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Risk assessment of eight metals and their 
mixtures to aquatic biota in sediments 
with diffusive gradients in thin films (DGT): 
a case study in Pearl River intertidal zone
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Abstract 

Background:  The ecotoxicological risk posed by metals and their mixtures in sediments depends on their bio‑
availability. Many methods for evaluating the bioavailability of metals in sediments/soils are time-consuming and 
expensive, and frequently result in equivocal outcomes. The diffusive gradients in thin films (DGT) technique is a good 
measure of bioavailability for metals that can avoid the above drawbacks. Therefore, more effective approaches to 
this method should be developed that focus on metal bioavailability. No studies have been conducted using DGT to 
assess metal mixtures to aquatic biota in sediments. This study is therefore the first attempt to assess sediment toxicity 
of metals and their mixtures to aquatic biota based on the DGT technique. The intertidal zone of the Pearl River Estu‑
ary is selected as a case study.

Results:  The bioavailable (DGT-labile) concentrations of metals range as follows (μg/L): Cd, 0.34–3.62; Pb, 1.35–1.92; 
Ni, 0.67–92.83; Cu, 0.74–10.30; Zn, 28.60–296.94; Co, 0.03–58.85; Fe, 7.23–4539.36; and Mn, 19.40–6626.83. The risk 
quotient (RQ), which is the ratio between the measured metal concentrations in the environment (MEC) and the 
predicted no-effect concentration (PNEC), is conducted to evaluate the single metal risk. The RQ based on summing 
up the MEC/PNEC ratios (RQMEC/PNEC) and the RQ based on sum of toxic units (RQSTU) are used to assess risk of metal 
mixture. TheRQ values of Cd, Pb, Ni, Cu, Zn, Fe, and Mn significantly exceed 1, indicating that the adverse effects of 
the metals are not negligible. Regarding the toxicity of metal mixtures, the values of RQMEC/PNEC and RQSTU are both 
between 62.45 and 743.48, revealing that the possible risk has already occurred in the study area.

Conclusions:  The two methods of RQMEC/PNEC and RQSTU based on DGT-labile metal concentrations are effective and 
suitable to estimate the toxicity of metal mixtures in sediments.
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Background
The ecotoxicological hazard of metals depends on their 
bioavailability, which is impacted by environmental 
biogeochemical processes involving metal characteris-
tics, sediment properties, and biological behavior and 

physiology [1, 2]. Many of the methods for evaluating 
metal bioavailability in sediments/soils are both time-
consuming and expensive, and may repeatedly lead to 
uncertain outcomes such as sequential extraction, iso-
tope dilution exchange method, and single-step chemical 
extractions [3–5]. These methods are impacted by physi-
cal and chemical factors [4, 5]. Therefore, more effective 
approaches are needed.
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Most sediment quality guidelines (SQG) for metal 
evaluation are dependent upon empirical correlations of 
adverse biological effects and metal concentrations; rank-
ing these has established the basis for empirical SQG in 
the initial tier of assessments [6, 7]. These SQG are set up 
mostly in terms of total metal concentrations. However, 
it is known that metal bioavailability in sediments relies 
heavily on the partitioning processes between the solid 
and liquid phases [8, 9].

The partitioning processes are strongly impacted by 
acid volatile sulfide (AVS), simultaneously extractable 
metals (SEM), organic carbon (OC), and the ions of iron 
and manganese [2, 10–12]. Based on several of these fac-
tors, some equilibrium partitioning (EqP) models, such 
as the AVS–SEM model, have been constructed to esti-
mate metal bioavailability in sediments. These EqP mod-
els do not interpret metal exposure that may occur via 
ingestion of particles by deposit-feeding organisms [3].

Diffusive gradients in thin films (DGT) is a passive 
sampling technique that has been applied to evaluate 
labile metal concentrations in waters, soils, and sedi-
ments since 1994 [13–16], and has recently been used to 
predict the toxicity and bioavailability of metals to ben-
thic organisms [3, 17, 18]. Yet, the DGT technique has 
rarely been used for environmental toxicology purposes 
to determinate the concentrations of an integrated pool 
of labile metals present in water and in weakened form in 
waters associated with sediments [3].

Concentration addition (CA) and independent action 
(IA) are the two classic models for predicting mixture 
toxicity based on the toxicities of individual metals and 
their concentrations in the mixture [19]. CA assumes 
that metals share the same mechanism, while IA infers 
that constituents of a mixture do not share a similar tox-
icity mechanism [20]. Several studies have found that 
the real mixture toxicity is less than the mixture toxicity 
of CA predictions, but higher than the mixture toxicity 
of IA predictions [21–23]. The CA method considers a 
worst-case scenario, and is most widely used to evaluate 
the toxicity of mixtures.

An intertidal zone is the coastal area between the high 
tide and low tide [24]. An intertidal zone in good condi-
tion provides a comfortable habitat for benthic and epi-
benthic organisms, as well as playing an important role in 
supporting human well-being and the global geochemical 
cycle [25, 26]. As a buffer zone between sea and land, it 
has been affected by a high frequency of anthropogenic 
activities and is afflicted by the pressure of pollutants 
[27]. A massive of metals from land discharges into the 
coastal ecosystem and is deposited in the sediments. 
Until now, the information related to bioavailability and 
ecotoxicological risk of such metal mixtures based on 
DGT technique has not been available.

The Pearl River, which is the second largest river in 
China with respect to discharge amount, flows through 
446,768  km2 of drainage area into the Pearl River Estu-
ary (PRE) and finally reaches the South China Sea [28]. 
Unprecedented rates of development in the PRE region 
in the last few decades have led to the loss of 562 km2 
of original intertidal marsh between 1978 and 2003 
[29]. The intertidal zone ecosystem of PRE is now facing 
increasing pressures from heavy metal pollution due to 
the elevated metal discharges from different sources such 
as upstream discharges, domestic sewage, rock weather-
ing or soil erosion on the mainland and runoff entering 
the waters [30, 31]. Accordingly, the intertidal zone of the 
PRE was chosen as the case study in this research.

At present, only one paper reported availability and 
ecotoxicological risk of one metal copper in coastal 
environment [16]. Therefore, to our knowledge, the bio-
availability and ecotoxicological risk of metals based on 
DGT technique are currently scarce. In this study, we use 
DGT technique combined with a tiered approach, mainly 
based on the CA concept, to integrate the risk of metal 
mixtures and thus provide a novel method of contami-
nant evaluation for the sediments.

Materials and methods
Study area
This study area is part of the Pearl River Estuary (PRE). 
The PRE is located in the south of the Tropic of Can-
cer, with a humid, hot and rainy tropical and subtropi-
cal monsoon climate. The annual mean temperature is 
22.2  °C and the annual average precipitation is 1154.8–
2702.2 mm [32]. PRE is a bell-shaped semi-enclosed sea 
on the Guangdong coast of South China, occupying an 
area of about 2500  km2 [28]. The average annual inflow 
of the RRE into the sea is 1.124 × 1011 m3 [32]. Water 
depths in the PRE vary from 2–5 m in the western region, 
to about 15 m in the eastern region [28]. The PRE is per-
ennially affected by an irregular semidiurnal tide, with a 
tidal coefficient between 0.94 and 1.77 [32]. The ranges of 
water temperature, salinity, alkalinity and pH are 16.64–
30.09 °C, 0–35‰, 1.80–2.40 meq/L and 6.5–8.58, respec-
tively [32–34].

Sampling and analysis of sediment properties
Undisturbed surface sediments of 0–3  cm were care-
fully gathered from 21 sites (Fig. 1) during summer tide 
in June 2018 using a triangular plastic spade. Five sub-
samples were obtained at each site and these were thor-
oughly mixed to achieve a typical sample. The samples 
from each site were then divided into half, with each part 
put separately into a clean plastic bag. One half of each 
sample was then freeze-dried, cleaned of visible debris 
such as rock and plant fragments, ground in a clean 
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Fig. 1  Map showing the study area and sampling sites in the Pearl River Estuary intertidal zone
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mortar, passed through a 2000-μm stainless-steel sieve 
for homogenization, and kept at − 20 ℃ until analysis of 
DGT-labile metals, organic matter (OM), and inorganic 
carbonate (CaCO3). The other part of each sample was 
stored at − 4  ℃ for the determination of particle size. 
Details of how to determine sediment properties (OM, 
CaCO3, and particle size) are provided in the Additional 
file 1.

DGT experiment
Procedure of DGT extraction
The Chelex DGT device used in this study is composed 
of a binding gel (0.40  mm thickness), a diffusive gel 
(0.90  mm thickness), and a filter membrane (0.80  mm 
thickness) (EasySensor Ltd, www.​easys​ensor.​net). These 
three layers are assembled with the dual-mode holder, 
which consists of an “O-shape” ring, a recessed base, and 
a hollow base that offers structural support and accom-
modates the gels [35]. Target metals diffuse through the 
membrane filter and diffusive gel, and are accumulated 
on the binding gel [15]. Afterwards, the metals associated 
with the binding gel are extracted using acid solution for 
further analysis.

The DGT application procedure to measure homog-
enized sediments complies with the method proposed by 
Wang et  al. [9]. Accordingly, the method involves three 
sequential steps: (1) pretreatment of samples; (2) DGT 
deployment on samples; and (3) DGT retrieval.

In initial step, sample of about 10  g was weighted, 
placed in a beaker, added deionized water to reach 
70–80% water holding capacity, mixed thoroughly. The 
well stirred sediment was covered with plastic wrap to 
prevent water evaporation and incubated for 48  h at a 
constant ambient temperature.

In next step, a small amount of rehydrated sediments 
homogenized was added to the open cavity of the DGT 
device using a plastic spoon, shaken gently to ensure the 
sediment settles fully and was in contact with the surface 
of the filter membrane, with more sediment then added 
to completely fill the cavity. The loaded DGT device was 
then transferred into a plastic, semi-opened bag for incu-
bation for 24 h at a constant ambient temperature, with 
1–2  mL deionized water added to the bag to maintain 
moisture during deployment.

In last step, 24 h later, the DGT core was unscrewed 
and pulled out of the base using another base. The sur-
face of the filter membrane was rinsed with deionized 
water and the binding gel retrieved and placed in a 
centrifugal tube. 1.8  mL 1  M HNO3 was added to the 
tube to immerse the gel and then the tube was closed 
and kept at 4 °C for 16 h. The elution was collected for 
analysis of DGT-labile metals. The concentrations of 
Cd, Pb, Ni, Cu, Zn, Co, Fe, and Mn were determined by 

inductively coupled plasma mass spectrometry (ICP-
MS). Absolute difference between two independent 
determination results obtained under repeatability con-
ditions not exceeded 10% of arithmetic mean value. The 
research work related to DGT was performed in the 
laboratory of EasySensor Ltd.

Models for calculating DGT‑labile metal concentration
The target metal observes Fick’s 1st law of diffusion in 
the diffusive layer. The target metal concentration from 
the DGT extracting solution can be transformed to a 
mass of metal (M) through Eq. (1) as follows:

where Ce is the target metal concentration in the extract-
ing solution; Ve is the volume (mL) of the extracting 
solution; Vg is the volume (mL) of gel (in this study, Vg is 
0.2 mL); and fe is extraction rate, which is 0.938 for Cd, 
0.955 for Pb, 1.05 for Ni, 1.03 for Cu, 0.88 for Zn, 0.975 
for Co, 0.889 for Fe, and 0.967 for Mn [9]. The DGT-labile 
concentration is then calculated via Eq. (2):

where △g is the thickness of the diffusive layer and equal 
to 0.9 mm in this study; D is the diffusion coefficient of 
the target metal, which for the studied metals relies on 
the EasySensor user manual (http://​www.​easys​ensor.​net/​
col.​jsp?​id=​109); A is the exposed surface area of the DGT 
device (3.14 cm2); and t is the deployment time, which is 
equal to 48 h in this study.

Toxicity data assemblage
The acute toxic data relevant to Cd, Pb, Ni, Cu, Zn, 
Co, Fe, and Mn were retrieved from the USEPA ECO-
TOX database that includes algae, crustaceans, and fish 
(https://​cfpub.​epa.​gov/​ecotox/). These aquatic species 
are from freshwater and saltwater media types.

In order to reduce errors in any species with vary-
ing acute toxicity data, and to reflect the specific metal 
toxicity to aquatic biota, the median values of metals in 
algae, crustaceans, and fish species were calculated as 
shown in Table 1. For fish, the EC50 values of Cd, Pb, 
Cu, and Zn are used in this study. Due to the paucity of 
EC50 data for the other metals in fish species, the LC50 
data of Ni, Co, Fe, and Mn are conducted in this study. 
Detailed information about the values of toxicity data 
and aquatic species are given in the Additional file 1.
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Ecotoxicological risk model
Single metals
The risk quotient (RQ), which is the ratio between 
the measured metal concentrations in the environ-
ment (MEC) and the predicted no-effect concentration 
(PNEC), is used to evaluate the ecotoxicological risk for 
each DGT-labile metal as given in Eq. (3):

Table 1 explains how to calculate the PNEC and gives 
the values obtained in this study. The RQ is considered 
a robust method for assessing single pollutant ecotoxi-
cology risk and is widely used in environment studies 
[19, 36, 37]. An RQ value less than 1 indicates no poten-
tial ecotoxicological risk, while an RQ value higher than 
1 suggests a potential ecological risk and that the envi-
ronmental risk posed should not be excluded [28, 38]. A 
larger value indicates a greater potential risk.

Mixture of metals
The RQ for the mixture based on MEC/PNEC ratios 
(RQMEC/PNEC) and the RQ for the mixture based on toxic 
units (RQSTU) are acceptable and extensively used models 
[19, 38, 39]. The two models are as follows in Eqs. (4)–(5):

(3)RQ =
MEC

PNEC
.

(4)RQMEC/PNEC =

n
∑

i=1

RQi =

n
∑

i=1

MECi

PNECi
,

(5)
RQSTU = max

(

STUalgae, STUcrustaceans, STUfish

)

× AF

= max

(

n
∑

i=1

MECi

EC50i,algae
,

n
∑

i=1

MECi

EC50i,crustaceans
,

n
∑

i=1

MECi

EC50i,fish

)

× AF,

where AF is the assessment factor (= 1000) [38].
In both models, if the RQs exceeded 1, the environ-

mental risk posed by the mixture should be considered. 
The risk assessment was constructed considering firstly 
all the metals, and later only the metals with RQ below 1, 
to evaluate the potential risk of this mixture too [33].

Statistical analysis
Prior to factor analysis (FA), the normal distribution of 
each sediment-property variable and DGT-labile metal 
concentration was tested, which showed that only OM 
fitted normality. Therefore, the contents of Cd, Ni, Cu, 
Co, Fe, and CaCO3 were log-transformed, and the con-
centrations of Pb, Zn, Mn, and the median grain size 
were transformed with the Box–Cox method. These 
transformed parameters then fitted normal distributions. 
The transformed parameters and OM were ultimately 
standardized for FA. Data transformations were con-
ducted with StatSoft STATISTICA 8.0 and FA was imple-
mented with IBM SPSS Statistics 19.0.

Results and discussion
Physicochemical properties of sediments
OM, CaCO3, and particle size composition were deter-
mined to find the general properties of sediments in this 
study; these are given in Additional file 1: Table S1. The 
OM content was between 1.44% and 14.91% with a mean 
of 7.42%, and the CaCO3 content ranged between 0.76% 
and 17.26% of the dry sediment weight with a mean of 

Table 1  The acute toxicity data of the studied metals and values of predicted no-effect concentration (PNEC) (μg/L)

a N is the numbers of toxicity data
b PNEC is calculated based on acute toxicity data in algae, crustaceans, and fish, with the minimum level selected and then divided by the assessment factor (= 1000) 
[18, 38]

Metals Algae Crustaceans Fish PNECb

EC50 Na EC50 N EC50/LC50 N

Cd 210.5 210 99.4 292 1490 35 0.099

Pb 1540 55 1941.5 28 1770 5 1.540

Ni 596 95 4389.4 81 30,000 132 0.596

Cu 120 509 70.7 936 133.8 58 0.071

Zn 738 243 913.5 286 1010 132 0.738

Co 10,378 26 7116.5 14 96,620 63 7.117

Fe 10,000 10 24,500.0 25 20,000 176 10.000

Mn 11,112 15 33,400.0 22 130,232.5 40 33.400
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2.68%. The median grain size (MZ) varied from 2.31 to 
7.06 phi (Φ) with an average of 5.24 Φ.

It is well established that OM and particle size are 
crucial controlling factors that alter natural metal con-
tent sediments [40, 41]. In addition, CaCO3 plays a role 
in influencing natural metal distribution [42]. Sediment 
with a smaller grain diameter is prone to present rela-
tively high metal contents, due in part to specific surface 
area. This enrichment is primarily ascribed to surface 
adsorption and ionic attraction [40]. Meanwhile, OM is 
frequently found on particles in smaller sediments, and 
the biofilm binds a range of trace metals [43]. The uni-
tary linear regression relationships between MZ and OM 
and CaCO3 are shown in Fig.  2. Except at sites S3 and 
S16, OM content increases with an increase of Φ value 
(Fig. 2A). Sites S3 and S16 deviate from the linear trend, 
which could be due to localized sediment composition. 
For example, site S3 is located in mangrove forest, where 
sediment is composed mainly of sand (Fig.  2C). Man-
grove forest can affect OM content in sediments. Site 
S16 is located in Spartina alterniflora wetland (Fig. 2D), 
where sediment has highest OM content among all the 

sampling sites (Fig.  2A). In the relationship between 
CaCO3 and MZ, CaCO3 content represents an increase 
with the increase of Φ value, except at site S21 which falls 
off the trendline, possibly due to its location in an area of 
shellfish aggregation (Fig. 2B).

DGT‑labile concentration in sediments
The spatial distributions and concentrations of the stud-
ied metals in surface sediments using DGT technique 
are shown in Fig.  3 and Additional file  1: Table  S1. The 
highest values of Cd, Ni, Zn, and Co are found at site S2; 
the highest values of Pb, Cu, Fe, and Mn are located at 
site S18, site S16, site S1, and site S7, respectively. The 
mean DGT-labile concentrations are as follows: Mn 
(2327.80  μg/L) > Fe (604.03  μg/L) > Zn (52.13  μg/L) > Ni 
(10.18  μg/L) > Co (8.04  μg/L) > Cu (2.90  μg/L) > Pb 
(1.46  μg/L) > Cd (0.79  μg/L). DGT-labile metal concen-
trations (μg/L) in surface sediments of this study area 
demonstrated wide variations with Cd, 0.34–3.62; Pb, 
1.35–1.92; Ni, 0.67–92.83; Cu, 0.74–10.30; Zn, 28.60–
296.94; Co, 0.03–58.85; Fe, 7.23–4539.36; and Mn, 19.40–
6626.83. The use of plastic sieves for trace metal analysis 
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is recommended by United Nations [44]. However, the 
stainless-steel sieve during the preparation of the sedi-
ment is used in this study. Generally, the stainless-steel 
sieve contains Ni, Fe and Co. Consequently, the Ni, Fe 
and Co data may be a little overestimate because of the 
contact of the sediment with the stainless-steel sieve dur-
ing the preparation of the samples.

In order to identify possible relationships between 
sediment-property parameters and DGT-labile metals, 
FA with the principal component method was performed 
on the data. In this study, FA (VARIMAX rotation mode) 
was conducted to identify four factors (Fs) extracted in 
terms of eigenvalues (> 1), representing 85.88% of the 
data. The communalities interpreted by the variables 
(sediment-property parameters and DGT-labile metals), 
considering four Fs, vary from 77.6% for Pb to 95.1% for 
Cu. All variables are well represented by the four Fs (F1, 
F2, F3, and F4), accounting for 27.07%, 25.45%, 19.44%, 
and 13.92% of the data, respectively. The loadings of met-
als and the sediment-property parameters and factor 
scores for the investigated sites are tabulated in Table 2. 
F1 has strong positive loadings for Ni, Co, Fe, Mn, and 
OM (> 0.5), indicating that OM mainly influences the 
metals of Ni, Co, Fe, and Mn in the F1 sites that score > 0; 

F2 is loaded with Cd, Pb, Ni, Zn and Co (> 0.5), indicating 
that no sediment-property parameter influences the met-
als of Cd, Pb, Ni, Zn and Co in the F2 sites of score > 0; 
F3 represents heavy positive loading for OM, CaCO3, and 
MZ (> 0.5) and F4 has only heavy positive loading for Cu 
(> 0.5), suggesting that no sediment-property parameter 
influences the metals in the F3 sites (score > 0) and F4 
sites (score > 0).

Ecotoxicological risk assessment
Risk for individual metals
The RQ values for each single metal in surface sediments 
are illustrated in Fig. 4 and Additional file 1: Table S2. The 
average values of RQ follow the sequence: Zn > Mn > Fe 
> Cu > Ni > Cd > Co > Pb. Based on the one-sample t-test 
(P < 0.05), the RQ values of Cd, Pb, Ni, Cu, Zn, Fe, and 
Mn are significantly above 1, suggesting that the adverse 
ecological effects of these metals are not negligible. In 
detail, the RQ values of Cd, Ni, Cu, Zn, Fe, and Mn at all 
sites are higher than the threshold value of 1; the RQ val-
ues of Pb and Co exceed the threshold value at three sites 
(14.29%) for Pb and six sites (28.57%) for Co, indicating 
that these metals may be originated from anthropogenic 
input of metals.
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The overall results show that ecotoxicological risk can-
not be eliminated in the study area because most met-
als in most sites exceed the threshold value of 1 (Fig. 3). 
Therefore, further detailed study should be implemented 
as soon as possible based on current directives.

Risk for metal mixtures
To achieve a greater predictable ecotoxicological risk 
assessment, we also evaluate the integrated risk of metal 
mixtures in surface sediments. As discussed, the RQ for 
the mixture based on MEC/PNEC ratios (RQMEC/PNEC) 
and the RQ for the mixture based on toxic units (RQSTU) 
are two methods widely used to estimate the combined 
toxicity of pollutant mixtures [18, 35].

Table  3 provides the STUs for aquatic organisms of 
three different trophic levels, as well as the RQs in terms 
of the MEC/PNEC ratios (RQMEC/PNEC) and the STUs 
(RQSTU). The values of RQMEC/PNEC and RQSTU are in the 
ranges of 70.77–704.83 and 62.45–743.48, respectively, 
indicating the possible risk. Generally, the RQs computed 
with the two methods were not different (Table  3). The 
risk assessment was computed firstly considering all the 
metals with MEC/PNEC higher than 1, and later consid-
ering only the metal with MEC/PNEC less than 1 when 
considered singly. In this study, the RQs were above 1 for 

Table 2  Loadings of variables on VARIMAX rotated factors of the variables and factor scores for sites

OM: organic matter; MZ: median grain size

Loadings Factor scores

Metal F1 F2 F3 F4 Site F1 F2 F3 F4

Cd 0.12 0.77  − 0.12 0.54 S1 0.97 0.43 0.17  − 2.33

Pb  − 0.02 0.86 0.17  − 0.12 S2  − 0.16 3.11  − 0.55 0.55

Ni 0.63 0.62  − 0.17 0.19 S3 0.92 1.09  − 1.56  − 0.18

Cu 0.09 0.05 0.01 0.97 S4 1.61 0.21  − 0.51  − 1.37

Zn 0.27 0.82  − 0.27  − 0.01 S5  − 0.70  − 0.91  − 1.10  − 0.67

Co 0.75 0.54  − 0.08 0.14 S6  − 0.92  − 0.61  − 1.48  − 0.14

Fe 0.85 0.26  − 0.03  − 0.16 S7 1.33  − 0.13 0.76 0.17

Mn 0.82  − 0.07 0.37 0.22 S8 0.53  − 0.31 0.33 0.63

OM 0.68  − 0.13 0.52 0.39 S9  − 1.37  − 0.93  − 1.49  − 0.45

CaCO3  − 0.07 0.04 0.90  − 0.07 S10 0.47  − 0.31  − 0.42 1.30

MZ 0.25  − 0.15 0.88 0.04 S11 0.04  − 0.50 0.41 1.29

S12 1.16  − 0.52 0.58  − 0.52

S13  − 1.12 0.27  − 0.69 0.27

S14 0.06  − 0.42 0.65  − 0.25

S15  − 0.90 0.43  − 0.33  − 0.06

S16 0.93  − 1.07  − 0.14 2.45

S17 0.18  − 0.65  − 0.41  − 0.07

S18  − 0.43 1.83 1.19 0.88

S19  − 1.83  − 0.36 1.24  − 0.43

S20 0.61  − 0.78 1.33  − 0.49

S21  − 1.38 0.12 2.01  − 0.58

Fig. 4  Values of RQ for each metal and each sampling site in surface 
sediments of the Pearl River intertidal zone
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the mixture, as expected. This highlights the importance 
of the risk assessment for mixtures of pollutants rather 
than just the single pollutants.

In addition, the unitary linear regression analysis 
between RQMEC/PNEC and RQSTU shows that RQMEC/PNEC 
content increases with an increase of RQSTU, indicating 
that the two methods are effective and reliable in assess-
ing the toxicity of metal mixtures (Fig.  5). Accordingly, 
further study should be carried out in the Pearl River 
intertidal zone.

Conclusion
Concentrations of eight metals (Cd, Pb, Ni, Cu, Zn, Co, 
Fe, and Mn) from surface sediment samples from the 
Pearl River intertidal zone are analyzed based on DGT 
technique. The results show that DGT-labile concentra-
tions demonstrate crucial spatial variation in both the 
single metal toxicity and integrated toxicity of metal 
mixtures to aquatic organisms from three trophic levels 
(algae, crustaceans, and fish species). The RQ for single 
metals indicates that Cd, Pb, Ni, Cu, Zn, Fe, and Mn are 
significantly above 1 and that their ecological adverse 
effects are therefore not negligible. Two different meth-
ods to estimate toxicity in metal mixtures—RQMEC/

PNEC and RQSTU—demonstrate that the possible risk has 
already occurred in the study area. Linear-regression 
analysis between RQMEC/PNEC and RQSTU shows that 
the two methods are effective and suitable to estimate 
the toxicity of metal mixtures. Therefore, the ecological 
risk based on DGT technique should be fully taken into 
consideration to protect aquatic ecosystems.
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Table 3  Ecotoxicological risk assessment of metal mixtures in 
surface sediments of the Pearl River intertidal zone

Site STU RQSTU RQMEC/PNEC

Algae Crustaceans Fish

S1 0.75 0.32 0.29 753.87 604.86

S2 0.75 0.48 0.34 750.31 704.83

S3 0.45 0.25 0.19 446.67 394.07

S4 0.74 0.32 0.26 742.11 566.90

S5 0.13 0.08 0.05 125.50 90.02

S6 0.12 0.09 0.06 118.87 100.23

S7 0.77 0.33 0.16 773.48 396.34

S8 0.47 0.23 0.11 467.95 269.32

S9 0.07 0.07 0.05 71.90 83.56

S10 0.48 0.25 0.12 475.33 297.18

S11 0.31 0.19 0.10 313.39 211.54

S12 0.58 0.25 0.12 581.02 299.47

S13 0.18 0.13 0.08 176.46 144.68

S14 0.26 0.13 0.07 255.67 151.38

S15 0.17 0.11 0.06 172.17 126.66

S16 0.52 0.32 0.15 518.24 358.91

S17 0.30 0.15 0.08 299.70 181.01

S18 0.43 0.25 0.13 428.02 281.55

S19 0.06 0.06 0.04 62.45 70.77

S20 0.45 0.19 0.08 451.97 208.58

S21 0.15 0.09 0.05 147.42 104.61

Fig. 5  The relationship between RQMEC/PNEC and RQSTU in surface 
sediments of the Pearl River intertidal zone
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