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Abstract 

Tetracycline pollution is a growing global threat to aquatic and terrestrial biodiversity due to its unprecedented use in 
aquaculture, livestock, and human disease prevention. The influx of tetracycline may annihilate the microbial ecology 
structure in the environment and pose a severe threat to humans by disturbing the food chain. Although significant 
research data are available in the literature on various aspects of tetracycline, including detection techniques, deg-
radation mechanisms, degradation products, and policy statements to curtail the issue, there is a scarcity of a report 
to compile the recent data in the literature for better analysis and comparison by the policymakers. To achieve this 
paucity in knowledge, the current study aims at collecting data on the available degradation strategies, mechanisms 
involved in biodegradable and non-biodegradable routes, the main factor affecting degradation strategies, compile 
novel detection techniques of tetracycline antibiotics in the environment, discuss antibiotic resistance genes and 
their potential role in degradation. Finally, limitations in the current bioremediation techniques and the future pros-
pects are discussed with pointers for the decision-makers for a safer environment. 
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Background
Antibiotics are complex molecular compounds with 
extraordinary antimicrobial abilities. With the accidental 
discovery of penicillin back in 1928, an array of antibiot-
ics has been developed afterward. Antibiotics are classi-
fied based on mechanism of action, bacterial spectrum, 
type of activity, and route of administration, but the most 
useful is chemical structure. However, antibiotics belong-
ing to the same structural class share similar effective-
ness and allergic or toxic potential [1, 2]. Antibiotics are 
being used as a therapeutic drug and have successfully 
been applied in animal farming as growth promoters and 
improving feed efficiency [3]. Though its use in feed to 
improve animal growth is banned in the European Union, 

its use is common in the USA, Canada, and China [4]. 
Antibiotics are the most successful drugs in the pharma-
ceutical industry for human and animal treatment alike. 
Global antibiotic consumption has increased immensely. 
An increase of 65% defined daily dose was recorded 
between 2000 and 2015, leading to an antibiotics con-
sumption rate up to 39% [5]. China uses up to 180,000 
tons of antibiotics for both human and agricultural pur-
poses [6].

Tetracyclines (TCs) are the most common antibiotic 
drugs in the world. This broad-spectrum family of anti-
biotics is known to inhibit protein synthesis in bacte-
ria besides combat a variety of bacterial infections. TCs 
are derived from various Streptomyces species, and a 
total of twenty compounds are introduced in the mar-
ket as antibiotics [7]. The basic structural element is a 
tetracyclic ring system with various hydroxyl, methyl, 
keto, and dimethylamino functional groups [8]. TCs are 
divided into three classes based on their nature, dosage, 
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and elimination time; oxytetracycline, chlortetracycline, 
and TC. The current study mainly focuses on TC unless 
otherwise stated. Structural comparison (Fig.  1) of sev-
eral tetracyclines and mode of action is beyond the cur-
rent study’s scope. The readers are referred to the work 
of Chopra and Roberts [9]. TCs have widespread usage 
in human therapy, aquaculture, and animal husbandry 
because TCs have low production prices, high quality, 
and great purity. TCs is ranked second worldwide in pro-
duction and usage while first in China [10].

Though tetracycline presents several benefits to human 
and animal health, its overuse is associated with aller-
gic reactions in humans, bacterial resistance, and sig-
nificant fluctuations in environmental microflora that 
detrimental to environmental health. It is linked to the 

difficult metabolization of TCs in the human and ani-
mal digestion system and, therefore, excreted into the 
environment by human feces and animal excreta up to 
50–80% [11]. Hospitals, pharmaceutical industries, and 
livestock also add the share in the accumulation of TC in 
the wastewater systems [12]. Domestic wastewater con-
tains low (1 µg L−1), whereas hospital wastewater has a 
relatively higher TCs concentration, 100 µg L−1 [13, 14]. 
Figure  2 illustrates the aquatic and terrestrial routes of 
TCs in the environment. TCs are stable and difficult to 
oxidize in the environment but are unstable at extreme 
pHs, forming epi- and anhydro- products supported with 
their relatively low Henry’s constant (3.45 × 10 − 24 to 
3.91 × 10 − 26 atm3 mol−1) that indicate the low volatil-
ity, ultimately describing lesser degradability as well. The 
conventional methods aimed at treating wastewater can-
not effectively eliminate large quantities of tetracycline; 
besides, TCs easily make stable compounds due to their 
binding potential to Ca+2 and other ions [15, 16]. There-
fore, a significant portion is detected in wastewater, sur-
face water, groundwater, sludge, and sediments.

Antibiotics like TC are becoming a serious threat to 
the environment due to their unaccounted use in sub-
therapeutic animal growth promotion and human treat-
ment. The environmental fate of antibiotics has emerged 
as a research topic in the previous decade to address 
the issue. Long-term detrimental effects of TC would 
lead to ecological imbalance due to poor degradation of 
TC in the current treatment processes. It is of utmost 
importance to counter TCs linked to environmental pol-
lution because it severely impacts human health due to 
the development of bacterial resistance. Non-efficient 
wastewater systems are the source of antibiotics in the 
food web that further ruining human health. Soil seep-
age is drastically affecting the soil microbial flora. Differ-
ent removal strategies have been developed to degrade 
TCs from the environment. However, microbial biodeg-
radation is the future of the removal strategies due to 
its low capital cost, effectiveness, and process simplicity. 
The literature is deficient in providing a specific review 
on tetracycline degradation strategies, proposed degra-
dation pathways of TC in various microorganisms, and 
the role of resistant genes in TC degradation. Therefore, 
this review aims to collect data and discuss the merits 
and demerits of available TC degradation techniques, the 
impact of anti-resistant genes affecting the microbial bio-
degradation, new insights into the detection of antibiot-
ics, and limitations and prospects of applying microbial 
degradation for TC degradation.

Degradation strategies of tetracycline
TCs in the environment can be degraded through 
several pathways. The degradation mechanism 

Fig. 1  Structural comparison of tetracycline, oxytetracycline, and 
chlortetracycline
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breakdown macromolecules to smaller molecules that 
are relatively less harmful and non-hazardous. The 
degradation mechanism produces secondary metabo-
lites that may cause pollution and are challenging to 
mineralize. The chemical structure of TCs (Fig.  1) is 
essential to understand its degradation route by differ-
ent degradation techniques. Several removal strategies 
for TCs have been developed for TC degradation that 
can broadly be categorized as non-biodegradable and 
biodegradable. Each strategy has its own merits and 
demerits. However, the best strategy would be cost-
effective, high degradation efficiency, environmentally 
benign, and up-scalable to the industry level. Non-bio-
degradable methods are expensive, energy-intensive, 
and environmentally less benign. Biodegradation is the 
cost-effective and most suitable approach to degrade 
TCs in the soil at the expense of microbial enzyme 
machinery. Understanding the degradation mecha-
nism of different enzymes at the molecular level is cru-
cial for further scale-up to pilot and industrial scale. 
However, the microbial degradation pathway of TC by 
different bacteria is not much explored, except some 
references for pure cultures are reported [17, 18].

Non‑biodegradable route of TC removal
Advanced oxidative processes
The inefficiency of conventional methods of removing 
TC antibiotics from the wastewater streams resulted in 
developing advanced treatment technologies, includ-
ing advanced oxidation processes (AOPs). AOPs are 
cost-effective as the processes operate with less energy 
than direct oxidation. The process is based on hydroxyl 
(•HO) radicals that react with the organic compounds. 
Hydroxyl radicals (•HO) were reported to have higher 
oxidative reactivity (E° = 2.8 V) than ozone and chlorine 
gas, but their selectivity is relatively poor [19]. These 
highly reactive •HO radicals are generated by H2O2 and 
ozone along with metal or semimetal catalysts. AOPs 
could produce low toxic intermediates, leading to com-
plete mineralization. Advanced oxidation processes 
are further divided based on light, catalysts, and ultra-
sounds such as Fenton processes, ozonation, photoca-
talysis, UV photolysis, and sonolysis. These processes 
have been studied for wastewater treatment aiming to 
degrade micropollutants. Table  1 gives a quick over-
view of comparison on different non-biodegradable 

Fig. 2  Aquatic and terrestrial routes of tetracycline in the environment
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methods regarding advantages and disadvantages, 
applied for TC degradation.

Ozonation
Ozone is a well-known oxidizing agent that has been 
extensively studied for tetracycline degradation. It offers 
advantages over other technologies, such as no chemical 
sludge generated after ozonation of organic and inorganic 
pollutants, ozone decomposes quickly to oxygen in water 
[20]. Understanding the ozonation mechanism is pivotal 
in determining its role in TC degradation. Ozonation 
works by two mechanisms: direct reaction with liquefied 
ozone or indirect reaction by OH radicals formation [21]. 
Ozone primarily attacks the double bonds, aromatic ring, 
and amine functional groups of organic compounds like 
TC in an aqueous form. Ozone reacts via Direct 1,3-dipo-
lar cycloaddition to C = C, C = N, N = N, and in situ gen-
erations of •HO. Highly reactive species are generated 
during the ozone decomposition, especially at alkaline 
pH [22]. Ozone reacts with TC in its protonated form 
[H+] and adds one and two oxygen atoms at C11a-C12 
and C2-C3 locations, respectively [23]. C11a-C12 double 
bond is highly susceptible to ozone attack than C2-C3 
double bond because it bears two carbonyl groups while 

the former contains only one carbonyl group. Unstable 
epoxide intermediate is generated during this process by 
the release of an O2 molecule by transient ozonide. Epox-
ide quickly undergoes a rearrangement with hydroxyl 
groups at C12, resulting in an oxidized product of size 
460 Da. Similarly, another product of size 476 Da was 
generated at double bond C2-C3 [23].

Several factors, including pH, tetracycline concentra-
tion, temperature, ozone generation rate, and catalyst 
dosage, if applied, play their role in effective TC degrada-
tion by ozonation. pH plays a crucial role in the ozona-
tion mechanism. At low pH, the hydroxyl group (OH−) 
at the ring I of TC was non-dissociated while the amide 
functional group (CO–NH) turns into protonated form. 
This results in a decrease in electron densities on C2-C3 
double bond and amide and keto groups at C1 position 
via conjugation. The decreased electron densities lower 
the probability of ozone attack at C2-C3 position. Khan 
et al. [24] proposed an ozone-dependent TC degradation 
pathway based on TC chemistry, ozonation mechanisms, 
and the mass spectroscope (M.S.) spectra of TC prod-
ucts. Ozone complemented TC degradation, at a lower 
pH of 2.2, resulted in oxidized products of m/z value of 
461, 477, 509, at C11a-C12 location, while a product of 

Table 1  A comparison of non-biodegradable tetracycline methods

The data for comparison are taken from the references [27, 32–36]

Non-biodegradable method Advantages Disadvantages Influencing parameters

Ozonation High process efficiency
Lesser O3 consumption
Environmentally safe, i.e., no sludge production
Improve efficiency by catalyst utilization

High cost
Lesser solubility in water
Possible production of 

carcinogenic by-product 
(bromate)

Mass transfer limitation

Ozone dose
pH and temperature of the 

reaction medium
Type of catalyst
Initial TC concentration

Fenton process High performance
Simplicity
Non-toxic
Environmentally safe end products generation, 

i.e., H2O, O2
Possibility of catalyst utilization to improve the 

efficiency
Possibility of combination with other non-biode-

gradable methods to improve efficiency

Strict pH range
High H2O2 consumption
Ferric sludge generation

Operating pH and temperature
Ferrous ion concentration
H2O2 concentration
Initial TC concentration

Photolysis/photocatalysis Reaction conditions easily met
Complete decomposition of organic matter
Strong redox ability
Low cost
Long durability
No adsorption saturation
Potential upscale possibility

Inefficient visible light 
utilization

Rapid degradation of pho-
togenerated intermediate 
compounds

Mass transfer limitations
Incomplete mineralization

Intensity of radiation
Type of catalysts
Water hardness
pH
Redox conditions
Initial TC concentration
Humic acid concentration

Sonolysis/sonochemical oxidation Green or safe technique
No or negligible secondary pollution
Ultrasound waves clean catalyst surface thereby 

increasing catalyst efficiency
Low cost reactors
In combination with Fenton process reduce 

sludge generation

Non-selective mechanism
High energy consumption
High maintenance cost

Ultrasonic power
pH
Initial TC concentration
Reaction time
Redox potential
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m/z value of 416 at C2-C3 location. Moreover, ozonation 
at the said locations gave products of m/z 432, 480, 448, 
525, and 496. In comparison to lower pH, higher pH of 7 
resulted in only three products. The authors speculated 
that at higher pH, free radicals non-selectively react with 
intermediate products of TC leading to low molecular 
weight final products that need advanced, sophisticated 
instrumentation to detect and quantify. Gulnaz and Sezer 
[25] found that 50% of TC was degraded within 10 min 
of Ozonation at pH 3 while complete removal was seen 
in 40 min ozonation. The authors further reported ozone 
efficiency for TC degradation follows the order of pH 
3 > pH 7 > pH 11.

In contrast, TC degradation is also reported to be 
favored by higher pH. Wu et  al. [26] studied TC degra-
dation at pH values of 5, 7, and 9 for 5 min of Ozona-
tion. The authors found a direct relation in degradation 
reaction rate constant with alkaline conditions due to 
hydroxyl radicals’ contribution. Higher pH is respon-
sible for a higher OH− radicals concentration that is 
recognized as more reactive than ozone. The authors 
concluded a higher rate constant of 0.890 min−1 at pH 9 
than pH 5 (0.592 min−1). Ozonation is reported to pro-
mote TC degradation but does not lead to its minerali-
zation. Several organic compounds are generated during 
ozonation, but their mineralization is slow [24].

Catalysts like metal oxides can enhance the ozonation 
process to remove antibiotics and their products. Cata-
lytic ozonation is categorized as homogeneous and het-
erogeneous ozonation. Ozone decomposition is favored 
by transition metal ions in the former category while by 
solid catalysts in the latter category [27]. A comprehen-
sive mechanism of homogeneous and heterogeneous 
catalytic ozonation is reviewed elsewhere [27]. Cata-
lyst can easily be separated from the liquid and reuse in 
heterogeneous ozonation catalysis [20]. ZnO nanoparti-
cles catalyzed ozonation potentially degrade TC due to 
high surface area and lesser production cost. ZnO-ozo-
nation achieved 94% OTC removal at pH 7 after 5 min 
at ozone generation rate of 1.38 mg /s. [21]. In another 
study, 88.52% TC degradation efficiency was achieved 
by ZnO/γ-Fe2O3 nanocomposite [28]. Cobalt-modified 
silicate ore (CoSiO) catalyzed ozonation removed 93.2% 
TC [29]. Another catalyst, cerium-doped compound 
Mn3Gd7–xCex(SiO4)6O1.5 reported to increase the TC 
degradation up to 15% [30].

A load of research was published on ozonation and 
novel catalysts to improve the ozonation efficiency. 
In a recent study, Ostman et  al. [31] reported Sweden’s 
first full-scale ozonation treatment plant for remov-
ing antibiotics. However, the study did not mention 
about tetracycline removal. Ozonation mechanism still 
needs to be much explored regarding homogeneous and 

heterogeneous catalysis for optimum reaction param-
eters. Catalytic ozonation also faces issues like ozone 
adsorption on metal surfaces that need to be explored. 
A negative effect of inorganic ions typically presents 
in wastewater streams on the ozonation process due to 
their high affinity towards active catalytic sites should be 
addressed. Novel stable catalysts with enhanced ozona-
tion efficiency should be developed to lower the ozone 
dose in the reaction process.

Fenton process
H.J. Fenton first reported the Fenton reaction in 1984 
by describing that oxidative potential of H2O2 could be 
enhanced using Fe2+ as catalyst under acidic conditions 
[37]. The reactions involved in Fenton processes are pre-
sented in Eqs.  1–1d. Equation  1 is considered the core 
reaction involved in the Fenton chemistry. A detailed 
insight into the Fenton and Fenton-like reaction chem-
istry is already presented in a review by Babuponnusami 
and Muthukumar [35]. The importance of •OH-related 
reactions is overwhelming as seen by more than 1700 
rate constants reported in the last few decades [38]. An 
in-depth overview of different Fenton processes, includ-
ing single-Fenton and coupled-Fenton processes, reac-
tion parameters optimization for wastewater treatment 
is reviewed by Zhang et al. [39]. Classical Fenton or cou-
pled-Fenton processes have been successfully applied to 
degrade TC, including photo-Fenton [34], sono-Fenton 
[40], and electro-Fenton process [41].

Fenton reactions are pH-dependent regardless of the 
substrate. Optimum pH is reported for Fenton reac-
tions is around 3 [42]. At higher pH, reaction efficiency 
is lesser due to lower generation of OH− radicals, even 
auto-decomposition of H2O2 is noted [43]. Other influ-
encing factors for classical Fenton reactions are Fe2+ 
concentration, initial concentration of the target organic 
compound, and temperature [35]. Fenton and Fenton-
like processes have been applied to wastewater treatment 
plants to degrade anthropogenic compounds such as phe-
nol, nitrophenol, chlorophenol, alkylbenzene sulfonate, 
etc. [44–47]. Photo-Fenton processes are mostly reported 
in the literature for TC degradation. Yamal-Turbay et al. 

(1)Fe
2+

+H2O2 → Fe
3+

+ •OH + OH
−

(1a)•OH +H2O2 → HO2 +H2O

(1b)Fe
2+

+ •OH → Fe
3+

+OH
−

(1c)Fe
3+

+HO2• → Fe
2+

+ O2 +H
+

(1d)•OH+ •OH → H2O2
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reported total TC remediation and 77% mineralization 
for 40 mg L−1 TC initial concentration at 71.5 mg L−1 
H2O2 and 5 mg L−1 Fe2+ [48]. In another study, TC deg-
radation was observed under black-light and solar irra-
diation with different concentrations of Fe(NO3)3 and 
H2O2. Total TC degradation was noted in the presence of 
Fe(NO3)3 after 1 min black-light irradiation [34].

Electro-Fenton is another environment-friendly pro-
cess where •HO are generated either indirectly at the 
cathode or directly by anodic oxidation. The process 
requires lower pH conditions, i.e., pH 2–4. The following 
reaction sequence (2–4) occurs at the cathode to gener-
ate •HO radicals.

The process is advantageous in terms of low cost; 
however, the main disadvantage is the production of 
Fe(OH)3 sludge that could be avoided using heterogene-
ous reagents like metal oxides. H2O2 concentration plays 
a significant role in the degradation of TC, supported by 
Borghi et al. [49]. The authors conducted a rotational cen-
tral composite design to investigate influencing param-
eters temperature, H2O2 concentration, and ferrous ion 
concentration on residual doxycycline concentration and 
total organic carbon (TOC) in the system. The authors 
concluded that only one parameter, H2O2 concentration 
showed a statistically significant effect with TOC reduc-
tion up to 30%. In another study, a comparison of UV 
irradiation, electro-Fenton, and photo-electro-Fenton 
processes was carried out. The authors demonstrated 
photo-electro-Fenton as the best TC degradation method 
following the order: photo-electro-Fenton > electro-Fen-
ton > UV irradiation. Besides, Fe3O4-graphite cathode 
was reported to be stable during the degradation pro-
cess and speculated to be reused, suggesting its valuable 
potential in TC wastewater treatment [50].

Several researchers studied novel heterogeneous cata-
lysts to avoid Fe(HO)3 sludge production. Zheng et  al. 
[51] prepared a novel Fe@Bacillus subtilis heterogeneous 
catalyst by impregnating iron (iii) chloride hexahydrate 
and studied it as Fenton’s reagent with H2O2 addition to 
degrade TC. The authors reported the complete elimi-
nation of TC with negligible iron leaching. Besides, the 
performance of the catalyst was found to be maintained 
after three consecutive runs. The ultrasound-assisted 
Fenton process using magnetite (Fe3O4) catalyst was 

(2a)O2 + 2H
+
→ H2O2(acidic)

(2b)
O2 + 2H2O + 2e → H2O2 + 2OH

−(neutral, basic)

(3)H2O2 + 2e → 2 •HO

(4)H2O2 + Fe
2+

→ Fe
3+

+ OH
−
+ •HO

found to remove 93.6% TC within 60 min of reaction 
with 31.8% removal efficiency of TOC [52]. Wang et  al. 
reported more than 90.7% TC degradation when authors 
applied ultrasound to 0.2 mM Fe2+ and 2 mM H2O2 in a 
novel enhanced sonolysis process [40]. In a recent study, 
the mesoporous bimetallic Fe/Co catalyst was reported 
to degrade TC optimally (86% removal rate) at Fe to 
Co ratio of 2:1, pH 5–9, H2O2 30 mmol, and initial TC 
concentration of 30 mg L−1 [53]. Iron-loaded granular 
activated carbon (GAC-Fe) catalyst reported a limited 
removal of TC 4.94% [54]. The authors speculated that 
the lower TC removal rates in GAC-Fe are attributed to 
the limited surface area, poor structure, and functional 
groups in the two materials.

Though Fenton processes effectively remove recalci-
trant organics in wastewater streams, the process has 
limitations that need to be removed before its application 
at the industrial level. Iron levels beyond the acceptable 
limit could result from the Fenton process that would 
need another expensive unit operation. Also, sludge 
generation is an oft-cited demerit of the Fenton process. 
Novel catalysts should be explored, developed, and tested 
to tackle the abovementioned issues before industrial 
application.

Photolysis
Photolysis (photodecomposition, photodissociation, or 
photodegradation) is the degradation of inorganic or 
organic compounds by solar irradiation. A comprehen-
sive overview of chemical reactions during photolysis is 
referenced by [55]. It is an important antibiotic degrada-
tion way in the natural aquatic environment. Photocata-
lytic oxidation is a non-toxic, stable, and low-cost method 
to disintegrate TC. The photolysis behavior of antibiotic 
in an aquatic environment is reported to be influenced by 
dissolved organic matter and nitrate because humic acid 
in the organic matter upon irradiation results in the gen-
eration of various reactive oxygen species that influence 
antibiotic degradation [56, 57]. Photocatalysis of TC is a 
complex degradation mechanism resulting in numerous 
polar and non-polar intermediates during the process.

TC photolysis has been studied with several photocata-
lyst composites, including TiO2, hydroxyapatite nano-
composite [58], zinc oxide–Bi2O3/TiO2 heterostructure 
[59], CdS–TiO2 heterostructure composite [60], In2O3@
ZnFe2O4 heterojunctions [61], Ag–AgBr/AlOOH plas-
monic [62], ZnIn2S4@PCN-224 [63], g-C3N4/TiO2/CdS 
[64], and without catalysts presence [65]. Photocatalyst 
substantially increased TC degradation rate and overall 
degradation up to 90% in the case of In2O3@ZnFe2O4 
heterojunctions [61]. Zhu et  al. identified several inter-
mediate compounds in TiO2-assisted photocatalysis and 
proposed a TC degradation mechanism [66]. Humic acid 
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may also reduce the photodegradation rate by inner fil-
tering [67]. In addition to solar radiation, TC can also be 
degraded by UV irradiation [68].

The fate of antibiotics by photochemical is reported 
to be affected by humic substances [69]. It may enhance 
photolysis of organic compounds by the generation of 
reactive oxygen species like hydroxyl radicals, peroxyl 
radicals, superoxide, and single oxygen [69] or inhibit 
photolysis by acting as an inner filter and competitively 
absorb light and photons, thus causing loss to organic 
matter removal rate [70]. Photocatalyst TiO2 was inves-
tigated for photodegradation of TC, emphasizing humic 
acid concerning reaction kinetics and TC’s removal 
mechanism. The authors found a significant inhibition 
in TC loss by humic acid due to the surface deactivation 
of TiO2 and hydroxyl radicals quenching. TiO2-assisted 
photocatalysis is reported to significantly enhance the 
TC degradation efficiency in the presence of Cu2+ /Pb2+

, 
SO4

2−/Cl−1, and humic acid, while the presence of tannic 
acid, gallic acid, citric acid, Tween 80, salicylic acid sig-
nificantly decreased the degradation efficiency [71]. Niu 
et al. observed a slight increase in TC photolysis rate at 
a low humic acid concentration [72]. It was further con-
firmed that humic acid could inhibit the oxidation path-
ways initiated by hydroxyl radicals. Jiao et  al. reported 
that the photolysis of TC followed first-order kinetics, 
and the rate was dependent on the initial concentration 
of TC. Reaction rate decreased to 0.0014 min−1 when TC 
concentration was increased from 10 to 40 mg L−1 [73].

Visible light-driven photocatalysis has gained much 
attention recently in the remediation of environmen-
tal pollution. Novel photocatalysts are being developed 
to work in visible light spectra [74, 75]. AgI/BiVO4 het-
erostructured photocatalyst was synthesized in  situ that 
has shown excellent photoactivity for TC decomposition 
under visible light complemented with structure trans-
formation from double type (AgI/BiVO4) to sandwich-
type (AgI/Ag/BiVO4). The authors witnessed 94.91% TC 
degradation within 60 min while degradation efficiency 
was much higher than BiVO4 (62.68%) and AgI (75.43%) 
under similar conditions. Besides, superior mineraliza-
tion was recorded as 90.46%. Total organic carbon (TOC) 
was removed within 120 min [76]. The efficiency of a 
photocatalyst is highly dependent upon the spatial sepa-
ration of photogenerated electron–hole pair. Therefore, 
the fabrication of heterogeneous photocatalysts with 
two different inorganic semiconductors seems an excel-
lent strategy to improve the charge separation of elec-
trons and holes. Luo et al. [77] developed a novel g-C3N4/
Bi3TaO7 nanocomposite photocatalyst for superior TC 
degradation under visible-light spectra. The authors pro-
posed a Z-scheme system reaction mechanism for TC 
degradation under visible light. In another study, 81.2% 

TC degradation was reported by BOC/BWO Z-scheme 
photocatalyst [78].

In brief, photolysis is an emerging technology with 
potential applications to treat wastewater at an indus-
trial scale. Novel photocatalysts are being developed to 
improve the degradation efficiency and encounter the 
problems like visible light adsorption, fast electron–hole 
recombination, and bandgap energy. Photolysis for TC 
degradation is tested on the laboratory scale. Before its 
industrial application, the technology needs to be tested 
at a pilot scale to generate techno-economic data for the 
stakeholders.

Biodegradable route of TC removal
Microbial degradation of TC
Microorganisms could initiate the biodegradation of 
toxic compounds like TC by opening their loop struc-
ture or cutting the attached functional groups. However, 
a limited number of pure microbial strains are isolated 
with TC degrading potential (Table  2). Several putative 
biodegradation pathways of TC have been proposed by 
different researchers based on biodegradation metabo-
lite products. Yin et al. [18] proposed three putative TC 
degradation pathways by Klebsiella sp. strain TR5 based 
on 8 metabolites: i) reduction of a hydroxyl group on 
C-3 of TC followed by successive dehydration reactions 
at C-12-a and C-6; ii) demethylation on C-4; iii) oxidiza-
tion of TC on C-5 followed by removal of carbonyl group 
on C-1 (Fig.  3). In another study, Klebsiella sp. strain 
SQY5 is reported to start TC biodegradation by remov-
ing the methyl functional group. Once the hydrolysis 
opened the ring, the carbonyl group was removed, fol-
lowed by removing the amine group that leads to succes-
sive removal of further two methyl and three hydroxyl 
groups. During this degradation process, the authors 
identified nine degradation products and proposed a new 
putative degradation mechanism [79]. Leng et  al. [17] 
reported that bacterial strain Stenotrophomonas malt-
ophilia DT1 initiates TC degradation by demethylation at 
C-4, followed by carbonyl and amine group removal. The 
authors identified six biotransformation products during 
TC degradation. In all the studies reported, it is common 
that N-methyl, carbonyl, and amine groups are removed 
from the parent compound during TC biodegradation.

Liao et al. [83] reported microbial degradation of chlo-
rtetracycline (CTC) by a mixed microbial community 
with and without acclimation. The acclimated micro-
bial community showed more effective degradation 
efficiency. An increase in acclimated microbiota concen-
tration increased biodegradation. Acclimated microbial 
community resulted in 48.7% and 84.9% CTC removal 
rate in 1 and 4 weeks, respectively, compared to 15.9% 
and 32.5% for the non-acclimated microbial community. 
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The authors further reported a higher 89.8% removal rate 
at 45 °C while only 18.8% at 5 °C.

TC is found in reasonable quantities in wastewater 
streams, as stated earlier in this text. Many researchers 
have studied fate and TC’s occurrence in activated sludge 
systems [16, 84]. TC has been reported non-biodegrad-
able in sludge systems because it can easily sorb up to 
90% of sludge by binding to Ca+2 and similar ions to form 
stable complexes [85]. Cetecioglu et  al. [86] reported 
that > 80% TC introduced in the anaerobic reactor was 
fully or partially degraded. However, complete minerali-
zation was not speculated. TC biodegradation showed a 
non-biodegradable behavior under nitrate-reducing and 
sulfate-reducing conditions, while a slightly biodegrad-
able behavior was seen under methanogenic conditions 
[87]. In contrast, Klebsiella sp. SQY5 showed a maximum 
TC reduction rate and denitrification of 0.113 mg L−1 h−1 
and 4.64 mg L−1 h−1, respectively, after 32 and 92 h of 
inoculation.

Activated sludge is the prime source for novel micro-
bial strain exploration. In a recent study, Yang et al. [88] 
explored sludge for TC degrading microbial strains and 
reported four antibiotic-degrading bacterial strain roots 
to Pseudomonas, Bacillus, and Clostridium genera. 
Pseudomonas strains showed increased biodegradation 
potential under aerobic while Bacillus and Clostridium 
strains under anaerobic conditions. The authors further 
suggested that sludge contains 24 bacterial genera with 
potential antibiotic-degrading capability.

Soil is the main harbor of microorganisms. Bacterial 
community has shown tolerance towards TC, OTC, and 
CTC and co-tolerance towards Cu indicating the meta-
bolic potential of bacteria to further utilize these com-
pounds leading to ultimate degradation [89]. Therefore, 

TC-contaminated soil could be a potential source for 
isolating bacterial strains capable of degrading TC, pos-
sibly employing novel degradation and bio-geo-chemical 
pathways. Wu et al. [90] isolated Raoultella sp. XY-1 and 
Pandoraea sp. XY-2 from TC-contaminated soil capable 
of degrading 81.72% TC within 12 days in Lysogeny broth 
medium. The evaluation of the microbial community 
structure of tested soil during TC degradation revealed 
four predominant phyla, including Proteobacteria, Bac-
teroidetes, Acidobacteria, and Chloroflexi. The nutrients 
available in the soil also affect the biotransformation 
potential of microorganisms. Stenotrophomonas malt-
ophilia strain DT1 was tested against various nutrients, 
i.e., No background nutrient (N.B.), peptone (P), pep-
tone plus citrate (P.C.), and peptone plus glucose (P.G.) 
for TC biotransformation. The strain showed the order of 
PC > P > PG > NB = 0 for biotransformation.

Membrane bioreactors (MBR) have been successfully 
tested for treating wastewater and are considered supe-
rior over conventional wastewater treatment. The impact 
of TC on semi-industrial MBR was tested for denitrifica-
tion, coupled with TC biodegradation. No disturbance in 
MBR was recorded on the injection of TC to eliminate 
organic matter and nitrification. However, denitrification 
was affected slightly. It was further confirmed that the 
origin of activated sludge has a positive impact on MBR 
performance for TC removal. Activated sludge from a 
conventional reactor can withstand TC concentration up 
to 10–20 mg TOC L−1 [91].

In comparison, sludge from the MBR reactor can oper-
ate optimally up to TC concentration of 40 mg TOC L−1 
with 90% of TC removal using acclimated sludge. The 
authors also verified a robust inhibitory effect on the 
microbial community by TC, but phylum Proteobacteria 

Table 2  Pure microbial strains degrading tetracycline

Microbial strain Initial TC 
concentration1 
(mg L−1)

pH Temperature 
(°C)

% degradation Degradation pathway Reference

Pure bacterial cultures Stenotrophomonas malt-
ophilia DT1

50 9 30 89 Denitromethylation, 
decarbonylation, deami-
nation

[17]

Sphingobacterium sp. 
strain PM2‐P1‐29

20 7 30 50 Not reported [80]

Klebsiella sp. strain TR5 200 7 28 90 Oxidation, hydrolysis ring-
opening, decarbonyla-
tion, deamination, 
demethylation

[18]

Bacillus sp. TD-1
Shewanella sp. TD-4
Shewanella sp. TD-5

100 7.2 37 98.89
94.96
97.60

Not reported [81]

Pure fungal cultures Trichosporon mycotoxini-
vorans XPY-10

200–800 7 30 89.61 Epimerization, dehydra-
tion, proton-transfer 
pathway

[82]
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Fig. 3  TC biodegradation pathway proposed in Klebsiella sp. strain TR5 [18], reprinted with permission from Elsevier. Copyright [2020]
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showed resistance up to 1–1000 µg L−1 [92]. Likewise, 
Tran et al. [93] showed a higher TC removal (83.3–95.5%) 
by MBR than the conventional process (44.3–87.6%). 
Sheng et  al. [94] observed 100% TC removal for lower 
(≤ 1 mg L−1) TC concentration in MBR utilizing nitrosi-
fying sludge but low removal (40%) at higher (10 mg L−1) 
concentration. The data indicated that MBR is a better 
option than conventional wastewater treatment plants 
for TC removal. It can further be affirmed that MBR can 
effectively remove TC in wastewater streams when in a 
lower concentration. However, to remove higher TC con-
centration, integration with other removal strategies like 
Ozonation would be helpful.

TC biodegradation is also studied in integration with 
other removal strategies. Simultaneous sorption and TC 
biodegradation were studied by nitrifying granular sludge 
[95]. The pseudo-second-order kinetic model was veri-
fied by the adsorption process, in addition to the com-
plex mechanism of surface adsorption and intra-particle 
diffusion process. A successive increase in TC removal 
rate was noted up to 7.30 mg g−1 with an increase in TC 
initial concentration up to 30 mg L−1 with non-sterilized 
granules, but the maximum percent degradation verified 
was 51.76% at an initial concentration of 20 mg L−1. The 
authors explained that the sorption of TC to nitrifying 
granular sludge occurred quickly and reached the maxi-
mum sorption capacity after 4 h. At the same time, bio-
degradation proceeds gradually and continues till 50 h 
of operation. However, Kim et al. [96] found no evidence 
for TC biodegradation in activated sludge and reported 
sorption as the principal TC removal mechanism.

Microbial fuel cell (MFC) is another approach in the 
primitive stage to biodegrade TC. MFCs offer the advan-
tage of utilizing organic compounds from readily biode-
gradable to refractory organics and convert them into 
electricity. Electrodes in MFCs act as continuous elec-
tron acceptors for anaerobic microorganisms, resulting 
in enhanced organic matter degradation under anoxic 
conditions. Wang et al. [97] studied a novel approach of 
anaerobic degradation of TC by MFC using glucose-TC 
mixtures under gradient acclimation conditions. The 
authors reported 79.1% TC degradation within 7 days of 
operation, much higher than the conventional anaero-
bic method (14.9%). In another study, Wang et  al. [98] 
reported 74.2% and 78% degradation rate of CTC and 
OTC, respectively, by MFC. Since MFCs could be open 
circuit and closed circuit, it was found that TC removal 
efficiency is higher in closed circuits MFCs than open 
circuit ones.

An MFC coupled constructed wetland was success-
fully tested for wastewater containing TC and sulfameth-
oxazole. Zhang et  al. [99] reported significant decrease 
in TC and sulfamethoxazole concentration with the 

development of resistance genes. Another report found 
that the 3D-biofilm electrode reactor removed TC up to 
95% [100]. Since TC degradation by MFCs is at a devel-
opmental stage, limited data is available in the literature 
that also points out research potential in this research 
area.

Factors affecting microbial TC biodegradation
Microorganisms thrive best at specific parameters for 
optimum growth and metabolic activities like tempera-
ture, pH, and nutrient conditions. To optimize the TC 
biodegradation by various bacteria, researchers have 
optimized the reaction conditions, including pH, initial 
TC concentration, and temperature. Leng et al. [17] stud-
ied Stenotrophomonas maltophilia DT1 at different pH 
conditions for optimum TC biodegradation. The authors 
verified the fastest TC hydrolysis rate at initial pH of 10; 
the hydrolysis rate was increased with an increase in pH. 
The highest TC biotransformation was visualized at pH 9. 
In comparison, a lag phase of 3 days was observed when 
pH was 6 at the reaction initiation.

The initial concentration of antibiotics like TC is vital 
in determining biodegradation potential and the rate of 
biodegradation by microbial communities. Degradation 
ratio of Klebsiella sp. SQY5 is reported to increase with 
an increase in initial TC concentration when tested from 
10 to 100 mg/L. The maximum degradation ratio reached 
up to 89.66% for 80 mg/L initial TC concentration. How-
ever, the degradation ratio tends to decrease afterward, 
but it is interesting to know that since strain SQY5 can 
utilize TC as a carbon and energy source, it can with-
stand a selection pressure of 100 mg/L TC but with a 
lower degradation ratio [79].

Stenotrophomonas maltophilia DT1 is reported to 
show the Michaelis–Menten model of biotransformation 
kinetics of TC as a function of initial TC concentration. 
The degradation rate of DT1 strain increased to 75 mg/L 
initial concentration; afterward, it decreased [17]. Kleb-
siella pneumonia was identified from chicken manure 
that can degrade up to 90% TC within 36 h at an initial 
concentration of 200 mg/L under optimized conditions 
[18]. Sphingobacterium sp. PM2‐P1‐29 reported degrad-
ing TC with up to ~ 50% decrease in OD363 for a 27-h 
incubation period [80].

In addition to bacteria, yeast strain Trichosporon myco-
toxinivorans XPY-10 was studied for TC biodegradation 
at a concentration of 600 mg/L. The strain managed to 
degrade TC up to 78% within 7 days [82]. Recombinant 
E. coli strain ETD-1 was reported to degrade 95% doxy-
cycline within 48 h at an initial concentration of 50 mg 
L−1 [101].

As far as temperature is concerned, little info is avail-
able on this aspect. Shen et  al. [102] noted that TC 
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degradation rates increased in swine manure by an incre-
ment in temperature up to 55 °C where maximum TC 
degradation was recorded. During composting, thermal 
degradation and biodegradation work synergistically to 
improve TC degradation [103]. Ratasuk et al. [104] inves-
tigated the role of temperature, illumination, and pH on 
the degradation of OTC in swine manure and noted that 
65% OTC was degraded after 100 h at 40 °C. Li et al. [105] 
also stated that temperature and pH are major factors 
degrading OTC. Limited literature is available on pure 
microbial strains able to degrade TC. Therefore, future 
research must be directed to isolate novel bacterial and/
or fungal strains for TC degradation.

Enzymatic degradation of TC
Enzymatic preparation has been effectively utilized in 
removing TC from the environment. Laccase has been 
extensively used to catalyze the oxidation of a wide range 
of phenolic and non-phenolic compounds, including 
environmental pollutants. Therefore, laccase can offer 
a green alternative in bioremediation and wastewater 
treatment [106]. Laccases are the largest subgroup of 
multicopper oxidases widely found in bacteria, fungi, 
and insects [107]. Laccases are dimeric or tetrameric gly-
coproteins containing four Cu atoms organized into an 
active site [108], serving as a backbone for the catalysis 
process of various substrates, including tetracycline.

The laccase catalysis mechanism involves three steps: 
a) reduction of type I Cu; b) flow of electrons from type 
I Cu to type II and type III cluster; c) oxygen reduction 
to water [109]. The overall mechanism involves four-
electron O2 reduction to water. Initially, the enzyme is 
completely oxidized at the resting stage. Then at the T1 
site, Cu centers reduction (Cu2+ to Cu+) occurs by the 
substrate. After that, dioxygen reduction is initiated 
at T2/T3 cluster site, forming peroxide intermediates 
and their subsequent reduction to water molecules. In 
the final step, all the four Cu centers are oxidized with 
the release of O2− as a second H2O molecule. The net 
result is the oxidation of four substrate molecules to cre-
ate four radicals while reducing one oxygen molecule to 
two water molecules [106]. In another study, Suda et al. 
[110] proposed that TCs biodegradation mechanism 
mainly involves the oligomerization of oxidized TCs via 
radical–radical coupling by laccase in the presence of 
1-hydroxybenzotriazole (HBT). Crude lignin peroxidase 
from Phanerochaete chrysosporium degraded 95% of 50 
mg L−1 TC and OTC at 40 U L−1 enzyme activity [111]

Enzyme immobilization techniques have been devel-
oped to improve enzyme stability, reusability, and lower 
the cost. Enzymatic membrane reactors have been 
developed based on laccase immobilized on ceramic 

membranes to degrade TC in wastewaters. Cazes et  al. 
[112] reported 56% TC degradation with an enzymatic 
membrane compared to 30% for free laccase. In another 
report, laccase from Trametes versicolor was studied 
in relation to the pore diameter of the membrane and 
gelatin concentration for TC degradation. The authors 
reported a higher specific degradation rate of 175 mg h−1 
m−2 at enzyme and gelatin concentration of 10 g L−1 and 
pore diameter of 1.4 µm [113]. The data indicated that 
improved reactivity and stability of immobilized enzymes 
have a positive impact on TC degradation.

Magnetic cross-linked enzyme aggregates (M-CLEAs) 
are a relatively new immobilization method where 
CLEAs are attached to amino-functionalized magnetic 
nanoparticles. Characteristic features of CLEAs are pre-
sented in the work of Sheldon [114]. To lower the cost 
of operation, M-CLEAs are utilized, which present easy 
separation and recycling of immobilized enzymes from 
the reaction mixture by the magnetic field [115]. Yang 
et  al. [116] studied M-CLEAs prepared from Cerrena 
laccase for antibiotic treatment and observed effective 
degradation efficiency for TC, oxytetracycline (OTC) fol-
lowed by ampicillin, sulfamethoxazole, and erythromy-
cin. Cerrena laccase eliminated 100 µg ml−1 TC in 48 h 
at 25 °C. Though it is reported that T. versicolor laccase 
removed 78% of 100 mg L−1 TC in 18 h in the absence of 
a mediator [117], Cerrena laccase is proved to be more 
effective in TC degradation [116]. It is worth mentioning 
that the redox mediator ABTS was unable to improve the 
degradation of TC and OTC, although it is the best medi-
ator for the decolorization of Coomassie Brilliant Blue by 
C. laccase.

Laccase oxidation system was coupled with soil 
adsorption to study the simultaneous removal and 
biodegradation of multiple antibiotics [118]. Laccase-
hydroxybenzotriazole and laccase-syringaldehyde 
showed higher TC, OTC, CTC, and DC. (doxycycline) 
removal, while the only laccase showed poor removal 
efficiency comparable to the control reactor (no laccase). 
Laccase-mediated oxidation systems and soil adsorp-
tion systems resulted in 70% antibiotics removal in just 
15 min of reaction while close to 100% in 180 min. In 
another study, Migliore et al. [119] reported the complete 
removal of OTC by extracellular laccase by fungus Pleu-
rotus ostreatus in 14 days. Likewise, crude lignin peroxi-
dase (40 U L−1) was reported to degrade 95% of TC and 
OTC at an initial concentration of 50 mg L−1 in about 5 
min.

Although enzyme-mediated TCs biodegradation is 
a practical approach with promising results, future 
research should focus on developing cost-effective sorb-
ent materials, innovative immobilization techniques for 
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multifunctional catalysts with higher catalytic potential. 
Novel enzymatic bioreactor configuration must be sought 
for higher degradability with minimum input on enzyme 
concentrations. Most of the research has been conducted 
at a lab scale. Therefore, enzyme-mediated degradation 
must be tested under real field conditions and scale-up to 
pilot scale. In this regard, bioreactor design, i.e., packed 
bed or membrane-based for continuous operation, must 
be carefully decided for optimum results.

Antibiotic resistance genes (ARGs) relation 
to tetracycline degradation
Antibiotics resistance refers to an increase in minimum 
inhibitory concentration (MIC) of antibiotics towards 
microorganisms. In this mechanism, microbes survive 
antibiotics stress [120]. ARGs are natural in the environ-
ment, but their increased prevalence by human activities 
has led them to consider ARGs as an emerging environ-
mental contaminant [121]. ARGs transfer from envi-
ronmental bacteria to human pathogens resulting in 
decreased antibiotic treatment efficiency, thereby caus-
ing severe health concerns. Global tetracycline-resistance 
was 8.7% and 24.3%, respectively, for methicillin-resistant 
Staphylococcus aureus and Streptococcus pneumoniae 
[122]. Tetracycline resistance (TC-resistance) is acquired 
in the following ways: acquiring some genetic material 
already carrying resistance genes, mutations at riboso-
mal binding sites, and chromosomal mutations resulting 
in overexpression of intrinsic resistance [123]. Resistance 
to TC is mainly conferred by 1 or more than 36 tet genes 
[124].

Molecular TC-resistance mechanisms include efflux, 
ribosome protection proteins, and enzymatic inactiva-
tion [125]. Seven efflux pump groups are identified, so 
far, conferring TC-resistance, most members lie into 
facilitator superfamily. Only three genes have been 
reported to inactivate TC [126], while only one enzyme 
Tet(X) demonstrated confirmed activity in vitro. Tet(X), a 
flavoprotein monooxygenase, utilizes monohydroxylation 
to inactivate TC followed by the non-enzymatic break-
down [127]. Nesme et al. [128] reported that tetracycline 
inactivation is rarely detected in environmental metagen-
omes. Monooxygenases like Tet(X) are commonly found 
in nature, catalyzing a range of chemical transformations, 
including aromatic modifications. Therefore, sequence 
diversity of flavoenzymes could result in the acquisition 
of new functions by horizontal gene transfer. So far, lim-
ited information is available in the literature on Tet(X) 
for environmental samples regarding TC biodegradation 
that warrants future research in this area because enzyme 
might have been under sampled and could be a potential 
source of undiscovered inactivating enzymes [129].

Novel antibiotics detection techniques
The conventional antibiotic detection methods are slow 
and do not provide quantitative data on the antibiotic 
residues in the environmental samples. Therefore, it is 
necessary to develop novel antibiotic detection tech-
niques that are rapid, robust, cost-effective, time-saving, 
and easy to perform. Antibiotic residues in environmen-
tal samples are currently detected by high-performance 
liquid chromatography, gas chromatography–mass spec-
trometry, and liquid chromatography–mass spectrom-
etry. Chromatography is the most reliable antibiotic 
detection technique, but it requires expensive instru-
ments, trained personnel, and laborious pretreatment of 
samples.

Biosensors, in contrast, can circumvent these chal-
lenges for rapid and accurate on-site analysis. Biosen-
sors are compact analytical devices with only two main 
components, a) target signal element, b) signal trans-
ducer element. Various biosensors have been developed, 
including electrochemical, mass-based, optical, enzyme-
based, immunosensors, microbial biosensors, aptasen-
sors, calorimetric, and molecularly imprinted polymer 
sensors. Biosensors selection criteria are based on the 
intended application. Each biosensor has its potential in 
a specific field with limitations. The working principle of 
these biosensors is beyond the scope of the review. The 
readers are referred to [130, 131]. Biosensors offer sev-
eral advantages: high selectivity detection, high sensitiv-
ity, rapid identification, lesser inhibition to the solute, 
repeated biocatalyst usage, and applicability to a range of 
solutes from colorless to colored/turbid samples, port-
ability, on-site pollutants detection, and detection of 
the targeted compound in complex matrices. Various 
biosensors have been studied for TC detection, includ-
ing aptasensors [132–134], calorimetric [135, 136], elec-
trochemical [137] immunosensor [138–140]. For an 
in-depth understanding of electrochemical and optical 
aptamer-based sensors, the readers are referred to Jala-
ian et al. [141]. Delgado et al. [142] developed an ultralow 
cost electrochemical sensor made of potato starch to 
detect trace amounts of TC (detection limit–1.15 µmol 
L−1) in drinking water.

With the advancement in nanotechnology, new sen-
sors are being developed. Nanofabrication on biosensors 
showed substantial advantages; a) improved optical and 
electrochemical measurement, b) high portability, and 
more practical applications. Zhang et  al. [143] reported 
an aptamer nano-biosensor based on nanoporous silicon 
for the rapid detection of tetracycline. Electrochemical 
impedance spectroscopy determined a decrease in bio-
sensor impedance with the specific binding of TC. The 
linear range reported for the sensor was 2.1–62.4 nM. A 
highly efficient nano-biochemical sensor was developed 
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in a recent report to sense the ultralow concentration 
of TC (10–9 mol L−1) using hot spot surface-enhanced 
Raman scattering (SERS). The sensor showed TC detec-
tion with an enhancement factor of 2 × 108. It was veri-
fied that the sensor works optimally at a pH range of 5 
and 6 [144] that presents their limitation under harsh 
conditions.

Biosensors have been developed robustly in the current 
decade. Real-time, high sensitivity, selectivity, and easy-
to-handle detection devices in environmental pollution 
detection and clinical diagnostics require ever-increasing 
demand for biosensors development. Much advances in 
biosensors for biomedical applications are sought, but, 
in comparison, environmental monitoring is still at the 
infancy stage due to limitations of inherent challenges in 
the environmental analysis [145]. In the future, biosen-
sor technology should be focused on the development of 
microarray and nano-biosensors for multiplexed analyte 
detection for optimum results under field conditions. 
Electrochemical and enzymatic biosensors have been 
extensively used in environmental monitoring, but these 
biosensors work under a narrow range of optimum tem-
perature and pH. Therefore, research efforts must be put 
in search of stable materials to improve the biosensor’s 
detection capability under harsh conditions.

Limitation and prospects for bioremediation 
of tetracycline
Antibiotic contamination is a global threat that has 
increased the risk of antibiotic resistance in microor-
ganisms. Following the limitations and proposed pros-
pects for future research concerning the degradation of 
TC: A) conventional wastewater treatment plants should 
be upgraded with novel bioremediation techniques to 
treat higher concentrations of tetracycline in wastewater 
streams effectively; B) most of the research has been con-
ducted on a laboratory scale. Therefore, it is necessary to 
put efforts towards pilot-scale or industrial-scale research 
to generate data for policymakers; C) TC degradation 
occasionally results in complete mineralization due to 
the toxicity of intermediate products and/or byproducts 
of the TC degradation pathway that needs more research 
in this area; D) single degradation processes are not via-
ble for the complete removal of TC from the aqueous and 
terrestrial environment. Therefore, future research must 
be directed towards the integration of different degrada-
tion pathways like ozonation and adsorption, photoca-
talysis and ozonation, and most importantly, ozonation 
and biodegradation; E) activated sludge and contami-
nated soil have not been fully explored for their potential 
with respect to the discovery of novel degrading bacte-
rial strains. Much research is needed to discover novel 
bacterial strains; F) future research should be focused on 

Omics technologies and recombineering to isolate genes 
responsible for TC degradation and the development of 
mutant strains with dedicated antibiotic degradation 
capacity; G) new cheap materials should be discovered 
for adsorption processes and biosensor fabrication to 
reduce the cost; H) novel modification processes should 
be sought to improve the oxidation at the anode in elec-
trochemical oxidation during the photocatalysis process; 
I) new nano-sized photocatalysts should be developed 
that can work effectively in visible light.

Conclusion
Tetracycline antibiotic has widespread usage due to its 
low cost, effectiveness against bacterial infections, and as 
a growth promoter in livestock. However, a higher pro-
portion of tetracycline is recovered in the waste stream 
due to lower biodegradability in human and livestock 
and poses a severe threat to environmental ecology and 
human health. Complete tetracycline mineralization is 
not possible in currently available biodegradable and 
non-biodegradable routes due to the formation of inhibi-
tory intermediate products and byproducts during the 
degradation process. The identification of intermediate 
products is mandatory to propose the degradation path-
ways. Integration of ozonation and microbial biodegrada-
tion is the recommended process for effective removal 
of tetracycline from aqueous streams. Initial tetracycline 
concentration, pH, and temperature are found to be the 
critical factor affecting tetracycline biodegradation. The 
current study systematically compiled TC degradation 
strategies and identified pros and cons in each strategy. 
The study finally concluded with future perspectives and 
pointers for the decision-makers to work in association 
with the stakeholders to tackle tetracycline degradation, 
thereby providing a safer environment to live in.
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