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COMMENTARY

Long‑term archival of environmental 
samples empowers biodiversity monitoring 
and ecological research
Vera M. A. Zizka1*   , Jan Koschorreck2*, Collins C. Khan1 and Jonas J. Astrin1* 

Abstract 

Human-induced biodiversity loss and changes in community composition are major challenges of the present time, 
urgently calling for comprehensive biomonitoring approaches to understand system dynamics and to inform policy-
making. In this regard, molecular methods are increasingly applied. They provide tools for fast and high-resolution 
biodiversity assessments and can also focus on population dynamics or functional diversity. If samples are stored 
under appropriate conditions, this will enable the analysis of DNA, but also RNA and proteins from tissue or from 
non-biological substrates such as soil, water, or sediments, so-called environmental DNA (eDNA) or eRNA. Until now, 
most biodiversity studies using molecular methods rely on recent sampling events, although the benefit of analyz-
ing long-time series is obvious. In this context Environmental Specimen Banks (ESBs) can play a crucial role, supplying 
diverse and well-documented samples collected in periodically repeated sampling events, and following standard-
ized protocols. Mainly assembled for integrative monitoring of chemical compounds, ESB collections are largely 
accessible to third parties and can in principle be used for molecular analysis. While ESBs hold great potential for the 
standardized long-time storage of environmental samples, the cooperation with Biodiversity Biobanks as scientific 
collections guarantees the long-time storage of nucleotide (DNA, RNA) extracts together with links to analytical 
results and metadata. The present contribution aims to raise the awareness of the biodiversity research community 
regarding the high-quality samples accessible through ESBs, encourages ESBs to collect and store samples in DNA-
friendly ways, and points out the high potential of combining DNA-based approaches with monitoring chemicals and 
other environmental stressors.
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Introduction
Chemical pollution is one of the main drivers behind 
biodiversity decline [38]. Still, many questions remain 
about the specific modes of action of chemicals on organ-
isms and populations and the mechanisms triggering 
biodiversity loss. Consequently, both environmental 
policy and research have identified an increasing need 

for investigations into the links between chemical pol-
lution and the loss of biodiversity [25, 27, 48, 83, 84]. In 
this respect, Environmental Specimen Banks (ESBs) fulfil 
an important role in ecosystem monitoring by ensuring 
sample collection and long-term storage based on stand-
ardized protocols and extensive documentation [14]. 
Stored ESB samples are to date mainly used for analyses 
of chemical pollutants but are generally accessible for sci-
entific purposes. Thus, they provide the opportunity to 
link chemical parameters with biodiversity pattern analy-
sis, also allowing for a perspective backwards in time. In 
this context, DNA-based methods such as environmental 
DNA (eDNA) metabarcoding or metagenomics show a 
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high potential for retrospective biodiversity assessments 
and correlation with prevailing contaminants or other 
environmental stressors, e.g., climate change, nutri-
ents and anthropogenic land use [4, 10, 22, 49, 75, 93]. 
Concomitantly, the increased application of DNA-based 
approaches induces the need for storage of extracted 
DNA samples linked with associated metadata. In this 
context, Biodiversity Biobanks-in close collaboration 
with ESBs-can guarantee the appropriate deposition of 
DNA samples and associated data, such as extraction 
methods, DNA storage parameters, links to performed 
studies and to international nucleotide databases.

Environmental specimen banks (ESBs)
Currently more than 20 ESBs exist around the world, 
mainly distributed throughout Europe, Asia and North 
America. To foster global harmonization of ESB activi-
ties within the growing community, the International 
Environmental Specimen Bank Group (IESB) was ini-
tiated. The consortium promotes the development of 
techniques and strategies of ESBs as well as the coop-
eration and standardization among repositories [47, 
79]. For a detailed overview of ESBs and stored sample 
types see Chaplow et  al. [14]. ESBs are part of the pre-
cautionary principle in environmental policy as they 
continuously document the state of the environment and 
subsequently store the samples. Present and future gen-
erations can thus use the archived samples at any time 
to retrospectively analyse and better understand emerg-
ing environmental problems and trends. In addition, the 
samples allow for the investigation of stressors that could 
not be measured or were not known to be problem-
atic at the time the samples were collected. Monitoring 
purposes are often associated with regional or national 
screening programs and are mostly related to persistent 
and toxic chemical contaminants (e.g., chlorinated, bro-
minated and fluorinated organic contaminants, heavy 
metals) and their effects on terrestrial, freshwater and 
marine environments also including natural background 
and conurbation areas [5, 43]. Beside the main focus 
on chemical monitoring, samples are used for manifold 
other approaches such as, e.g., ecological status assess-
ments or population structure analyses [19, 33, 63]. ESB 
collections include samples from around the globe, some 
of them being collected annually for more than 40 years, 
thereby allowing for a comprehensive analysis of pol-
lution residues and changes through time, functioning 
as a basis for political decisions and appropriate restric-
tions in chemical compounds management. Next to real-
time monitoring, specimen storage and documentation 
enables retrospective sample analysis for chemicals of 
emerging concern or with newly developed analytical 
tools [14]. ESBs periodically collect a variety of specified 

samples at selected sampling sites, ranging from human 
tissues to plant and animal samples from different eco-
system types, including top predators. In addition, abiotic 
samples as soil, sediment, suspended particulate matter, 
waste water, sewage sludge or atmospheric samples (air-
borne particulate matter) are collected and archived in 
ESBs [14].

To ensure sample integrity, collection is conducted 
according to standardized protocols. These cover sam-
pling, transportation, processing and storage of mate-
rial. Depending on ESB, sample storage is implemented 
in cold (−20  °C) or ultra-cold freezers (−80  °C) or in 
liquid nitrogen vapor tanks (around −190  °C) to ensure 
the integrity of the samples’ biological and chemical com-
position over a long time period. Together with chemi-
cal and biological analyses, protocols and metadata are 
accessible through reports or peer-reviewed publications 
and the release in publicly available databases [8, 47, 69]. 
The research strategy of environmental specimen banks 
over the last 40  years reflects the progress in environ-
mental chemistry. Common substances analysed in the 
twentieth century were metals, organochlorine pesti-
cides, dioxins, polychlorinated biphenyls, and polycyclic 
aromatic hydrocarbons [51, 72]. During this century, ESB 
samples were also analysed for elemental isotope signa-
tures [19, 90], per- and polyfluorinated alkylated sub-
stances [26, 28], plasticizers [61, 92], pharmaceuticals 
[11], biocides [45], modern pesticides, flame retardants 
[31], and other chemicals of emerging concern. How-
ever, the scientific potential of ESB collections is not yet 
exhausted, especially when considering how newly devel-
oped techniques as high-resolution mass spectrometry 
or high-throughput sequencing open up novel analyti-
cal tools and possibilities in real-time and retrospective 
chemical analysis, including targeted and Non-Target 
Screening (NTS), effects based methods, and biodiversity 
assessments [36].

Environmental genomics
Developments in environmental genomics in particu-
lar High-Throughput Sequencing (HTS) techniques 
revolutionized species identification and biodiversity 
assessment throughout the tree of life. Using short DNA 
fragments up to whole genomic or transcriptomic infor-
mation, possible applications of the method focus on 
assessing species richness and interactions, population 
genetic structure, functional trait expression and diversity 
of complex communities [17]. ’DNA barcoding’ describes 
the DNA isolation and amplification of a short gene frag-
ment from a single individual and the subsequent com-
parison to a reference database. It is used for simple and 
fast specimen identification in problematic life stages 
(e.g., larvae, seeds), incomplete specimens (tissue pieces), 
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or to separate ’lookalikes’ [34, 82]. Based on the same 
principle and using the same reference databases, DNA 
metabarcoding uncovers the biodiversity of sample mix-
tures, comprising high numbers of individuals with dif-
ferent taxonomies [52, 91]. The method uses DNA mass 
extraction from bulk samples or their preservation fluids, 
followed by the application of HTS techniques and bio-
informatic pipelines to assess biodiversity up to geno-
species level [2, 77, 94]. DNA metabarcoding can also be 
applied on environmental, non-biological samples (e.g., 
soil, water, air) targeting intra- as much as extracellular 
DNA molecules (mitochondria, intact cells, free DNA) 
released from organisms into the environment. So-called 
environmental DNA (eDNA) metabarcoding is tempt-
ing through its non-invasiveness with a huge potential 
for large-scale biodiversity assessment [20, 78]. Due to 
the relative stability of DNA, the molecule persists in the 
environment even after cell death and can be detected 
by metabarcoding for a given period of time (depending 
on substrate). In contrast to DNA, RNA is very unstable 
and degrades in the environment minutes to hours after 
cell death. Environmental RNA-based markers, therefore, 
target metabolically active organisms and might be the 
more suitable tool to indicate living biotic assemblages 
or even gene expression patterns [18, 65]. In compari-
son to the above-mentioned approaches that are based 
on PCR amplification of a standardized short gene frag-
ment, metagenomic techniques are PCR free, targeting 
the whole genomic material of an environmental sample 
[17]. Due to the absence of the PCR step, metagenomics 
approaches are hence assumed to provide more accurate 
abundance predictions but induces much greater costs 
and a higher complexity in laboratory and bioinformatic 
protocols [46]. Whole-genome information can also be 
extracted from single individuals providing a tremendous 
increase in molecular information compared to marker-
based approaches with applications in phylogenetic or 
functional analysis [66]. Bypassing marker amplification 
through PCR, also transcribed RNA (mRNA, rRNA) can 
be used as a template for sample analysis [53, 57]. While 
transcriptomic approaches target transcribed RNA from 
single individuals, metatranscriptomics provide informa-
tion of simultaneously expressed genes in mixed commu-
nities under given environmental conditions. However, 
with the instability of RNA molecules sampling and pro-
cessing is accompanied with challenging collection and 
storage efforts.

Opening up environmental specimen banks for molecular 
analysis, and the role of biodiversity biobanks
First biodiversity studies already utilize ESB samples, 
as for example [21], where scientists retrospectively 
applied eDNA metabarcoding on freshwater suspended 

particulate matter (SPM) collections from the Ger-
man ESB to monitor fish communities through time. 
This analysis includes cryo-archived SPM samples from 
six riverine systems in Germany representing different 
conditions and fish communities. Another study used 
specimens of the zebra mussel (Dreissena polymorpha) 
collected over the last 25  years and stored at the same 
ESB [86]. The study investigates mussel diet through 
eDNA metabarcoding and the utility of mussels as eDNA 
filters of planktonic organisms. Recently, the German 
ESB together with University Duisburg-Essen started the 
project ‘TrendDNA’, which includes the comprehensive 
analysis of ESB samples through molecular approaches 
(www.​trend​dna.​de) also aiming to formulate guidelines 
for sample quality assurance and control (QA/QC) for 
the application of molecular approaches. However, the 
potential of ESB collections is still very far from being 
fully used. Barcoding, metabarcoding as well as metagen-
omic approaches can be applied to banked specimens, 
sample mixtures or non-biological samples to investigate 
biodiversity, population dynamics or diet composition 
over long-term periods, assessing the influence of natural 
and human-made environmental changes through time 
[2, 12, 18, 50, 60].

To ensure the integrity of DNA and ideally even RNA 
molecules, environmental samples need to be stored 
under defined constant and controlled conditions which 
should ideally be standardized [32, 39, 74, 88]. Central-
ized repositories warrant consistent storage quality 
and cater to the needs of individual research institutes 
or individual researchers, who often have only limited, 
short-term storage capacities, and are not specialized on 
the task. Subsequent to analysis, remaining DNA extracts 
should be professionally archived to save resources and to 
warrant reproducibility of research results. Each extract, 
depending on isolation method, is unique. In addition, 
over the course of the years, often additional markers (up 
to meta-/genomes) are added to data sets that started out 
based on the analysis of a single gene. Long-term stor-
age of DNA isolates can happen directly at ESBs. How-
ever, dedicated Biodiversity Biobanks (BBBs, see [3] and 
[24] focus specifically on archiving and handling DNA 
and RNA. As research collections, BBBs are directly in 
touch with biodiversity research groups and the user 
communities. In addition to the isolated biomolecules, 
they hold fixed tissues-sometimes even viable tissues 
(live cells)-that are linked to the respective species. Not 
uncommonly, BBBs are housed at natural history collec-
tions, which enables them to archive entire organisms as 
reference specimens and to make their holdings publicly 
visible (while implementing digital rights in accordance 
with depositor wishes). Currently more than 100 BBBs 
and associated initiatives have joined forces to form the 
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Global Genome Biodiversity Network [24]. GGBN.org 
offers a unified platform to internationally find and access 
samples suitable to molecular biodiversity research. BBBs 
see themselves as information brokers regarding the ana-
lytical data associated with their samples. For instance, 
they enrich their samples by linking them with publica-
tions and with the databases of the International Nucle-
otide Sequence Database Collaboration (e.g., ENA or 
NCBI GenBank, with the Barcode of Life Data systems 
(BOLD [67]), or others).

One exemplary instance of the described cooperation 
between an ESB and a BBB exists in Germany, where 
the German Environmental Specimen Bank collaborates 
closely for long-term storage of extracted DNA with 
the Leibniz Institute for the Analysis of Biodiversity 
Change (LIB) at Museum Koenig, Bonn. The LIB Biobank 
extends the offer to the ESB community and to metabar-
coding projects to deposit environmental DNA or RNA 
extracts in its currently expanded cryofacility (contact 
through last author), making them available for future 
reference and potential sequencing of additional molecu-
lar markers.

Challenges
Storage conditions
Inadequate temperature or pH, exposure to degrading 
compounds or to light all compromise DNA and RNA 
quality. These and other factors have to be considered 
during storage [1, 70], upon which depends the success 
of molecular biodiversity assessment. Ideally, DNA iso-
lation from substrate should be conducted as soon as 
possible after collection to maximize DNA quality and 
quantity. However, due to the nature of workflows or lim-
ited resources, this is not always an option. For not yet 
isolated DNA samples, conservation will vary accord-
ing to its medium: DNA attached to soil particles, for 
instance, will persist considerably longer than free DNA 
[70, 80]. The time interval from field collecting until stor-
age depends on sample type, aim of analysis and techni-
cal possibilities during sampling [58, 64, 68, 71]. Optimal 
conditions include the immediate freezing (the colder the 
better) of samples and the maintenance of cold chains. 
Storage can also be initiated by drying the (ideally cooled) 
material. Nevertheless, DNA extraction for conventional 
metabarcoding purposes (sequencing of individual genes) 
is still possible from samples exposed to ambient tem-
perature up to several weeks, if feasible fixation is applied 
[6, 23, 37]. Long-term storage of tissue samples or small 
organisms should be conducted in fixative (e.g., 96% 
non-denatured ethanol) with no light exposure and cold 
or ultra-cold condition counteracting DNA degradation 
[52, 87]. Storage of isolated or amplified DNA is recom-
mended buffered (for long-term archival most often in 

Tris EDTA or Tris low EDTA) or-depending on planned 
application-sometimes in water at −80  °C [42] down to 
−190 °C in liquid nitrogen storage tanks [7, 29], alterna-
tively dried and sealed [16]. While −20 °C is not an opti-
mal storage temperature, extracts immediately stored at 
−20  °C will likely lend themselves to DNA analysis for 
up to decades, if multiple freeze–thaw cycles are avoided 
and when a high initial DNA concentration is given (NB: 
DNA will gradually decay during this period at −20 °C). 
More careful processing is necessary if samples are to 
be used for RNA analysis. Due to the high instability of 
this biomolecule, cold chains should be maintained right 
from the moment of sampling (dry ice, liquid nitrogen-
based vapor shippers, etc.) and kept at least at −80  °C 
at any time if molecules are not transferred to a specific 
preservation medium [56, 59, 73]. Additional concepts 
for RNA handling and storage have been developed as, 
e.g., RNA desiccation in RNAstable [9] and the subse-
quent storage at room temperature for up to 1 year [35, 
54, 73]. However, while the RNA analysis of banked sam-
ples in combination with chemical measurements could 
provide interesting insights about ecotoxicogenomics 
and gene expression under the influence of anthropo-
genic stressors [76, 85], the processing of RNA from 
long-term stored substrate is largely unexplored and its 
application to banked samples needs to be further tested.

Contamination
DNA/RNA-based approaches are extremely susceptible 
to contamination with non-target molecules caused by 
free-circulating aerosols or cross-contamination between 
samples [74]. Since many applications aim to detect 
extremely low concentrated molecules from substrates, 
even the slightest contamination can skew analysis and 
depict erroneous results for species composition. Sam-
pling of substrates to be screened via molecular analysis 
should, therefore, include intensive cleaning and sterili-
zation of equipment between samples and quality assur-
ance and quality control measures (QA/QC) covering the 
sampling process but also storage and reanalysis need 
to be implemented and integrated in standard operat-
ing procedures (SOPs). Sodium hypochlorite bleach is 
extensively used as a decontaminating solution in labo-
ratory processes. The application of at least 2% sodium 
hypochlorite solution (exposure time 10  min) is rec-
ommended to remove extraneous DNA [30, 41, 89]. 
However, commercial bleach is a hazardous substance 
potentially corroding material and affecting fine-tuned 
chemical analysis. Where this has to be avoided, the 
decontamination of material through UV radiation or 
better the usage of single-use equipment should be con-
sidered to minimize as much as possible the transfer of 
DNA/RNA traces among samples [13, 30]. With respect 
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to QC, negative controls/field blanks should routinely be 
integrated in field sampling and laboratory processes to 
recognize potential contaminations in downstream anal-
yses [30, 74].

Data accessibility
To increase visibility and accessibility of ESB samples (as 
for BBB samples through GGBN), information on these 
should be publicly available including relevant metadata 
such as storage protocols used, generated results and 
ideally even studies performed so far with the samples 
and based on FAIR (findability, accessibility, interoper-
ability, reusability) data principles [44]. Data provision 
has already been initiated (https://​www.​umwel​tbund​
esamt.​de/​en/​topics/​chemi​cals/​inter​natio​nal-​envir​onmen​
tal-​speci​men-​bank-​group). A comprehensive, updated 
overview needs to be compiled giving detailed informa-
tion on ESB samples and indicating their availability to 
the scientific community. This could potentially include a 
combined web interface that aggregates results generated 
from ESB samples around the globe. Such a tool would 
enable cross-linking and exploring available data and 
identifying and addressing global environmental con-
cerns [19, 47, 62].

New sample types
Several biodiversity monitoring approaches rely on anal-
yses of trapped arthropods to assess biodiversity change. 
Typical methods include Malaise traps for flying insects 
or pitfall traps for ’crawlers’. Since the advent of metabar-
coding, the number of projects and studies employing 
arthropod traps has been rapidly increasing [ 37, 49, 52, 
77], and with them the number of available community 
samples. Sometimes, caught arthropods are homog-
enized (ground up) prior to analysis, but often, they are 
preserved for additional biodiversity studies and only the 
killing and preservation fluid (ethanol, propylene glycol, 
etc.) is used for DNA extraction. While homogenized 
samples are relatively easy to store in ESBs or Biodiver-
sity Biobanks due to small size, warranting cold storage 
for large numbers of entire jars of arthropods in ethanol 
is considerably more challenging. The existing frozen 
repositories typically do not and to date usually cannot 
focus on such samples. This leads to the situation that 
biologically very valuable trap samples are amassing rap-
idly without the perspective of long-term storage. Con-
siderable funding goes into the underlying biomonitoring 
surveys and we urgently encourage the research commu-
nity and policy makers to devise strategies and to work 
towards new infrastructures able to hold large numbers 
of non-homogenized trapped arthropod specimens.

Outlook and recommendations
With standard procedures from sampling to storage, 
Environmental Specimen Banks play an important role 
among the biomonitoring infrastructures. The com-
bination of collections condensing the results of up 
to 40 years of field sampling with the rapidly develop-
ing molecular techniques for biodiversity assessment 
and for chemical pollutant analysis, holds the key for 
a new level of environmental research. It must now be 
examined in detail to what extent these standards are 
already sufficient to be able to use the samples as exten-
sively as possible for genetic analysis and, if necessary, 
to harmonize optimized protocols for this purpose. 
Recently, first metabarcoding studies and projects were 
launched that already include ESB samples into molec-
ular approaches. Tapping into this resource opens up 
high-quality, well-documented sample collections that 
allow easily adding a retrospective component to bio-
monitoring projects. For a fruitful synergy, biomoni-
toring research should be aware of ESBs as convenient 
sample sources and archives, while the ESB commu-
nity should embrace biodiversity analyses as a new and 
highly relevant use of its collections. Thus, ESBs should 
cater increasingly also to the needs of the biomonitor-
ing community, ideally in partnership with Biodiversity 
Biobanks. With further transparency of ESBs and the 
standardized publication of data, ESBs can become the 
basis for a wide array of interconnected scientific stud-
ies that allow scientists, natural resource managers and 
policy-makers an informed look back in time from an 
integrated biological and chemical perspective.
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