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Abstract 

Over the past decades, thousands of different per‑ and polyfluoroalkyl substances (PFASs) have been produced and 
applied in various industrial processes and consumer products. Their structural diversity has reached a level that can‑
not be covered by classical target screening methods for individual compounds. Large‑scale contaminations of soil, 
however, require the need to adapt new analytical methods that can describe a contamination more comprehen‑
sively. While sum parameters such as the total oxidisable precursor (TOP) assay have been developed in the past years, 
they are not yet applied in the regulatory context of PFASs.

In this commentary, we provide an overview on different approaches of the TOP assay as well as its benefits and 
disadvantages to other sum parameters for PFASs in soil samples. Furthermore, we elaborate its opportunities and its 
challenges that need to be tackled to implement the TOP assay as a regulatory tool. With several different approaches 
of the TOP assay being available, a sound and standardised method needs to be agreed upon and more research is 
necessary to better describe the method. Although the complexity of PFAS contaminations in soil cannot be fully 
covered by any analytical method alone, the TOP assay can provide valuable data to detect and characterise soil con‑
tamination as an inventory for subsequent remediation measures. Therefore, the TOP assay should be implemented as 
a useful tool both in research and in the regulatory context of PFASs.
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Background
The group of per- and polyfluoroalkyl substances 
(PFASs) comprises a diverse group of anthropogenic 
chemicals that have been produced since the 1940s. 
Due to their unique properties, such as their high 

stability and water-, oil-, and grease-repellency, they 
are used in various industrial processes and consumer 
products [1]. These properties and their widespread 
use, however, also lead to adverse effects on human 
health and the environment that have been described 
for several substances from the group of PFASs [2, 
3]. Some of the best-studied PFASs are perfluoroalkyl 
acids (PFAAs). Perfluorocarboxylic acids (PFCAs) and 
perfluorosulfonic acids (PFSAs) are the most promi-
nent PFAAs in the environment. They are known to be 
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environmentally persistent and are, therefore, referred 
to as ‘forever chemicals’ [4, 5]. Many other PFASs, 
however, are known to degrade to the group of PFAAs 
in the environment as well as in  vivo and are termed 
precursors [6–8]. In 2018, the Organisation for Eco-
nomic Co-operation and Development (OECD) iden-
tified 4730 different CAS entries belonging to the 
group of PFASs [9]. In recent years, industry shifted 
from the perfluoroalkylsulfonyl- and carbonylfluoride-
based chemistry to an increased use of fluorotelomer-
based substances and poly- and perfluorinated ethers 
[10–12]. Technical products, such as those applied in 
aqueous film-forming foams (AFFFs) or products for 
paper and textiles coating often contain PFAS mixtures. 
In addition, polymers with fluorinated side-chains 
are among the active ingredients, e.g., in products for 
grease-proofing of paper and board [1]. In contrast, 
most regulatory efforts and restrictions on national and 
international levels, such as the Stockholm Convention 
focus on a subset of a few PFASs, namely, PFAAs and 
in some cases their precursors [13–17]. The revised EU 
Drinking Water Directive entering into force in 2023, 
however, includes a ‘PFAS Total’ sum parametric value 
besides the sum of 20 individual PFAAs. A full ban of 
PFASs as a group has so far only been released in Den-
mark for the specific application in food packaging 
materials [18], but the European Commission intends 
to phase out the use of PFASs as a group in the Euro-
pean Union unless a specific use is proven essential for 
society [19].

Worldwide findings of individual PFASs in various 
environmental systems [20–23] and humans [24–27] 
already demonstrate the ubiquitous distribution of 
these substances. With the high number of different 
chemical structures within the group of PFASs comes 
the need to analyse them in a comprehensive man-
ner. Yet, common targeted analytical methods may 
often underestimate the total PFAS burden, because 
they only include a few individual to a few dozen com-
pounds [28, 29]. By only analysing the legacy PFASs, 
only a small part of the contamination may be visible 
and the outreach of the contamination may be underes-
timated to a great extent. For example, soil contamina-
tions with unknown precursors would only be detected 
indirectly and with a temporal delay after they have 
formed PFAAs during their degradation processes. The 
underestimation may further lead to the inaccurate 
decision that no measures have to be applied which in 
turn may lead to a long-term contamination of underly-
ing groundwater. Thus, to classify PFAS contaminated 
sites, an approximation for the extent of the PFAS bur-
den is essential to decide on the measures to be taken. 
A good example is the PFAS contamination of an area 

in southwest Germany. Only the analysis of specific 
precursor substances could describe the extent of the 
contamination more comprehensively and the source of 
contamination could be narrowed down [30–33].

Given the relevance of precursors, sum parameters 
such as the total oxidisable precursor (TOP) assay [34] 
are of increasing importance to uncover the total PFAS 
burden. In the TOP assay, PFAA precursors are chemi-
cally oxidised to yield PFCAs of related chain lengths. 
Under certain conditions, it has also been described 
that sulfonamide-based precursors may also be trans-
formed into PFSAs to some extent [35]. Thus, the deg-
radation—which may occur in the course of time—can 
be simulated in the laboratory. The difference between 
the amount of PFCAs before (i.e., via target analysis) 
and after the TOP assay then provides information 
on the amount of precursors in a sample. Notably, the 
oxidative processes in the TOP assay do not fully cor-
respond to those in the environmental degradation of 
precursors and the TOP assay does not cover all types 
of PFASs. Nevertheless, the method can be considered 
an important tool to illustrate precursors in a sample 
and to get a general idea of the total PFAS burden, e.g., 
when assessing a contamination in soil and groundwa-
ter [34, 36].

This commentary focusses on contaminations in soil 
as they are often of large scale and, therefore, of high rel-
evance for the surrounding environment and humans. 
In addition, most soil contaminations represent initial 
contaminations, often characterised by a wide range of 
precursor substances rather than PFAAs, and, therefore, 
can be described by target methods only to a very limited 
extent.

In the subsequent remediation process, the TOP assay 
may also be used to assess the success of remediation 
measures [37]. For policy makers, the TOP assay may 
also allow monitoring of trends of unknown or uniden-
tified PFASs, and thus observing shifts in production, 
e.g., from legacy to emerging PFASs. In addition, restric-
tions of precursors can be more extensively controlled 
by means of the TOP assay. Furthermore, the TOP assay 
can provide clues to the sources of a contamination, e.g., 
by analysing the patterns of formed oxidations products 
[38–40].

This commentary gives an overview of the opportuni-
ties, current varieties, challenges, and limitations of the 
TOP assay as well as its future needs and perspectives for 
the assessment of PFAS contamination in soils. In addi-
tion, a comparison with other sum parameters and other 
emerging analytical methods to overcome the complexity 
of PFASs is presented. Finally, this commentary aims to 
provide consultation on how the method can be applied 
into a regulatory context of PFASs.
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Comparison of TOP assay methods to other sum 
parameters for organofluorine compounds in soils
Several sum parameters for PFASs or organofluorine 
compounds have been described in literature. They 
can be divided into non-destructive, semi-destructive, 
and totally destructive approaches (Fig.  1). Aside from 
adsorbable organic fluorine (AOF) [41–45] for soil lea-
chates, only extractable organic fluorine (EOF) [46, 47], 
TOP assay [42, 48, 49], and 19F nuclear magnetic reso-
nance (NMR) (BWPLUS project FluorTECH, unpub-
lished results, 2021) have been applied quantitatively for 
soil samples or sediments and thus are considered here. 
The highest selectivity is linked to the non-destructive 19F 
NMR analysis giving spectral information on the chemi-
cal structure of the organofluorine chemicals, includ-
ing non-ionic substances. Specific signals of  CF2- and 
 CF3-groups can be used for identification of PFASs and 
for the quantitative PFAS-related organofluorine deter-
mination by standard addition. No extraction or other 
discriminating sample preparation steps are needed. 
Therefore, 19F NMR can be considered a total PFAS 
method. However, its sensitivity for direct analysis is 
poor, and thus, only highly contaminated environmental 
samples (ppm levels) can be analysed by this technique.

EOF measurements by solvent extraction from soils 
followed by combustion ion chromatography (CIC) are 
more sensitive (ppb levels) than 19F NMR, but show the 
poorest selectivity among the three described meth-
ods. Due to extract combustion the complete structural 
information is lost and organofluorine originating from 
other compounds than PFASs (e.g., even active ingre-
dients of fluorinated pesticides or pharmaceuticals 
and their metabolites without  CF2 or  CF3 groups, e.g., 

fluoroquinolone antibiotics) are also contributing to this 
parameter [42]. This drawback of EOF is simultaneously 
its strength, because it covers all extractable PFASs and 
also those that are not amenable to TOP assay methods 
(see below). EOF measurements afford a CIC instru-
ment, which is less often part of the standard equipment 
in environmental laboratories, while, e.g., LC–MS/MS 
is usually available in all laboratories analysing PFASs. 
Regarding the sensitivity, EOF methods typically show 
limits of quantification (LOQs) in the one- or two-digit 
ppb range [30, 50], while TOP assay methods show LOQs 
in the low ppb range or even lower [29, 48, 49], thus 
representing the most sensitive approach among sum 
parameters for organofluorine compounds in soil.

The TOP assay approaches possess an interim selectiv-
ity between 19F NMR and EOF, because some structural 
information is conserved in form of PFCAs as products 
of a partial destruction by oxidative conversion in aque-
ous solution. However, most target analyses according to 
existing TOP assay protocols discriminate per- and poly-
fluoroalkylethers, because they are either not oxidised 
(perfluoroalkylethers) or oxidised to usually not meas-
ured products [51]. Since most TOP assay protocols for 
soils [48, 49] use oxidation of a methanolic soil extract, 
only extractable precursors are assessed. The use of other 
solvents may increase the extent of precursors accessi-
ble by the TOP assay. A direct oxidation by means of the 
so-called direct TOP assay (dTOP) [29, 52] avoids a dis-
crimination by direct oxidation of a small aliquot of a soil 
sample with a high excess of a highly concentrated oxida-
tion solution.

With a given TOP protocol, molar conversion factors 
for known precursors can be evaluated [34, 53, 54]. Based 

Fig. 1 Scheme representing current sum parameter approaches for PFASs and organofluorine determination in soils
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on these factors the contribution of known precursors 
can be calculated and compared to the measured PFCA 
concentration to give the contribution of unknown pre-
cursors. The magnitude of unknown precursors can 
be estimated by comparing the PFCA amounts before 
and after the TOP assay while taking those PFCAs into 
account that have been formed from the known precur-
sors in the sample. Other approaches such as by Robel 
et  al. [54] estimate the amount of unknown precursors 
based on the amount of fluorine before and after the TOP 
assay. By means of the known PFCA homologue pat-
terns after oxidation, some hints on the nature of abun-
dant precursor classes in a sample can be deduced, e.g., 
perfluoroalkylsulfonamide-based vs. fluorotelomer-based 
precursors. Depending on the individual conditions of 
different TOP assay methods and especially for dTOP, 
the chain length reduction might shift the products to 
ultrashort-chain PFCAs or even to mineralization, and 
thus outside the analytical window of PFCA detection. 
However, the chain length pattern of PFCAs obtained in 
the TOP assay remains a valuable information that is not 
provided by 19F NMR and EOF analyses.

Data interpretation
Drawing conclusions from the TOP assay requires a suit-
able evaluation and interpretation of the data in both 
quantitative and qualitative terms. In most cases, the 
TOP assay data has to be accompanied by a target analy-
sis of the same sample, often referred to as data “before 
TOP assay”. The difference between the levels of each 
analyte before and after the TOP assay gives a first indi-
cation on the presence of precursor substances in a sam-
ple. However, due to the partially destructive character 
of the TOP assay and its modifications, the mass balance 
before and after the TOP assay needs to be performed on 
a molar basis, especially if the balance is close to 100%. In 
this way, the loss of non- or polyfluorinated moieties and 
the partial loss of fluorine due to chain-length shortening 
of PFCAs are taken into account. In case the target analy-
sis shows the presence of known precursors, their oxida-
tive pathways must be either known (i.e., by conversion 
experiments) or estimated (i.e., with data from similar 
substances) to assess the balance of known and unknown 
precursors. To render the quantitative balancing as com-
prehensive as possible, the analyte spectrum should be as 
wide as possible to also assess precursors of ultrashort-
chain PFCAs [49]. In addition, it needs to be considered 
that some groups of PFASs cannot be quantitatively cov-
ered by current TOP assay approaches as they are not 
oxidised at all or they form oxidation products that are 
not covered by typical targeted methods for PFAS analy-
sis. This is the case, e.g., for volatile substances dissipat-
ing during the heating process or during evaporation 

steps, precursors that form non-detectable or unknown 
oxidation products and (depending on the applied type 
of TOP assay) substances that cannot be extracted from 
samples with the chosen solvent or extraction method.

The TOP assay itself does not yield direct information 
on the identity of precursors present in a sample. If the 
formation of oxidation products cannot be explained by 
formation from known precursors covered in the target 
analysis, the chain length pattern in the oxidised sam-
ples can nevertheless yield valuable information on a 
PFAS burden. With a certain variation, many precur-
sors are typically transformed to PFCAs of related chain 
lengths depending, e.g., on the fluorination status of the 
alkyl chain. Thus, the chain lengths of oxidation prod-
ucts in the TOP assay give a hint on the bioaccumulation 
and immobilization potential of unknown precursors in 
a sample. Short-chain oxidation products can be a hint 
for the increased mobility of precursors and thus their 
potential to contaminate ground and drinking water. This 
qualitative interpretation, however, strongly depends on 
the type of precursors in a sample and must, therefore, 
be treated with caution: while in the TOP assay, per-
fluoroalkylsulfonamide-based precursors typically yield 
PFCAs of the same perfluoroalkyl chain lengths as the 
precursors [34], they are transformed to PFSAs under 
environmental conditions [55]. At high concentrations of 
oxidation agents, an alkaline hydrolysis of sulfonamides 
leading to the partial formation of PFSAs in the TOP 
assay has also been described [35]. On the other hand, 
the polyfluorinated fluorotelomer precursors form a 
wider set of PFCAs with chain-lengths n + 1, n, n–1, n–2, 
etc. (n being the number of perfluorinated carbons in the 
alkyl chain), both in the TOP assay [34] as well as in the 
environment [56, 57], thus biasing the interpretation of 
the chain length pattern. In addition, data from the TOP 
assay does not necessarily represent the total exposure 
potential as not all precursors in the TOP assay may be 
transformed to PFAAs in a timely manner. Therefore, the 
TOP assay can be considered a worst-case scenario for 
risk assessment.

Diversity of the TOP assay
Since the TOP assay has been first described in litera-
ture in 2012 by Houtz and Sedlak [34], several research 
groups and commercial labs have implemented and 
modified this method. The modifications include vari-
ous methodological parameters aiming to improve the 
informative value of the TOP assay as well as to address 
matrix specific challenges.

One of the crucial decisions during the TOP assay anal-
ysis is the timing of adding isotopically labelled internal 
standards. While in some TOP assay approaches, internal 
standards are added to the sample after oxidation [48, 49] 
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other laboratories add internal standards before oxida-
tion [52]. Pre-oxidation addition is only possible for sta-
ble PFAA internal standards and compensates for analyte 
losses due to surface sorption, distribution to the air–
water interface or an erroneous degradation of analytes, 
e.g., due to too low pH values (pH < 12 [34]) during the 
oxidation. In case of soil samples, the addition of internal 
standards should take place even before the extraction 
step. To reduce the risks of extraction losses or incom-
plete oxidation, modified oxidation approaches include 
a pre-oxidation with hydrogen peroxide (so far only 
applied to biosolids) [58] or the dTOP assay. In the dTOP 
process, only a small amount of soil sample is directly 
oxidised with high amounts of oxidation reagent, since 
high amounts of organic matrix components consume 
significant amounts of oxidation reagent. A disadvantage 
of the dTOP assay towards other TOP assay approaches 
is the reduced sensitivity (due to the small amount of 
sample used) as well as a more destructive character with 
reduced molar yields [29, 52].

While Houtz et  al. [34] only included the analysis of 
PFCAs with chain lengths of C4 to C14, the spectrum of 
oxidation products has been expanded in other labora-
tories. For example, Janda et al. [49] included ultrashort-
chain PFCAs (C2 and C3) and PFSAs into the TOP assay 
analysis of soil samples and demonstrated the quantita-
tive importance of ultrashort-chain PFCAs to the over-
all PFAS burden. Zhang et  al. [51] investigated the fate 
of per- and polyfluoroalkyl ether acids (PFEAs) in the 
TOP assay and found that some of these emerging sub-
stances are degraded to shorter-chain PFEAs, such as 

perfluoromethoxypropionic acid (PFMOPrA) as an oxi-
dation product of 4,8-dioxa-3H-perfluorononanoate 
(DONA). With the complexity within the group of PFASs 
and potential new PFASs to be launched in the future, the 
spectrum of oxidation products to be analysed also plays 
an important role for the comprehensiveness of the TOP 
assay.

Standardisation and quality control
The performance of the TOP assay strongly depends on 
operational conditions and the matrices to be analysed. 
A standard protocol is urgently needed on international 
(ISO) or European level (CEN) to ensure comparabil-
ity of results of different laboratories. To our knowl-
edge, besides a standardization project of the German 
Institute for Standardisation (DIN) regarding aqueous 
soil leachates, so far there are no activities on this topic 
concerning soils. Round robin tests, interlaboratory 
comparison studies and systematic robustness studies 
as basis for a standard are equally scarce and often focus 
on aqueous matrices [59]. Figure 2 shows an example of 
a comparison between the results from five laboratories 
(L1–L5) for a contaminated soil sample before and after 
TOP assay [BWPLUS project FluorTECH, unpublished 
results, 2021].

Before TOP assay, the mean concentrations (n = 3) of 
the twelve PFAAs measured by the different laborato-
ries are well comparable, suggesting sufficient similar-
ity among the applied analysis methods. Only after the 
TOP assay, significant differences in mean concentra-
tions and variances occur due to inconsistent procedures 
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among the laboratories (L). For example, although L2–L4 
produced similar values, confidence intervals from the 
triplicates were notably smaller with L4 compared to 
L2 and L3. Moreover, L5 shows generally lower concen-
trations than all the other laboratories and L1 generally 
higher ones. The most pronounced procedural difference 
between L1 and the other laboratories is that L1 applied 
the dTOP assay, which also resulted in a significant 
increase of the PFOS concentration. The results of this 
interlaboratory comparison emphasise the need for fur-
ther standardisation of different TOP assay approaches.

The standard procedure for soil should define the pre-
treatment of a sample (drying, sieving, extraction versus 
direct oxidation), the parameters of oxidation as dis-
cussed above, such as pH, reaction time, and number of 
oxidation cycles, the analysis of individual compounds, 
blank values, LOQ, recovery and use of isotopically 
labelled compounds. Using isotopically labelled stand-
ards during the oxidation step [60], comparing original 
vs. diluted samples [61], and checking the absence of pre-
cursors after oxidation [62] are multiple ways of defining 
criteria for the oxidation performance. It is known that 
high levels of organic matter in biosolid samples inter-
fere with the oxidation process and lead to an incomplete 
transformation of precursors [58] thus highlighting the 
need for quality control of the oxidation process. Isotopi-
cally labelled standards or selected precursors used for 
quality control of the oxidation process have to be care-
fully selected and urgently need to be standardised. Lars-
son [60], e.g., used 13C8-FOSA, which is transformed to 
13C8-PFOA and does not interfere with 13C4-PFOA, as 
internal standard for quantification. Before using oxi-
dation standards, the degradation products in the TOP 
assay should be identified and potential overlaps should 
be excluded. The very limited availability of such internal 
precursor standards, however, currently poses a major 
challenge for this approach and should be addressed by 
producers of analytical PFAS standards. In this context, 
it also needs to be considered, that organic solvent used 
for spiking the internal standard might also interfere with 
the oxidation process, if it is not removed before. Plausi-
bility checks should include that the sum of PFASs after 
oxidation is higher than or equal to the sum before. For 
interpretation and use of results, it is necessary to define 
which measurement uncertainty is acceptable and fit 
for purpose, e.g., for evaluating the human risk, toxico-
logically derived limit values are compared to measured 
values.

Regulatory context
In Germany, there are no binding limit values for PFASs 
in soil so far. However, in 2023, the amended Federal Soil 
Protection Ordinance will come into force regulating 

seven PFASs in soil. These are the substances for which 
sufficient data were available for derivation of human 
health risks. It is obvious that those seven substances 
do not represent the whole spectrum of PFASs in soil, 
as PFAS contamination in soil originates from various 
sources containing a variety of PFASs, e.g., fire-fighting 
trainings, soil amendment with sewage sludge, or air-
borne deposition. If soil has been contaminated with 
PFASs, authorities have to decide whether measures 
such as excavation of soil or remediation have to be 
undertaken. Moreover, in case of agricultural areas, it 
is important to decide whether soils are still usable for 
food production. Thus, it is important to be aware of 
the dimension of the contamination. Due of the variety 
of PFASs, this is difficult and challenging, because as 
described earlier only a limited number of PFASs can be 
covered with standard-analytics. The TOP assay is a ver-
satile tool to get a more extensive view on an PFAS con-
tamination, since its ability to show the presence of many 
precursors that are not yet covered by targeted analysis.

Thus, the top assay can indicate the PFAS reservoir in 
the soil and serve as a rough estimate of the time course 
with regard to the leaching behaviour. The presence of 
large precursor quantities can lead to a long-lasting sup-
ply of PFAAs through degradation processes, which can 
contaminate the groundwater in the long term. The TOP 
assay can also be used as an indicator for the success of 
regulations, because the sum of PFAS pollution in the 
environment should decrease when PFAS use decreases. 
Due to the low transformation rates and the low mobil-
ity of some PFAS, this must be considered as a long-term 
aspect.

Another aspect is, that precursors can reach soil via air 
deposition. This has led to detectable background con-
tamination [63, 64] and can be of concern in the vicin-
ity of fluorochemical plants [65, 66]. The TOP assay 
can be a powerful tool to visualise the sum of airborne 
PFAS-emissions to soil, e.g., originating from industrial 
facilities.

In addition, the TOP assay indicates how well the target 
analysis describes the contamination. If the TOP assay 
indicates a high precursor load, a search for contami-
nation sources should be carried out. This can provide 
valuable information on the actual substance spectrum, 
because different PFASs are used, e.g., in fire-fighting 
agents than, for example, in paper finishing [67]. Sus-
pect screening or nontarget methods could then lead to 
further information on the precursors present in the soil 
and facilitate the handling of the contaminated soil. The 
search for the polluter could also be facilitated with this 
information. Thus, the extent of precursor substances 
may be helpful as a first screening and may be further 
used for environmental forensics to identify the origin 
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of a contamination. However, the results received by the 
TOP assay have to be treated with caution. Because of 
the harsh oxidising procedure in the laboratory, differ-
ent degradation processes may be possible in contrast to 
the conditions in the environment. Thus, a direct map-
ping of parent compounds (precursors) is not possible 
and a direct context to toxicological derivations is highly 
uncertain. Vice versa, the TOP assay cannot predict 
future groundwater contamination in a substance-spe-
cific manner.

The degree of interpretation of TOP assay data is highly 
dependent on whether the data are used for research 
or regulatory purposes. In research, data from the TOP 
assay can yield valuable information about the contami-
nation in a sample and suggest further analyses to bet-
ter describe the contamination. For regulatory purposes, 
however, interpretation of the data must be considered 
with more caution as its implications might have signifi-
cant impacts, e.g., on the usability of the analysed soil or 
the subsequent actions by authorities. If the TOP assay 
is implemented into regulatory processes, it is, therefore, 
highly important to scientifically agree upon the possi-
ble interpretation of TOP assay data and the regulatory 
measures that can and should be derived thereof.

Despite the limits of the TOP assay for the analysis 
of soil samples, it is a helpful tool to get an overview of 
potential risks of the PFAS reservoir in soils groundwater 
pollution and pollution of food and feed with PFASs as a 
first step.

Conclusions
In the past years, a number of studies demonstrated that 
sum parameters are important tools to analytically keep 
up with the increasing complexity within the group of 
PFASs. In this commentary, we elaborated the benefits 
and drawbacks of the TOP assay for soil samples in com-
parison to other sum parameters, described the chal-
lenges and future needs as well as the opportunities of the 
TOP assay in a regulatory context. Although currently 
there is a set of different approaches compared to the 
original protocol, referred to as the TOP assay, there is no 
consistent method agreed upon yet. With the advantages 
and opportunities of the methods described above, there 
is a need (a) to internationally agree upon various param-
eters to yield a standardised and sound method, (b) to 
apply this standardised TOP assay in a regulatory context 
and (c) to conduct further research to better understand 
and optimise the TOP assay.

There is no currently available analytical method that 
can selectively cover the entirety of PFASs alone at a suf-
ficiently sensitive level and admittedly the true ‘PFAS 
Total’ burden can never be completely assessed. However, 
with a set of powerful analytical tools, including target 

analysis, chemical and spectrometric sum parameters, 
and non-target screening approaches, the complexity of 
PFASs can be described in an increasingly comprehen-
sive mosaic manner by taking advantage of each applied 
tool. The TOP assay can and should play an important 
role in this endeavour.
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