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Abstract 

Background:  Worldwide rising trend in infertility has been observed in the past few years with male infertility arising 
as a major problem. One main reason for the rise in male infertility cases is declining semen quality. It was found that 
any factor that affects semen quality can affect male fertility. There are several modifiable factors affecting semen 
quality including air pollution, use of pesticides and harmful chemicals, exposure to excessive heat, and can lead to 
decreased male fertility.

Main body:  The present review focuses on some of these environmental factors that affect semen quality and 
hence, can cause male infertility. The literature from 2000 till June 2021 was searched from various English peer-
reviewed journals and WHO fact sheets using the USA National Library of Medicine (PubMed) database, the regional 
portal of Virtual Health Library, and Scientific Electronic Library Online. The search terms used were: “Air pollution and 
male fertility”, “Chemicals and male infertility”, “Heat exposure and infertility”, “heavy metals and male fertility”.

Conclusion:  Adverse environmental factors have a significant impact on semen quality, leading to decreased sperm 
concentration, total sperm count, motility, viability, and increased abnormal sperm morphology, sperm DNA fragmen-
tation, ultimately causing male infertility. However, all these factors are modifiable and reversible, and hence, by mere 
changing of lifestyle, many of these risk factors can be avoided.
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Background
Worldwide infertility affects around 8–12% of couples, 
with male-factors identified as the primary cause in 
50% of cases [1]. Furthermore, around 7% of all men are 
affected by male infertility all over the world [2]. Many 
factors predispose to male infertility including congenital 
malformations, hormonal, genetic, behavioral, iatrogenic, 
environmental, and lifestyle factors [3]. Environmen-
tal pollution has emerged as a major cause for the rising 
trend of male infertility in today’s era all over the world 

due to the universal presence of environmental contami-
nants. Recent studies have revealed that air pollution has 
a significant impact on human fertility and sperm quality 
[4, 5].

Semen quality is the major predictor of male fertility 
outcome [6]. It was observed that environmental pollu-
tion unfavorably affects semen quality by impairing the 
process of spermatogenesis, steroidogenesis, Sertoli cell, 
and sperm functions, thereby leading to decreased male 
fertility [7, 8]. Furthermore, there are numerous natural 
and man-made chemicals that are released into the envi-
ronment daily and have deleterious impacts on human 
fertility. Despite, the adverse impacts of environmental 
chemicals such as industrial waste, pesticides, insecti-
cides, herbicides, food additives, etc. on spermatogenesis 
in adult men, there is very scarce data available on the 
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direct impact of these chemicals in humans. The available 
studies are usually in an occupational setting, where the 
population is exposed to these substances at very high 
concentrations and not for the general population [9, 10].

The present review briefs the impact of various envi-
ronmental factors that affect male fertility including air 
pollution, working environment, increased risk of expo-
sure to chemicals, radiation, and heat. All these factors 
are modifiable and can hence, provide opportunities for 
the treatment of male infertility. Figure  1 Summarizes 
the effects of environmental factors on semen quality. 
Some of these environmental factors and their impact on 
semen quality, sperm, and overall male fertility are dis-
cussed in detail as under:

Environmental factors
Air pollution
Nowadays alarming rise in air pollution in many cities of 
the world has affected human health to a large extent and 
has also led to a rise in the number of diseases including 
respiratory [11], cardiovascular [12], skin-related [13], 
cancers [14] and reproductive diseases [15–17]. Further-
more, India is the second most populated country and 
the third most air polluted country all over the world 
[18].

The main sources of air pollution include motor vehi-
cle exhaust, factories, fire, household, agriculture, waste 
treatment, oil refineries, natural sources, such as volcanic 
eruptions, wind, etc. The major air pollutants affect-
ing human health are particulate matter, volatile organic 
compounds, ozone, nitrogen oxides, sulfur dioxide, car-
bon monoxide, polycyclic aromatic hydrocarbons (PAH), 
and radiations, such as X-ray exposure [15, 19]. The par-
ticulate matter present in the air in form of tiny liquid 
or solid droplets can be inhaled and can result in seri-
ous health effects [20] Furthermore, particles < 10 μm in 
diameter (PM10) are very harmful and after inhalation are 
known to invade the lungs and can even reach the blood-
stream causing numerous deleterious impacts. Finer par-
ticles, such as PM2.5, are even more dangerous and pose a 
greater risk to health [21].

Numerous recent researches have shown the adverse 
effect of air pollution on reproductive outcomes in both 
males and females. It seriously affects the semen qual-
ity in males. It was observed that air pollution causes 
increased sperm Deoxyribonucleic acid (DNA) frag-
mentation, sperm morphological changes, and reduced 
sperm motility [22]. A systematic meta-analysis reported 
that the level of air pollution was significantly associated 
with decreased semen volume, sperm concentration, 

Fig. 1  Impact of environmental and lifestyle factors on semen quality and male fertility
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progressive and total sperm motility, and normal sperm 
morphology rate. It also results in increased sperm DNA 
fragmentation index, further leading to decreased fertil-
ity in males [23]. A recent study evaluated the association 
between  various gaseous pollutants  and semen qual-
ity and reported that Sulfur dioxide (SO2)  exposure has 
significant negative impacts on sperm parameters dur-
ing all exposure windows. They also observed that both 
SO2 and nitrogen dioxide (NO2) had significant adverse 
impacts on sperm concentration and motility which was 
found to be more aggressive in the initial phase of sper-
matogenesis. Hence, concluding that gaseous pollut-
ants have a significant adverse impact on semen quality 
especially during the sperm development period [24]. 
Findings of original research reported that in motorway 
tollgate workers the total sperm motility, forward pro-
gression, and sperm kinetics were significantly lesser as 
compared to other men living in that area. It was found 
that the nitrogen oxide and lead released from automo-
bile exhaust severely affected the overall semen quality 
in these men as compared to their controls [25]. A study 
reported that tollgate workers who are exposed to large 
amounts of automobile exhaust had an increased quan-
tity of damaged sperm chromatin and fragmented DNA 
as compared to their unexposed healthy men, and hence, 
concluded that car exhaust exposure can lead to a signifi-
cant genotoxic effect on human spermatozoa [26].

One major air pollutant is ozone. Ozone can result 
in decreased percentages of sperm with normal sperm 
morphology and hence, can explain the rising trend of 
males reporting to infertility clinics with abnormal sperm 
morphology [27]. Recent studies have proposed the role 
of particulate matter 2.5 (PM2.5), a fine particulate mat-
ter that is the main component of haze and an important 
indicator of air pollution in causing male infertility [28, 
29]. It was observed that exposure to PM2.5 results in an 
increased number of sperm cells with cytoplasmic drop 
and morphological abnormalities in sperm heads [30]. 
Other similar studies have also found a significant inverse 
relationship between PM2.5  and sperm motility, sperm 
concentration, total sperm count, sperm head morphol-
ogy, and overall semen quality [31, 32].

The exact mechanism by which air pollutants result 
in male infertility is not clear, but it can be explained to 
some extent by the facts that air pollution leads to: a). 
Hormonal disruption: The heavy metals such as lead, 
zinc, copper, and PAH present in the exhaust of auto-
mobiles have estrogenic, antiestrogenic, and antian-
drogenic actions, which in turn can result in abnormal 
gonadal steroidogenesis and gametogenesis, thereby 
leading to infertility [33, 34]. Another recently stud-
ied particulate matter PM2.5 gets accumulated in the 
reproductive organs through blood-testis, epithelial, or 

placental barrier and can disrupt hormone levels, lead-
ing to infertility [28]; b). Increased production of reactive 
oxygen species due to oxidative stress, leading to lipid 
peroxidation, sperm DNA fragmentation, and infertility 
[33, 35]; c). Sperm DNA alteration due to the formation 
of DNA adducts especially with PAH results in changes 
in gene expression and DNA methylation causing male 
infertility [33, 36]. Hence, air pollution is one major fac-
tor in today’s era resulting in defective spermatogenesis, 
increased sperm DNA fragmentation, reduced motility, 
and abnormal morphological changes, leading to a rise in 
male infertility.

Exposure to harmful chemicals
Human beings all over the world are exposed to a wide 
variety of chemicals in their day-to-day life. Many of 
these chemicals have serious ill effects on the function-
ing of the human body, especially reproductive organs. 
Recent studies have shown that male reproductive organs 
are one of the major sites for insults resulting from expo-
sure to environmental chemicals leading to male infertil-
ity [37]. A recent large cross-sectional study on maternal 
occupational exposure to potential endocrine-disrupting 
chemicals during pregnancy, especially to pesticides, 
phthalates, and heavy metals on the semen quality of 
their sons in adulthood reported a significant correlation 
between maternal occupational exposure with low semen 
volume and total sperm count in their sons. Further-
more, a significant association was found between mater-
nal heavy metal exposure and low sperm concentration. 
Hence, they concluded that there is need to inform preg-
nant women about the potential hazards of chemicals 
during pregnancy that can impair their child’s fertility, 
though further studies are needed to confirm the impact 
of endocrine disrupting chemicals on fertility [38]. Some 
of the chemicals that significantly affects male fertility are 
summarized as under:

Dioxins  Dioxins are a group of highly persistent lipo-
philic chemicals produced as a by-product to several 
industrial and natural processes including smelting, chlo-
rine bleaching of paper and pulp, in production of some 
pesticides, biomedical and plastic waste incineration 
[39–41]. Chemically it is 2,3,7,8- tetrachlorodibenzo para 
dioxin (TCDD) and is considered a “dirty dozen” that is a 
cluster of hazardous chemicals also known as persistent 
organic pollutants (POPs) as they resist biological and 
environmental degradation. They are of concern because 
of their highly toxic nature and ability to get absorbed by fat 
tissue and stored in the body for long periods (7–11 years) 
[36]. They are known to cause serious reproductive, devel-
opmental, and cancer problems [42]. Dioxins act as endo-
crine disruptors and mediate their effects by binding to 
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the aryl hydrocarbon receptor (AHR)/aryl hydrocarbon 
receptor nuclear translocator (ARNT) receptor complex 
present over human testicular cells to mediate their toxic 
effects [43]. The exact mechanism by which it affects the 
reproductive functions in humans is not clear. A recent 
study in male Zebrafish proposed DNA methylation as 
a possible mechanism of reproductive effects of dioxins 
[44]. Since DNA methylation pattern in zebrafish is car-
ried down paternally through the sperm [45], inheritance 
of epimutations in the DNA methylome is a promising 
mechanism of transgenerational male-mediated repro-
ductive defects resulting from TCDD exposure. Further-
more, early disruption of DNA methylation during gonad 
development can result in reproductive and epigenetic 
gene changes leading to impaired reproductive functions 
[46]. A study on 135 human males exposed to dioxin at 
three age groups (prepuberty, puberty, and adulthood), 
and 184 healthy males as control reported that exposure 
to dioxin in prepubertal males was significantly associ-
ated with reduced sperm concentration and motility [47]. 
Only available human study on dioxin exposure during 
the developmental stage reported that male babies fed 
on breast milk of women exposed to high concentra-
tions of dioxins at the time of conception had significantly 
decreased sperm concentration, total sperm count, and 
total sperm motility [48]. Another retrospective study 
also reported that the dioxin and furan content was 2.2–
2.3 times higher in the ejaculate of infertile males as com-
pared to the fertile ones [49]. A recent study in male mice 
reported a significant fall in sperm motility and count, in 
mice exposed to dioxin. Furthermore, on testicular his-
topathology, they observed necrotic degeneration and 
reduced epithelium thickness in mice exposed to dioxin as 
compared to the controls [50]. Furthermore, supporting 
the fact that dioxin exposure seriously affects the sperm 
functions in males resulting in poor quality semen and 
hence, male infertility.

Plastic contaminants (Bisphenols): Plastic use has 
become indispensable in our daily lives, but being non-
biodegradable, it has now become a major cause of 
concern all over the world. Bisphenol A (BPA) a major 
component of plastic is released into the environment 
during the process of production, use, or disposal of plas-
tics and from break-down of industrial plastic-related 
wastes [51]. In a recent study in the United States, adults 
and children reported that Bisphenols substitutes such 
as Bisphenol F, bisphenol S, and bisphenol A are almost 
universal [52]. It is nowadays considered hazardous to 
human health, because of its universal presence, pro-
longed persistence in the environment, and as an endo-
crine disruptor. It has been linked to numerous health 
problems including cardiovascular diseases, metabolic 
disorders, infertility, and cancers [53–55]. It was found 

that BPA has estrogenic, antiandrogenic, and antithyroid 
activities and hence, can disrupt the hypothalamic–pitui-
tary–gonadal axis, resulting in altered reproductive sys-
tem functions [54]. Increased exposure to BPA results 
in sperm DNA damage, mitochondrial dysfunction, and 
degeneration, decreased sperm motility, sperm count, 
and increased risk of aneuploidies in sperm [54, 56]. 
Numerous studies on rodents have shown that BPA 
exposure in male rodents results in a significant decrease 
in sperm motility, count, normal sperm morphology, 
increased sperm DNA damage, and adversely affects the 
spermatogenesis process resulting in male infertility [53, 
57–59]. Another recent study reported that excessive 
exposure to BPA results in impaired sperm motility by 
reducing the sperm Adenosine Triphosphate (ATP) lev-
els and premature acrosome reaction resulting in poor 
fertilization and embryonic developmental problems 
[60]. Other studies have also found a close association 
between increased BPA exposure and poor semen qual-
ity and parameters including sperm quality and motil-
ity [61–63]. The exact mechanism by which BPA affects 
human sperm quality is still under research but it was 
found that BPA is an endocrine disruptor that results in 
inhibition of anti-apoptotic pathways such as Bcl-2 and 
causes activation of pro-apoptotic signaling pathways 
including mitogen-activated protein kinase (MAPK), Fas/
FasL, Caspase 3 and 9, Bax leading to diminished pro-
liferation, increased reactive oxygen species-mediated 
damage and enhanced apoptosis of male gametes [64]. 
It acts as an Androgen receptor (AR) antagonist result-
ing in reduced AR translocation and increases AR tran-
scriptional corepressors thereby resulting in suppression 
of Sertoli cell proliferation [65]. A study in mice reported 
that BPA inhibits testosterone synthesis in male pups 
[66]. This decreased testosterone levels in plasma results 
in reduced expressions of steroidogenic enzymes, choles-
terol carrier protein in Leydig cells, and plasma Lutein-
izing hormone (LH) levels. BPA also results in decreased 
Leydig cell numbers in the testis [67]. All leading to male 
reproductive dysfunction. Hence, prolonged exposure to 
BPA in excessive concentrations can affect male fertility.

Pesticides and  herbicides  Pesticides especially dibro-
mochloropropane, ethylene dibromide which has been 
extensively studied is known to cause direct spermatozoa 
damage, Sertoli or Leydig cell function alteration, disor-
dered endocrine function during hormonal regulation of 
processes, such as synthesis, release, storage, transport, 
and clearance of hormones; binding of hormones to their 
receptors, thyroid function, etc. leading to male infertil-
ity [68]. Organochlorine pesticides which are widely used, 
including DDT and its metabolites, act as endocrine-
disrupting chemicals [69]. The main metabolite of DDT, 
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p,p′-Dichlorodiphenyl-dichloroethylene (p,p′-DDE), is 
an anti-androgenic and binds to androgen receptors and 
hence, inhibits the action of testosterone [70]. Further-
more, it was observed that p,p′-DDE may have an additive 
or multiplicative effect with other endocrine-disrupting 
environmental pollutants leading to adverse impacts on 
reproductive functions [69]. Pesticide exposure can result 
in defective spermatogenesis leading to reduced sperm 
concentration, sperm motility, an increased number of 
morphologically abnormal sperms, causing poor semen 
quality and reduced male fertility [71]. A recent study 
on the in-vitro impact of Herbicide Roundup on human 
sperm motility and sperm mitochondria reported that 
the direct exposure of semen samples to the active com-
ponent of this herbicide even at a very low concentration 
of 1 mg/L can result in adverse effects on sperm motil-
ity and in sperm mitochondrial dysfunction [72]. At low 
doses, Roundup herbicide also induces oxidative stress 
and causes Sertoli cell death [73]. Another commonly 
used pesticide is DDT. Its main metabolite is 1,1-dichloro-
2,2-bis(4-chlorophenyl) ethylene and direct exposure to 
this metabolite was found to be strongly associated with 
sperm immobility and mitochondrial dysfunction in a 
concentration-dependent manner [74, 75]. Furthermore, 
it’s been 49  years, since organochlorine chemicals such 
as DDT and polychlorinated biphenyls (PCB) have been 
banned in the USA, but that doesn’t mean that they are 
gone. They persist in the environment for years after use 
and are known as ‘legacy pesticide’ and still can produce 
deleterious impacts on male fertility. Organochlorine 
chemicals show resistance to breakdown, can bioaccu-
mulate, enter the food chain, and can be transported over 
long distances [76, 77]. The use of DDT has been restricted 
in many nations across the world as a result of the Stock-
holm Convention, 2004 as a measure to protect human 
and environmental health from the side effects of expo-
sure to specific persistent organic pollutants. Although 
its use in South Africa continued for malaria vector con-
trol and a cross-sectional study from this area reported 
a statistically significant positive correlation between the 
percentage of sperm with cytoplasmic droplets, teratozo-
ospermia, asthenospermia, and oligospermia with blood 
plasma concentration of DDT and an inverse correlation 
with semen volume. Hence, they concluded that nonoc-
cupational exposure to DDT results in impaired seminal 
parameters in healthy men [78]. A recent study observed 
that pesticide exposure also results in erectile dysfunc-
tions in males, by causing apoptosis of Leydig cells, 
thereby decreasing the overall concentration of circulat-
ing testosterone in the body [79]. Many environmental 
pollutants including pesticides, polybrominated diphenyl 
ethers, BPA, phthalates act as endocrine-disrupting com-
pounds. These chemicals are known to induce the MAPK 

signaling pathway in the testis. Three MAPK signaling 
pathways are known to be involved in pesticides related 
testicular injury. The testicular Erk1/2, p38 MAPK result 
in disruption of the blood testes barrier by blocking gap 
junction communications leading to germ cell depletion 
from the seminiferous epithelium [80]. Hence, prolonged, 
and excessive exposure to various pesticides and herbi-
cides in our daily life can be a cause of compromised male 
fertility.

Phthalates  Phthalates, also known as Phthalic acid 
diesters are a group of man-made chemicals that are used 
in several consumer and industrial goods [81]. They are 
universally present environmental chemicals commonly 
found in many consumer products such as toys, pharma-
ceuticals, cosmetic products, building and construction 
materials, scent retainers, some medications, personal 
care products, etc. [82] and are known for their anti-
androgenic activity. Phthalate gets easily absorbed in the 
human body through ingestion, skin, or inhalation of con-
taminated air. It causes a wide array of male reproductive 
organ dysfunction known as “phthalate syndrome” com-
prising of diminished anogenital distance, infertility, low 
sperm count, undescended testes, hypospadias, and many 
other reproductive-tract anomalies [83]. Phthalates, espe-
cially mono-(2-ethyl-hexyl) phthalate (MEHP), an active 
metabolite of Di-2-ethylhexyl phthalate (DEHP) causes 
activation of both PPAR (peroxisome proliferator-acti-
vated receptor) α and γ pathways [84], which in turn stim-
ulates PPAR: RXR (retinoid X receptor) heterodimers that 
compete for DNA binding sites required for gene tran-
scription, thus stopping the transcription of aromatase 
enzyme involved in sexual development. Furthermore, 
MEHP decreases the production of steroidogenic pro-
teins including steroidogenic acute regulatory (StAR), and 
cytochrome P450 side-chain cleavage (P450scc), thereby 
adversely affecting male reproductive health. At high lev-
els, it inhibits the activity of 3β-hydroxysteroid dehydroge-
nases (3β-HSD) and 17β-hydroxysteroid dehydrogenases 
(17β-HSD) specific to Leydig cell function in addition to 
the steroidogenic proteins by causing increased oxidative 
stress in Leydig cells, and hence, decreases testosterone 
synthesis [85]. A recent study conducted on male partners 
of infertile couples found that males who were exposed 
to ortho-phthalate drugs had poor semen quality as com-
pared to unexposed ones [86]. Several other studies have 
also reported that phthalate exposure in humans has a 
significant adverse impact on overall semen quality [87, 
88]. It causes reduced semen volume, total sperm counts, 
sperm concentration, morphological abnormalities of 
sperm head including large sperm head sizes, and other 
variations [61, 87]. Furthermore, it was observed that 
exposure to mono-methyl phthalate (MMP) and mono-
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cyclohexyl phthalate (MCPP) results in reduced sperm 
motility [87, 89]. Another recent study on the impact of 
eight phthalate metabolites measured in urine samples 
of 599 men attending an in-vitro fertilization clinic on 
the male reproductive functions and semen parameters 
reported an inverse correlation between serum testos-
terone and mono-isobutyl phthalate, FSH, and mono-
(2-ethyl-5-hydroxyhexyl) phthalate, and prolactin and 
mono-(2-ethyl-5-oxohexyl) phthalate. Furthermore, they 
reported a positive correlation between sperm concen-
tration and mono-(2-ethyl-5-carboxypentyl) phthalate, 
mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-
ethyl-5-oxohexyl) phthalate, and DHEP, but a negative 
correlation with the percentage of MEHP to molar sum of 
DHEP metabolites, hence indicating the need for further 
studies on the role of phthalates in male fertility [90]. Sev-
eral mechanisms have been proposed for how phthalates 
affect male fertility by causing testicular damage, impair-
ing normal testicular tissue structure, decreasing levels 
of circulating testosterone and other reproductive hor-
mones, increasing sperm abnormalities, and by decreas-
ing Sertoli cell viability [61, 91, 92]. A study reported that 
fetal exposure of male rats to di (n-butyl) phthalate results 
in testicular changes that are very similar to testicular 
dysgenesis syndrome observed in humans, characterized 
by focal areas of dysgenetic tubules in normal testes. di 
(n-butyl) phthalate exposure leads to abnormal accumula-
tion of significantly small Leydig cells centrally in the fetal 
testis. The testosterone levels were also reduced. These 
Leydig cell collections did not exhibit features of focal 
proliferation as observed normally and have trapped iso-
lated Sertoli cells within them resulting in the formation 
of dysgenetic tubules. These centrally located dysgenetic 
tubules have germ cells in early puberty, but have only 
Sertoli cells by adulthood, indicating that the presence of 
intratubular Leydig cells adversely affects spermatogen-
esis [93]. Hence, exposure to phthalates, a common com-
ponent of many products used in daily life can affect male 
fertility.

Heavy metals  Another widespread environmental pol-
lutant that can affect male fertility are non-essential heavy 
metals, such as lead, cadmium, arsenic, mercury, barium, 
etc. These heavy metals can adversely affect the semen and 
sperm quality in men. It was observed that the presence 
of Cadmium and Barium in blood, and Lead, Cadmium, 
Barium, and Uranium in seminal plasma were closely 
linked with increased risk for reduced sperm viability 
and normal sperm morphology [94]. Heavy metals affect 
male fertility by inducing reactive oxygen species genera-
tion, which in turn cause lipid peroxidation, sperm DNA 
damage, leading to infertility [95]. Lead and cadmium are 
known reproductive toxicants and are suspected endo-

crine disruptor compounds, which can alter hormonal 
levels in men and cause impaired semen quality and male 
infertility [96]. A study reported that exposure to high 
concentrations of copper sulphate (CuSO4—250  µg/ml) 
and Cadmium chloride (CdCl2—500  µg/ml) was associ-
ated with significantly reduced sperm motility parameters 
[97]. This was supported by the findings of another study 
which reported the association of heavy metals, such as 
lead, cadmium, mercury, zinc with oligospermia and male 
infertility [98]. Many other studies have also proposed the 
role of heavy metals in male infertility [99, 100].

Heat exposure
Another major factor that may contribute to male infer-
tility is exposure to excessive heat at the workplace or 
due to climate change. Temperature plays a crucial role 
in maintaining normal spermatogenesis in testes. The 
scrotal temperature is 2–4  °C lower than the core body 
temperature [101, 102] and any factor that causes a rise 
in scrotal temperature will affect the spermatogenesis 
process resulting in male infertility [103]. Furthermore, 
it was observed that 1–1.5  °C elevation in scrotal tem-
perature can result in impaired sperm production (oli-
gozoospermia, azoospermia, teratozoospermia), and 
sperm morphological abnormalities [104]. Environmen-
tal stresses, such as a temperature rise, resulting in the 
activation of heat shock protein (HSP). Of these the most 
important is HSP70s, one of the major classes of proteins 
induced by elevated temperatures. They are responsible 
for the folding, assembly, and disassembly of other pro-
teins [105] and are known to play a crucial role in sper-
matogenesis [106]. Hence, any factor that perturbs their 
normal expression and regulation results in an adverse 
impact on male fertility [107]. A study on 37 infertile 
men (cases) and 13 fertile men (controls) reported that 
HSP 70 levels were significantly increased in the infer-
tile group as compared to fertile males, thereby conclud-
ing that HSP 70 expression increases in spermatozoa of 
infertile men as a protective mechanism against apop-
tosis [108]. Constant exposure to high temperatures as 
seen in cases of occupational exposure to radiant heat in 
people working in furnaces, bakeries, welding or ceramic 
factories, those working for long hours in kitchens, laun-
dries, dry cleaning shops, or drivers can result in loss of 
thermoregulatory function of scrotum affecting one or 
more component of semen quality in males [103, 109]. 
This fact was further supported by a study that revealed 
that tight undergarments in men also lead to a rise in 
scrotal temperature resulting in decreased sperm con-
centration, total sperm count, motility, and hence, male 
infertility [110]. It was observed that higher scrotal tem-
peratures result in a rise in testicular metabolism without 
the surge in blood supply, leading to local tissue hypoxia 
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and oxidative stress [111]. Human spermatozoa are very 
susceptible to oxidative stress-induced lipid peroxida-
tion because of high levels of polyunsaturated fatty acids 
(PUFAs) in their plasma membrane [112]. This in turn 
causes increased production of reactive oxygen species 
(ROS) which causes increased sperm DNA fragmenta-
tion and male infertility [113, 114]. It was demonstrated 
recently that excessive heat exposure causes decreased 
sperm motility by downregulating mitochondrial activity 
and reducing ATP levels [115]. Furthermore, a transient 
rise in scrotal temperature results in a reversible drop 
in proteins essential for the spermatogenesis process, 
gamete interaction, and sperm motility [116]. A recent 
study on male rats reported that exertional heatstroke 
can cause erectile dysfunctions, disruption of testicular 
temperature, poorly differentiated seminiferous tubules, 
diminished sperm quality, loss of interstitial Leydig cells, 
Sertoli cells, leading to azoospermia and infertility [117]. 
Another similar study conducted on bovine sperm also 
reported that heat stress in bulls induces seminal plasma 
oxidative stress thereby affecting the sperm mitochon-
drial function, motility, plasma membrane integrity, 
and DNA fragmentation, ultimately leading to infertil-
ity [118]. Another study observed the impact of wet heat 
exposure in the forms of hot tubs, Jacuzzi or hot baths 
in infertile male partners and concluded that the toxic 
effects of wet heat exposure are reversible, and with-
drawal of hyperthermia resulted in increased sperm 
motility and quality in these patients, further support-
ing the fact that excessive heat exposure affects sperm 
parameters and can cause infertility in males [119]. A 
large longitudinal study including 10,802 Chinese men 
in Wuhan was conducted to quantitatively evaluate the 
exposure–response relationship between ambient tem-
perature exposure and semen quality and observed that 
exposure to extremes of temperature, both high and low 
was found to be associated with decreased semen qual-
ity including reduced sperm concentration, total sperm 
count, total motility, progressive motility [120]. Another 
similar study reported that seasonal and monthly tem-
perature variation has a significant impact on the human 
semen parameters. It was observed in their study that 

sperm concentration and total amount per ejaculate 
was significantly lower in summer and higher in winter, 
whereas the sperm progressive and total motility was 
found to be higher in spring and summer and lower in 
autumn and winter [121]. A large data analysis study in 
Northern Italy to evaluate the impact of environmental 
temperature and air pollution on semen parameters also 
reported that total sperm number was significantly lower 
in summer/autumn and was found to be inversely related 
with the duration of daylight [122]. Hence, though the 
data related to the impact of season or climate change 
on human semen quality is very little, pieces of evidence 
have been found to link extreme changes of tempera-
ture with poor semen quality. Other studies have also 
reported the impact of seasonal and environmental tem-
perature variation on sperm quality [123–125]. Further-
more, many animal studies have also shown that a rise in 
testicular temperature results in reduced testicular size, 
decreased sperm production, increased abnormal sperm 
forms, and reduced motility leading to male infertility 
[115, 126, 127]. Hence, exposure to high temperatures 
both due to occupation or environmental factors has 
a deleterious impact on overall semen quality and can 
cause male infertility.

Table  1 depicts the impact of various environmental 
factors on male fertility in human and animal studies.

Conclusion
Hence, the environment plays a crucial role in male fer-
tility. Adverse environmental factors can result in poor 
semen quality with decreased sperm concentration, 
sperm motility, viability, normal morphological forms, 
and increased sperm DNA fragmentation index, mito-
chondrial dysfunction, all leading to male infertility. 
However, all these factors can be prevented or modi-
fied, allowing us to decrease the risk associated with 
them. Decreasing air, chemical pollution, heat exposure 
and bringing positive changes in our daily lifestyle can 
prevent these adverse impacts on semen quality to a 
large extent, thereby reducing the overall incidence of 
male infertility.
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