biotechnology" [118].

In general, straw is the most commonly used type of 
AWB for producing bio-based products, such as cement, 
wooden boards, thermoplastic adhesive, biopolymers 
and composites. However, in line with the findings of 
the research analysed, it is evident that these projects 
have used different types of AWB in recent years, which 
confirms their potential for obtaining high added-value 
products. All the applications of AWBs prioritised by the 

Table 5  Main benefits by dimension

Dimension Description of main benefits or advantages References

Economic New value chains
New market opportunities
Savings raw materials
Reduction of material production costs Reduction of waste 
landfill fees
Reduction of transportation costs
Reduction in construction cost
Reduction of road construction and maintenance in rural areas 
costs

[6, 15, 16, 18, 19, 21, 22, 28, 34, 40, 53, 56, 59, 63, 66, 69, 73, 81, 84, 
85, 91, 95, 96, 98–100, 104, 106, 114]

Environmental Carbon dioxide (CO2) emissions reduction
Reducing global warming and climate change
Increasing energy efficiency
Reduction in consumption of thermal and electrical energy
Landfill reduction
Improving the management of the AWB
Recycling and valorisation of AWB
Values of leaching toxicity much lower
Reduced consumption of natural clay reserves
Reducing the exploitation of natural resources
Reduction of AWB burning
Reduction of water consumption
Reduced consumption of virgin raw materials
Reduction of soil erosion

[5, 6, 15, 16, 18, 19, 21–25, 27–29, 34, 35, 40, 50, 52–56, 58, 62, 63, 
65–69, 71–77, 81, 82, 84–86, 91, 93, 96–100, 102, 104, 105, 107, 110, 
113, 114]

Social Creation of new jobs
Enhancing the economic power of local communities
Low-cost building and/or infrastructure development in low-
income regions
Use of locally available materials for infrastructure works in devel‑
oping countries
Reduce social housing cost
Functional, high quality, comfortable and affordable environ‑
ments for building occupants
Societal welfare
Healthy indoor environment
Population health benefits

[21–23, 58, 86, 89, 91, 99, 104, 114]
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projects are similar to those identified in the research 
analysed. The focus on the production of biopolymers 
and bio-composites confirms that this type of AWB 
application has become more relevant in the construc-
tion sector in recent years. This makes sense considering 
that it has been one of the fastest evolving areas of the 
bioeconomy [9].

Other projects identified in the CORDIS database 
obtained eco-sustainable concretes from other types of 
waste, such as plastic, electrical and electronic equip-
ment, municipal solid waste and pneumatic components 
[119, 120]. They also made ceramics from the sludge 
from wastewater treatment [121]. Most of the projects 
in Table 6 address all three pillars of sustainability. They 
emphasise that from an environmental point of view, 
there are benefits associated with improved energy con-
sumption, waste reduction and reduction of CO2 emis-
sions [116, 122, 123]. Similarly, the creation of new jobs 
in the bio-based products sector and the improvement of 
industrial competitiveness [122]. Economic benefits are 
derived from the reduced costs of new bio-based prod-
ucts [116]. This is in line with the approaches of the Euro-
pean bioeconomy strategy [4].

Besides the manufacturing of bio-based products, some 
of the projects in Table 6 include market potential analy-
sis, marketing improvement strategies, and other activi-
ties aimed at improving the information on technical 
aspects of bio-based products to boost and/or enhance 
their market share [122–124]. The opening of bio-based 
markets through educational tools and campaigns aimed 
at improving knowledge and increasing public accept-
ance of bio-based products was also one of the objec-
tives of the projects [125, 126]. This is a crucial aspect in 
advancing the application of bio-based products on an 
industrial scale.

Furthermore, the EU encourages synergies between 
European and Indian research programmes dedicated 
to biowaste conversion and biomass production through 
such projects [127]. Sixty-seven percent of the projects 
were implemented in 2016–2021, indicating that the 
Horizon 2020 programme (2014–2020) prioritised the 
deployment of projects focused on bio-based alternatives 
to improve the sustainability of building products. This 
is to some extent, because this research and innovation 
framework programme is the primary source of funding 
for the bioeconomy in Europe [128]. Some of the projects 
are specifically framed within the action line "Societal 
challenges" of the Horizon 2020 programme, which pri-
oritises sustainable agriculture and the bioeconomy. In 
general, these projects highlight the contributions of the 
bio-based construction sector to the consolidation of the 
European circular economy and bioeconomy.

These two models have become essential axes for sus-
tainable development in Europe. For 2021–2024, the 
EU has included the bioeconomy among the vital stra-
tegic orientations for research and innovation (Horizon 
Europe) [133]. This represents an opportunity to further 
strengthen the bio-based construction sector, especially 
in the production of bio-based products from AWB 
and improve the market’s functioning for these prod-
ucts [134]. The circular approach of the bioeconomy has 
demanded new lines of research on biomass valorisation 
alternatives in the construction sector. This has increased 
the number of studies and projects on this subject in 
the last 5  years. The resources that have been allocated 
through projects have been and will continue to be vital 
to the application and consolidation of the circular econ-
omy and bioeconomy as the primary strategy for sustain-
able development.

Conclusions
Regarding the first research question, the findings allow 
us to conclude that a great variety of AWB has been stud-
ied for more than 40  years as a secondary raw material 
for obtaining biomaterials and/or bio-based products 
with multiple applications in the construction of build-
ings and civil works. However, in the last 5  years, there 
has been an increase in publications. India is the coun-
try that leads the ranking of research on this subject 
basically, because it is one of the leading producers and 
consumers of cement and the second-largest producer of 
rice and sugar cane in the world. Concerning the second 
research question, the residues of these two crops, mainly 
rice husk and sugar cane bagasse, are the two most com-
monly used types of AWB (in the form of ash) in the 
manufacture of a wide variety of bio-based products for 
construction.

Rice husk ash has been the most studied type of waste, 
since 1978, mainly because of its versatility for multiple 
applications. However, its use has historically been prior-
itised in cement and/or concrete production. The latter, 
together with bricks, are the types of bio-based products 
most analysed by research. The results also show that 
bio-composites for structural applications and bio-based 
products for thermal and/or acoustic insulation have 
gained more relevance in recent years as an alternative 
for the valorisation of AWB. The findings also point to a 
novel and emerging approach for utilising AWB in road 
construction. This confirms the potential of this type of 
biomass as input for obtaining a wide variety of bio-based 
products with multiple uses in the construction industry.

Concerning the third research question, the new 
names of bio-based products related to sustainability 
and the analysis of the dimensions that comprise it guide 
the importance of this concept in research. The studies 
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highlight relevant contributions from an economic, envi-
ronmental and social point of view, which indicates 
that they are based on the approaches of the new policy 
framework on sustainable development. This, regard-
ing the fourth research question, shows that under the 
approaches of this policy framework, especially the Cir-
cular Economy and Bioeconomy, agriculture and the 
construction industry are vital sectors and major allies 
for sustainability. It is also evident that the prioritisa-
tion of AWB as a secondary raw material has promoted 
more significant scientific progress. This is because it is 
necessary to identify more and better valorisation alter-
natives to improve the sustainability of construction 
products. The increase of projects with this approach 
has also allowed further progress in the practical appli-
cation of these alternatives. However, the findings allow 
us to conclude that the application of bio-based products 
on an industrial scale is still low in relation to scientific 
advances. In this sense, it is hoped that new governmen-
tal strategies on sustainability and circularity will con-
tribute to overcoming the limitations faced by this type 
of bio-based product from their manufacture to their 
launch on the market.

With respect to the limitations of this research, it 
is important to highlight that the search equation 
includes the most common and general terms on the 
subject, which possibly excludes studies that have used 
more specific terms. Similarly, the projects analysed 
are obtained from a single data source, which, although 
representative at the European level, does not include 
all the projects that have been developed through other 
sources of funding and/or in other countries. Therefore, 
future research could focus on the analysis of other 
data sources to evaluate the practical application of bio-
based products obtained from AWB more extensively. 
Similarly, as a line of research, the findings suggest that 
further studies, including cost analyses of the produc-
tion of bio-based products from AWB, are needed to 
determine their cost-effectiveness and/or technical/
economic feasibility. In the same vein, other studies 
could include broader feasibility analyses, incorporat-
ing economic, environmental and social dimensions.
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