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DISCUSSION

Mast cell activation may explain many cases 
of chemical intolerance
Claudia S. Miller1, Raymond F. Palmer1*  , Tania T. Dempsey2, Nicholas A. Ashford3 and Lawrence B. Afrin2 

Abstract 

Background:  This paper explores the relationship between chemical intolerance (CI) and mast cell activation syn-
drome (MCAS). Worldwide observations provide evidence for a two-stage disease process called toxicant-induced 
loss of tolerance (TILT) as a mechanism for CI. TILT is initiated by a major exposure event or a series of lower-level 
exposures. Subsequently, affected individuals report that common chemical inhalants, foods, and drugs (i.e., various 
xenobiotics) trigger multi-system symptoms.

Purpose:  To determine whether MCAS provides a plausible biological mechanism for CI/TILT.

Methods:  Using the validated Quick Environmental Exposure and Sensitivity Inventory (QEESI), we compared 
patients diagnosed with MCAS (n = 147) to individuals who reported chemical intolerances (CI/TILT) following various 
exposures (n = 345) and to healthy controls (n = 76). Using ANOVA, we compared QEESI scores across groups. Clinical 
scores for the MCAS patient group were used to predict CI status using logistic regression.

Results:  More than half (59%) of the MCAS group met criteria for CI. A logistic regression model illustrates that as the 
likelihood of patients having MCAS increased, their likelihood of having CI/TILT similarly increased, to a near-perfect 
correspondence at the high ends of the QEESI and clinical MCAS scores. Symptom and intolerance patterns were 
nearly identical for the CI and MCAS groups.

Discussion:  We present data suggesting that xenobiotic activation of mast cells may underlie CI/TILT. The strikingly 
similar symptom and intolerance patterns for MCAS and TILT suggest that xenobiotics disrupt mast cells, leading to 
either or both of these challenging conditions. Faced with patients suffering from complex illness affecting multiple 
organ systems and fluctuating inflammatory, allergic, and dystrophic symptoms, clinicians can now ask themselves 
two questions: (1) Could MCAS be at the root of these problems? (2) Could environmental exposures be driving MC 
activation and mediator release? Increasing our understanding of the connection between TILT and MCs has the 
potential to expose a new link between environmental exposures and illness, offering new opportunities for improv-
ing individual and public health.

Conclusion:  The close correspondence between QEESI scores and symptom patterns for MCAS and TILT patients 
supports xenobiotic-driven mast cell activation and mediator release (i.e., MCAS) as a plausible unifying biological 
mechanism for CI/TILT, with profound implications for medicine, public health, and regulatory toxicology.

Keywords:  Chemical intolerance, Drug intolerance, Environmental exposure, Food intolerance, Mast cell, Mast cell 
activation syndrome, Regulatory toxicology, Toxicant-induced loss of tolerance (TILT), Xenobiotics, Allergies
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Introduction
Chemical intolerance
Chemical, food, and drug intolerances are growing 
international concerns [1–5]. These intolerances may 
arise following exposures to building construction or 
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remodeling, pesticides, military environments (e.g., Gulf 
War), combustion products (e.g., World Trade Center 
disaster, burn pits, wildfires), chemical spills or releases, 
surgical implants, mold, and many other sources [6, 7]. 
The exposures may be a one-time acute event; a series 
of exposures; or long-term, low-level exposures. They 
often involve particular synthetic chemicals such as an 
organophosphate pesticide, a combination of synthetic 
substances, and/or their combustion products. These 
xenobiotics enter the body via well-known routes: inha-
lation, ingestion, skin contact, and/or injection/implanta-
tion. What remains unclear is why a subset of individuals 
would subsequently develop multi-system symptoms and 
persistent intolerances to chemicals, and often foods and 
drugs, which never bothered them before and do not 
bother most people. Over the past 70  years, strikingly 
similar reports have emerged from patients, doctors, 
and researchers around the world supporting chemical 
intolerance (CI) as a novel, or at least previously unrec-
ognized, disease.

Many patients attribute onset of their illness and intol-
erances to a well-defined exposure event [7, 8]. (Readers 
are directed to this study’s companion paper addressing 
CI initiating events [7]). Different family members or co-
workers who become ill frequently exhibit different man-
ifestations, confounding physicians and investigators [6]. 
Individuals affected by a particular infectious agent or 
toxicant often share recognizable constellations of symp-
toms. This is not the case for CI patients, which has ham-
pered efforts to establish a consensus case definition for 
CI. It also suggests a mechanism for CI which is distinct 
from other infectious/toxicant exposures.

There is accumulating evidence for a two-stage causal 
model linking xenobiotic exposures to subsequent intol-
erances first described by Miller in 1996 as toxicant-
induced loss of tolerance (TILT) [9]. The origins of these 
intolerances variously have been attributed to classical 
toxicity, allergy, and psychological factors [10–12]. Up to 
now, an understandable biological mechanism for them 
has remained elusive.

Mast cells
In the last decade, our understanding of the evolution-
arily ancient mast cell (MC) and its ability to effect a 
host of inflammatory, allergic, and other responses 
throughout the body has expanded rapidly [13–15]. 
Several factors have resulted in a likely underestima-
tion of the MC’s pivotal role in disease: (1) since the 
discovery of IgE, allergy’s principal focus has been on 
the humoral, as opposed to the cellular, immune sys-
tem; (2) MCs’ typically tiny numbers and their sparse 
distribution in most tissues have contributed to their 
anonymity; and (3) MCs are minimally present in the 

blood, and even where they are present, it has been a 
challenge to identify and isolate them [16–20].

These sentinel cells guard the perimeters of our skin 
and other organs, warding off invaders and protect-
ing our internal milieu. They serve as first responders 
to most bodily invasions and insults. Mast cells origi-
nate in the bone marrow and migrate to the interface 
between our tissues and the external environment [14, 
15]. They are highly evolved, critical components of the 
cellular immune system [15], supporting both innate 
and adaptive immunity. Largely lying in wait, these 
warriors spring into action if they perceive a major 
threat, releasing a vast array of mediators all at once.

Once triggered, MCs can deploy more than 1000 dis-
tinct cell-surface mediator receptors [21] resulting in 
inflammation, allergic-like phenomena, or altered tis-
sue growth and development (dystrophism) [22, 23]. 
See Additional file 1: Table S1 for representative exam-
ples of key mast cell mediators. MCs respond to a wide 
variety of antigenic triggers and physical forces, causing 
release of pre-stored and/or newly synthesized media-
tors particular to the insult and its anatomic location 
[8, 16, 17]. Appropriate MC mediator release helps tis-
sues resist and recover from insults; aberrant release is 
harmful in ways specific to the locations and patterns of 
the released mediators. Preliminary investigations sug-
gest highly heterogeneous, complex profiles of somatic 
MC regulatory gene mutations drive many cases of 
MCAS [24].

We have long been aware of MCs’ ability to precipi-
tate anaphylaxis in response to bee stings, peanuts, 
and other allergens in previously sensitized individu-
als. MC’s release of histamine into the surrounding 
tissues and bloodstream leads to immediately recog-
nizable hives, hypotension, syncope, respiratory arrest, 
and even death [25, 26]. We now understand, however, 
that there is an extensive array of other mediators that 
MCs selectively release in response to varying stimuli, 
including low molecular weight chemicals like formal-
dehyde and volatile organic compounds [21, 27]. The 
MC’s enormous repertoire of cell-surface receptors can 
identify an extraordinary array of signals and effect pre-
cise responses [15, 17, 21]. Even while a MC is launch-
ing its pre-formed armaments, it signals other cells to 
join the battle. Meanwhile, behind the frontline, MCs are 
reloading their weapons and stockpiling new munitions 
[22, 23, 25, 26]. Thus, our so-called “primitive” immune 
system is, in fact, quite sophisticated. It was many dec-
ades following the discovery of IgE and its relationship 
to anaphylaxis and classical allergies (such as pollen, 
animal dander, and dust mites) that we learned of MCs’ 
capacity to respond to a vast range of stimuli—reveal-
ing new, alternative pathways for their activation and 
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degranulation, even in the absence of “classic” binding of 
antigen with immunoglobulins.

The fact that CI individuals often report immediate 
symptoms following seemingly insignificant exposures, 
such as a whiff of fragrance, has led some to speculate 
that the mechanism underlying CI must be neurologi-
cal.  However, MCs can explosively release, or gradually 
leak, their mediators. In fact, there is no cellular ele-
ment of the immune system that reacts faster than mast 
cells.  Lymphocytes take hours to activate, neutrophils 
require minutes, but MCs can respond to a trigger in 
sub-second time [16, 17, 28].

A crucial link between our contemporary exposures 
and our ancient MCs appears to have been missed. The 
MC’s evolutionary path stretches back to half a billion 
years [13, 15]. In contrast, emergence of the chemical 
industry, associated with the industrial revolution, took 
place only a few hundred years ago (1760–1820). Since 
WWII, more and more synthetic organic chemicals have 
crept into our personal environments. In response to the 
oil embargo and energy conservation efforts in the 1970s, 
many homes and buildings were sealed more tightly, 
resulting in insufficient fresh air to dilute contaminants. 
This has resulted in the accumulation of every sort of 
indoor air pollutant to levels higher than ever before (e.g., 
volatile, and semi-volatile organic chemicals outgassing 
from new construction and remodeling materials, pes-
ticides, mold, disinfectants, and cleaning agents) [6, 7]. 
Only now are we learning that our contemporary expo-
sures may be provoking MCs to release their inflamma-
tory mediators, resulting in a condition often referred to 
as “mast cell activation syndrome” (MCAS) [29].

Although proposed diagnostic criteria for MCAS [29, 
30] differ in some respects, MCAS diagnosis typically 
requires: (1) chronic and/or recurrent symptoms consist-
ent with aberrant MC mediator release; (2) exclusion of 
other conditions which might better explain the patient’s 
symptoms; and (3) laboratory evidence of MC activa-
tion (i.e., MC mediator release). Most MCAS patients 
respond to MC-targeted treatments, thus providing an 
important diagnostic clue [31].

By one estimate, 10–17% of the German population 
may have MCAS [32]. CI prevalence estimates range 
from 8 to 33% in population-based surveys [33–35]. 
Hojo et  al. [2] in Japan and Steinemann [1] in the U.S. 
each conducted surveys of chemical intolerance in their 
respective countries on two separate occasions, a decade 
apart. According to their research, in just 10 years, sub-
stantial increases in CI occurred in both countries.

We propose mast cell mediator release, initiated 
and triggered by xenobiotics, as a plausible biologi-
cal mechanism underlying many, if not most, cases of 

CI and TILT. If MCAS and CI are closely related, they 
should share similar pathophysiologies and exhibit 
parallel symptoms and intolerances. In this paper, we 
explore converging lines of evidence supporting MCAS 
as a plausible unifying explanation for CI/TILT.

Methods
The MCAS group consisted of patients of authors LBA 
and TTD who were seen between September 2017 
and April 2018. Patients were assigned a clinical score 
reflecting their likelihood of having MCAS using a vali-
dated MCAS assessment instrument [36, 37]. Patients 
also completed the Quick Environmental Exposure and 
Sensitivity Inventory (QEESI) along with their intake 
forms [31, 38]. The QEESI is a validated 50-item ques-
tionnaire, which is considered the international refer-
ence standard for assessing CI (see Palmer et al., for a 
list of 72 peer-reviewed journal articles using the QEESI 
in 16 countries with a total of over 32,000 respondents 
[39]). The QEESI has four scales: Symptom Severity, 
Chemical Intolerances, Other Intolerances, and Life 
Impact. Each scale item is scored from 0 to 10 (0 = “not 
a problem” to 10 = “severe or disabling problem”). Total 
scale scores range from 0 to 100. There is also a 10-item 
Masking Index which gauges ongoing exposures (such 
as to caffeine, tobacco, or drugs) that can reduce, or 
mask, individuals’ awareness of their intolerances [40]. 
Responses to the Chemical Exposure Scale explicitly 
ask participants to respond to how a specific chemical 
exposure makes them feel. The Symptom Severity Scale 
asks about common symptoms the person is having, 
not necessarily associated with the specific exposures 
on the Chemical Intolerance Scale.

QEESI scores from MCAS patients were compared 
to QEESI scores derived from earlier published data 
involving five different groups: CI individuals who 
identified an initiating exposure event; CI individuals 
who reported no initiating exposure; implant recipi-
ents; Gulf War Veterans; and a control group [38]. 
Those with QEESI scores of 40 or greater on both the 
Symptom Severity and Chemical Intolerance Scales 
were classified as having CI in our predictive model. 
Mean scores were compared statistically using ANOVA 
across groups using Tukey post hoc tests.

Clinical scores for the MCAS patient group were used 
to predict CI status using a logistic regression model. 
Analyses were performed using SAS software [41]. This 
study was approved by the University of Texas Health 
Science Center at San Antonio Internal Review Board 
(approval number HSC20150821H).
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Results
Percentage meeting CI criteria by group
There were 147 patients from the MCAS clinic, ranging 
in age from 16 to 75 years (mean = 40.7, SD = 13.9). The 
exposure and control comparison groups were derived 
from published data by Miller and Prihoda [38]. The 
number, percent female, age, and percentages meeting 
CI criteria are presented in Table  1 for all six groups. 
Fifty-nine percent (59%) of the MCAS clinical group 
met QEESI criteria for CI, a somewhat higher percent-
age than among the Gulf War Veterans (49%). Percent-
ages of the other comparison groups meeting CI criteria 
exceeded 75%, except for controls (7%).

QEESI total scale scores
Figure  1 shows the distribution of total QEESI scores 
and masking indices by participants in these groups. In 
every case, controls’ scores were significantly lower than 
for the other groups (p < 0.001). With few exceptions, the 
CI groups scored significantly higher than other groups, 
whether or not they reported an initiating exposure. 
Regarding the Chemical Intolerance Scale, scores for the 
MCAS group were not significantly different from the 
Gulf War Veterans’ scores, but were significantly lower 
than scores of all other groups. On the Other Intoler-
ance Scale, the MCAS group scored significantly higher 
than the Gulf War Veterans’ group (p < 0.01); however, 
the MCAS group’s scores were statistically equivalent to 
the other groups’ scores. On the Life Impact Scale, the 
MCAS group’s score did not differ significantly from the 
implant group’s, and both were significantly higher than 
the Gulf War Veterans group (p < 0.01). For the Symp-
tom Severity Scale, the Implant group and the CI with 
known exposure group scored significantly higher than 
the other groups (p < 0.01). Scores for the CI group with-
out a preceding exposure and the MCAS groups did not 
differ significantly from each other. The Masking Index (a 

measure of ongoing exposures) was significantly greater 
among controls compared to the other groups (p < 0.01), 
except for the Gulf War Veterans whose Masking Index 
score was not significantly different from that of controls. 
The MCAS group and the CI group with known expo-
sures had similarly low masking scores.

Predicted probability of CI with increases in MCAS scores
Logistic regression results appear in Table 2. Compared 
to the lowest quartile (Q1), those in the 2nd quartile of 
MCAS scores were 2.6 times more likely to have CI 
(p = 0.027). Those in the 3rd quartile of MCAS scores 
were 6.0 times more likely to have CI (p = 0.0001); those 
in the 4th quartile of MCAS scores were 6.2 times more 
likely to have CI (p = 0.0001).

Figure  2 shows that the probability of CI increases as 
MCAS scores increase. There is an exponential increase 
in the probability of CI with increasing MCAS scores, 
reaching near-perfect prediction toward the extreme set 
of MCAS scores.

Distribution of QEESI scores
Figures 3, 4, 5, 6 and 7 show QEESI scale items for TILT, 
MCAS, and Control groups. Here we merged four groups 
into one group (TILT group) for purposes of comparison 
against controls and MCAS patients: CI individuals who 
reported an initiating exposure (pesticides, remodeling); 
Gulf War Veterans; implant patients; and the CI individ-
uals who did not report an initiating exposure event but 
had qualifying QEESI scores.

Symptom Severity Scale (Fig. 3)
There were no significant differences between the TILT 
and MCAS groups for 8 of the 10 symptom items. For 
the neuromuscular and affective items, the TILT group’s 
scores were slightly higher than those of the MCAS group 
(p < 0.04). Both the TILT and MCAS groups reported 
significantly more severe symptoms than did controls 
(p < 0.0001).

Chemical Intolerance Scale (Fig. 4)
TILT and MCAS groups both had significantly higher 
chemical intolerance scores than did controls (p < 0.0001). 
The TILT group’s chemical intolerance scores were sig-
nificantly higher than the MCAS group’s scores for all 
items (p < 0.01).

Other Intolerance Scale (Fig. 5)
There were no significant differences between the TILT 
and MCAS groups for 8 of the 10 other intolerance 
items. Only the chlorinated tap water item was scored 
significantly higher by the TILT group (p < 0.01). Only 
the foods/food-additives item was scored significantly 

Table 1  Percentages meeting TILT/CI criteria by group

a  From Miller and Prihoda [38]
b  MCAS clinical group (Sept 2017 to April 2018)
c  Scores ≥ 40 on both the QEESI Chemical Exposures and Symptom Severity 
Scales qualify as CI

Group n % female Age
Mean (± se)

% meeting 
criteria for 
TILT/CIc

CI-exposure event a 96 49% 49 (11) 89%

CI-no event a 90 82% 51 (12) 81%

Implant a 87 50% 50 ( 9) 75%

MCAS group b 147 89% 41 (14) 59%

Gulf Veterans a 72 11% 40 (10) 49%

Controls a 76 68% 43 ( 9) 7%
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higher by the MCAS group (p < 0.03). Both TILT and 
MCAS groups scored significantly higher than controls 
(p < 0.0001).

Life Impact Scale (Fig. 6)
Both TILT and MCAS groups scored significantly higher 
than controls (p < 0.0001) on all Life Impact items. The 

Fig. 1  QEESI total scale scores by group
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TILT group consistently scored higher on 9 of the 10 
items on this scale than did the MCAS group (p < 0.01), 
with the exception of the diet item where the MCAS 
group reported a slightly greater impact of their illness 
on diet.

Masking Index (Fig. 7)
Both TILT and MCAS groups had significantly lower 
masking scores than did controls (p < 0.0001), meaning 
that they had fewer ongoing exposures to tobacco smoke, 

fragrances, caffeine, or certain drugs which tend to hide 
(“mask”) the relationship between symptoms and expo-
sures. The MCAS group reported greater use of drugs/
medications and gas stoves than did the TILT group 
(p < 0.05).

Discussion
For decades, both MCAS and CI patients have been mis-
understood, marginalized, and often referred for mental 
health evaluation [6, 42, 43], with practitioners assign-
ing diagnostic labels such as Somatic Symptom Disorder, 
Multiple Chemical Sensitivity (MCS), or Idiopathic Envi-
ronmental Intolerances (IEI). Our findings suggest that 
a vast assortment of chemical exposures may initiate or 
escalate TILT/CI via chronic, aberrant MC activation.

Similarities between MCAS and TILT
In Figs.  3, 4, 5 and 6, we see that the MCAS and TILT 
groups had statistically higher scores than did controls on 
the QEESI scales. We also see that the MCAS and TILT 
groups share strikingly similar patterns of symptoms and 
intolerances involving structurally diverse xenobiotics 
(chemicals, foods, and drugs).

Table 2  Logistic regression model predicting TILT status from 
MCAS quartile scores

Quartile 
comparison

Parameter estimate
(± se)

p value Odds ratios
(95% confidence 
limits)

Unadjusted maximum likelihood estimates

Q2 v Q1 0.96 (0.44) 0.0265 2.62 (1.12–6.16)

Q3 v Q1 1.79 (0.60) 0.0001 6.00 (2.43–14.80)

Q4 v Q1 1.83 (0.47) 0.0001 6.22 (2.45–15.79)

Maximum likelihood estimates adjusted for age and gender

Q2 v Q1 0.96 (0.44) 0.0300 2.60 (1.09–6.19)

Q3 v Q1 1.69 (0.47) 0.0003 5.45 (2.18–13.62)

Q4 v Q1 1.79 (0.48) 0.0002 5.98 (2.33–15.33)

Fig. 2  Predicted probability of TILT with increases in MCAS scores
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Symptom Severity Scale
For most symptoms, there were significant differ-
ences between the MCAS and TILT groups. There 
was only a slight increase in severity in Affective and 

Neuromuscular symptoms in the TILT group compared 
to the MCAS group. Mediators released by MCs in the 
central nervous system may explain the neuropsychiatric 
symptoms patients in both groups commonly report.

Fig. 3  Distribution of QEESI Symptom Severity Scale items for TILT, MCAS and control groups

Fig. 4  Distribution of QEESI Chemical Intolerance Scale items for TILT, MCAS and control groups
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Chemical Intolerance Scale
The same classes of chemicals appear to trigger symp-
toms in the MCAS group as in the TILT group, with the 
TILT group more severely affected. The most problematic 

triggers for many MCAS patients are fragrances (VOCs 
at extraordinarily low exposure levels), which also pose 
major problems for CI individuals [44].

Fig. 5  Distribution of QEESI Other Intolerance Scale items for TILT, MCAS and control groups

Fig. 6  Distribution of QEESI Life Impact Scale items for TILT, MCAS and control groups
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Other Intolerance Scale
There were no significant differences between the TILT 
and MCAS groups for most of the items. Only the chlo-
rinated tap water item was scored significantly higher by 
the TILT group.

Life Impact Scale
The TILT group consistently scored higher than the 
MCAS group on most of the Life Impact items. Individu-
als with TILT/CI may have greater difficulty tolerating 
exposures commonly encountered in social activities.

Masking Index
“Masking” can result from overlapping responses to 
chemicals as well as from an individual’s tendency to 
habituate to these substances. Masking obscures the rela-
tionship between symptoms and chemical, food or drug 
triggers, literally hiding the cause-and-effect relationship 
between them from both patients and clinicians [45]. 
The control group endorsed more items on the Mask-
ing Index than did the TILT and MCAS groups, consist-
ent with our prior studies [38, 46]. People without CI or 
MCAS may be more apt to use alcohol, tobacco prod-
ucts, and caffeine for their stimulatory effects to offset 
fatigue and brain fog. The MCAS group reported greater 
use of drugs/medications which could reflect the fact that 
MCAS is more commonly treated with medications to 
prevent MC degranulation and/or to block MC mediator 

effects. Many individuals with CI have experienced so 
many adverse drug reactions that they avoid most drugs, 
favoring alternative therapies such as herbs, homeopathy, 
or acupuncture [47].

Connecting MCAS and TILT
Our understanding of the possible role for MCs in TILT 
is recent. Both patients with MCAS and those with TILT 
commonly report symptoms in multiple organ systems 
and often several systems simultaneously. MCs produce 
and release scores of chemical signals (generically termed 
“mediators”) that can affect organs, tissues, and systems 
throughout the body.

TILT encompasses exposures which may have initi-
ated illness, as well as exposures which continue to trig-
ger symptoms. However, until now, TILT has lacked a 
clear biological mechanism, which MCAS may provide. 
An understanding of TILT’s two stages, initiation and 
triggering suggests practical strategies for prevention 
and intervention, many of which also appear applicable 
to MCAS. Knowledge of the MCAS mechanism has the 
potential to inform new medical interventions and treat-
ments for TILT. Failure to eliminate or reduce initiators 
such as pesticides or mold can result in chronic, even 
lifelong, illness in susceptible people, suggesting persis-
tent MC activation and degranulation. The symptoms 
and findings in TILT patients may be best understood in 
the context of MCs and the mediators they release.

Fig. 7  Distribution of QEESI Masking Index items for TILT, MCAS and control groups
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MCAS, TILT, and the nervous system
Our proposal that MCAS could be the biological mecha-
nism for TILT arises out of recent recognition that the 
spectrum of MC disease extends beyond clinically rec-
ognizable allergic phenomena (e.g., allergy, anaphylaxis, 
urticaria, angioedema, atopic dermatitis or eczema) and 
differs from the rare MC malignancy called “mastocy-
tosis”. Mastocytosis, first described in cutaneous form 
in the latter part of the nineteenth century and then in 
systemic form in the mid-twentieth century, manifests as 
chronic MCA resulting from neoplastic proliferation of 
MCs. Only recently, beginning in the 1980s, did research-
ers hypothesize the existence of MCAS [48, 49]. In 2007, 
the first case reports of MCAS appeared, describing 
patients with heightened release of MC mediators, yet 
without the excessive numbers of MCs which character-
ize mastocytosis. Many MC mediators have potent but 
short-lived effects. They are released locally in sensitized 
tissues and are exquisitely thermolabile, posing major 
challenges for measurement. MC’s menagerie of media-
tors produce multi-system inflammation at minimum, 
and not uncommonly allergic-like phenomena, and 
sometimes aberrancies in growth and development (typi-
cally benign) in virtually any tissue.

As immunologic "first responders", activated MCs can 
initiate, amplify, and prolong wide-ranging neuroim-
mune responses [50]. Several investigators have pointed 
to neurogenic inflammation as a mechanism for CI [10, 
51–53]. Rather than being the mechanism for CI, neu-
roinflammation may be the consequence of MCA and 
mediator release initiated by xenobiotic/chemical expo-
sures. MCs affect neural function via their released medi-
ators which bind with specific neuronal receptors [18, 
54]. Also, MCs physically abut neurons in many tissues. 
Wherever such dyads are present, there is constant medi-
ator “cross-talk” between the two cell types. Thus, MCA 
can provoke nearby neurons, inducing their associated 
symptoms; similarly, neurons can provoke nearby MCs, 
inducing their associated symptoms.

Correspondingly, quieting of MCs can help reduce neu-
ronal activation, and, again, vice versa. [55]. Additional 
file  1: Table  S1 lists selected MC mediators involved in 
neuroinflammation (after Theoharides et  al. [56–59]. 
Many investigators have documented neuroinflammation 
and inflammatory mediators in CI [53, 60–62].

Both MCAS and TILT have prominent neurologi-
cal features. For example, organophosphate pesticides, 
which bind irreversibly to cholinergic receptors in the 
parasympathetic nervous system, appear to be among the 
most severe and permanently damaging TILT initiators. 
Correspondingly, organophosphates have been shown 
to trigger degranulation in human and animal MCs [63]. 
The parasympathetic nervous system also modulates MC 

activity via a cholinergic pathway [64]. MCs play piv-
otal roles in regulating cerebral blood flow [65], directly 
affecting brain function. Notably, both MCAS and TILT 
patients commonly report cognitive difficulties which 
may be the result of reduced cerebral blood flow due to 
chemical exposures, such as vehicle exhaust or pesti-
cides [66]. Brain MCs lie close to cerebral blood vessels, 
nerves, and the meninges, and inhabit the area postrema, 
choroid plexus, thalamus, hypothalamus, and limbic sys-
tem, thus affecting memory, mood, and concentration. 
MCs can migrate between nerve tissue and lymphatics 
and appear to contribute to neuroinflammation in many 
disorders [67–69].

Notably, during stress, corticotropin-releasing factor is 
secreted by the hypothalamus, and, together with neu-
rotensin, triggers MCs to release inflammatory and neu-
rotoxic mediators, thereby disrupting the blood–brain 
barrier leading to neuroinflammation [70]. Referring to 
ADHD, Song et al. [55] cite increasing evidence that MCs 
are involved in brain inflammation and neuropsychiatric 
disorders. Selective release of inflammatory mediators by 
MCs, interacting with glial cells and neurons, may acti-
vate the hypothalamic–pituitary–adrenal axis and dis-
rupt blood–brain barrier integrity.

This physiology of MCAS mirrors the two stages of 
TILT—initiation and triggering, that is, initiation by a 
single intense exposure, or repeated lower-level expo-
sures (pesticides, implants, drugs, etc.), which immuno-
logically sensitize MCs in the brain and/or other key sites. 
Thereafter, chemicals structurally related to the initiating 
event, as well as unrelated xenobiotic exposures, trigger 
mediator release by these pathologically “twitchy” MCs. 
Cognitive and mood effects can include sudden rage (e.g., 
“road rage”); impulsive, violent, or abusive behaviors; 
addictive tendencies; mental confusion/fatigue; and/or 
a sense of depersonalization. MC “twitchiness” renders 
these cells vulnerable to a host of unrelated exposures 
that never bothered the person before and do not bother 
most people. Therefore, it seems plausible that MC sensi-
tization and triggering can explain both stages of TILT—
initiation and triggering.

Assessing and treating TILT/CI
Trigger identification and avoidance, rather than medi-
cations, are mainstays for treating CI. Likewise, these 
are the first steps for managing MCAS. Medications or 
desensitization procedures benefit many MCAS patients 
[31].

Identifying and assessing TILT
A systematic two-step evaluation works well for identi-
fying patients with CI. First, administer the three-item 
Brief Environmental Exposure and  Sensitivity Inventory   
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(BREESI) screener [39, 71] to help identify individu-
als with significant intolerances for chemicals, foods, 
and drugs. If one or more BREESI items are endorsed, 
the full QEESI is administered (http://​tiltr​esear​ch.​org/​
wp-​conte​nt/​uploa​ds/​sites/​30/​2017/​05/​qeesi.​pdf ). These 
instruments help identify initiators and triggers of CI. A 
detailed exposure/symptom history and timeline coupled 
with the QEESI can help identify environments need-
ing specific assessment. Removing initiating exposures 
appears to be essential for sustained improvement among 
both TILT and MCAS patients. For both conditions, the 
QEESI Symptom Star, graphed based upon serial admin-
istrations of the QEESI over time, illustrates the dynam-
ics of symptom severity as chronologically related to 
exposures [72–74] (see Additional file 1: S2).

Interestingly, the MCAS group reported greater use of 
gas stoves than did the TILT group (58% vs 25%, respec-
tively), perhaps suggesting an important source and 
intervention for MCAS patients who use gas stoves. His-
torically, as early as the 1960s, removing gas appliances 
has been a principal recommendation for CI individuals 
[75].

Dietary interventions
Both TILT and MCAS patients report adverse reactions 
to foods. Most of these adverse food reactions are food 
intolerances,  as opposed to immunoglobulin-mediated 
food allergies, e.g., to peanuts, discoverable through skin 
or blood testing. The gold standard for identifying food 
intolerances involves the rigorous elimination of suspect 
foods for 4 to 7  days, followed by judicious reintroduc-
tion of single foods, one-at-a-time, under close medical 
and dietary supervision. We recommend assistance from 
dieticians who understand food intolerances, food addic-
tion, and elimination diets. Note that foods themselves 
may be triggers, but food additives and chemical residues 
on foods also are frequent triggers. Many CI patients opt 
for organic foods where available and affordable.

Medical interventions
After trigger identification and avoidance strategies are 
implemented, potential medical interventions for CI may 
include many of those used to treat MCAS, including 
agents that prevent MC degranulation like cromolyn and/
or reduce tissue inflammation caused by MC mediators, 
such as H1 and H2 antihistamines administered simulta-
neously [31, 32, 76, 77]. Patients who respond adversely 
to excipients in commercially available medications may 
require compounded formulations. Interestingly, low-
dose benzodiazepines help some MCAS patients due to 
the presence of benzodiazepine receptors on not only 
neurons, but also MCs [78, 79]. Pharmacotherapy for 
TILT/CI is by no means simple and requires minimizing 

exposures to chemicals known to precipitate adverse 
reactions and monitoring for inadvertent introduction of 
known triggers into the patient’s regimen, such as when 
a different formulation is provided as a refill. These same 
challenges exist for MCAS patients.

Other implications for clinical practice
MC degranulation and mediator release offer an elegant 
explanation for TILT’s numerous “unexplained” symp-
toms as well as for a host of so-called “idiopathic” ill-
nesses sharing features of TILT. These include Gulf War 
Syndrome, breast implant illness, some mold-related ill-
nesses, and various other exposure-induced conditions. 
Likewise, researchers and clinicians who wish to under-
stand TILT-related or -overlapping conditions including 
fibromyalgia, chronic fatigue syndrome, depression, irri-
table bowel syndrome, asthma, eczema, attention deficit/
hyperactivity disorder, or autism spectrum disorders [80, 
81] need to take exposure histories which include ask-
ing when the illness began or was exacerbated, whether 
an initiating event occurred, and whether other people 
(or animals) were exposed or affected. Domestic cats for 
example are particularly sensitive to organophosphate 
pesticides [82]

Study limitations
To the best of our knowledge, this is the first investiga-
tion of the similarities between MCAS and TILT, sug-
gesting MCAS as a plausible mechanism for TILT/CI. 
However, symptomatic overlap between two study popu-
lations is not necessarily proof of a shared pathophysiol-
ogy. Although an important strength of this study is that 
the QEESI (the reference standard for identifying CI) was 
used for all respondents, the MCAS and TILT/CI sam-
ples were approximately 20 years apart in data collection. 
This may introduce unknown historical biases. Addition-
ally, the number of study participants was relatively small 
and unequal between the groups. Further, only gender 
and age were assessed and adjusted in the analysis. Other 
factors, such as medical history (e.g., asthma, obesity, 
other comorbidities), socioeconomic status, and other 
lifestyle variables could potentially bias the analysis. As 
such, these results should be considered preliminary until 
further studies can be conducted.

Directions for future research and regulation
With this new understanding of the possible role of MCs 
in TILT, important questions arise concerning individual 
susceptibility differences that may be influenced by prior 
exposures, genetics, epigenetics, and nutrition.

Given the close parallels between TILT and MCAS, 
and the fact that MC activation and mediator release 
could explain much about TILT, future research should 

http://tiltresearch.org/wp-content/uploads/sites/30/2017/05/qeesi.pdf
http://tiltresearch.org/wp-content/uploads/sites/30/2017/05/qeesi.pdf
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address the following questions: (1) What proportion of 
the TILT population manifests detectable MC activation 
as determined by a rigorous diagnostic MCAS work-
up? (2) Do patients with TILT have somatic MC regu-
latory gene mutations as already found in many MCAS 
patients? (3) If so, are there recurrent mutations reflect-
ing differing clonality patterns (e.g., in KIT) [83] charac-
terizing differing subsets of TILT patients, perhaps even 
“fingerprinting” particular initiating exposures? and (4) 
Would specific treatments targeting MCs, or their medi-
ators prove helpful for the TILT population as a whole or 
for certain subsets? As more research clarifies the role 
of MCs in TILT, targeted reduction of exposures can be 
implemented.

Conclusion
Mast cell activation and mediator release appear capa-
ble of explaining the increasingly frequent observations 
by physicians and their patients of chronic multi-system 
symptoms and new-onset chemical, food and drug intol-
erances following exposure to a wide variety of xenobiot-
ics. Our logistic regression model demonstrated that as 
the likelihood of patients having MCAS increases, their 
likelihood of having CI/TILT similarly increases, to a 
near-perfect correspondence at the high ends of these 
scales. Association is, of course, not proof of causation. 
Nevertheless, the strikingly similar symptom and intoler-
ance patterns for the MCAS and TILT populations sug-
gest that xenobiotics can disrupt mast cells, resulting in 
either or both of these challenging conditions. Faced with 
patients suffering from complex illness affecting multiple 
organ systems and fluctuating inflammatory, allergic, and 
dystrophic symptoms, researchers and clinicians should 
now ask themselves two questions: (1) Could MCAS be 
at the root of these problems? (2) Could xenobiotic expo-
sures be driving MC activation and mediator release? 
Increasing our understanding of the connection between 
TILT and MCs has the potential to expose a new link 
between environmental exposures and illness, offering 
opportunities for improving individual and public health.

Almost daily, scientists, physicians, journalists, and the 
public are questioning whether toxic exposures of one 
sort or another are responsible for persistent symptoms 
reported following a wide variety of exposures including 
but not limited to the Gulf War, breast and other implants, 
the World Trade Center disaster, open burn pits, wildfires, 
pesticides, mold, and chemical spills and releases. Only in 
the last decade has knowledge of mast cells expanded to 
include mast cell activation syndrome  (MCAS). MCAS 
mirrors the two-stage disease mechanism that Miller first 
described as toxicant-induced loss of tolerance (TILT) in 
1996 [9], and we reported in a companion paper in this 
journal this year [7]—a mechanism we regard as a possible 

missing link between toxic exposures, multi-system symp-
toms, and loss of tolerance for chemicals, foods, and drugs.
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