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Enhanced soil aggregate stability 
limits colloidal phosphorus loss potentials 
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Abstract 

Background:  Colloid-facilitated phosphorus (P) transport is recognized as an important pathway for the loss of soil 
P in agricultural systems; however, information regarding soil aggregate-associated colloidal P (Pcoll) is lacking. To 
elucidate the effects of aggregate size on the potential loss of Pcoll in agricultural systems, soils (0–20 cm depth) from 
six land-use types were sampled in the Zhejiang Province in the Yangtze River Delta region, China. The aggregate size 
fractions (2–8 mm, 0.26–2 mm, 0.053–0.26 mm and < 0.053 mm) were separated using the wet sieving method. Col-
loidal P and other soil parameters in aggregates were analyzed.

Results:  Our study demonstrated that 0.26–2 mm small macroaggregates had the highest total P (TP) content. 
In acidic soils, the highest Pcoll content was observed in the 0.26- to 2-mm-sized aggregates, while the lowest was 
reported in the < 0.053 mm (silt + clay)-sized particles, the opposite of that revealed in alkaline and neutral soils. Paddy 
soils contained less Pcoll than other land-use types. The proportion of Pcoll in total dissolved P (TDP) was dominated 
by < 0.053 mm (silt + clay)-sized particles. Aggregate size strongly influenced the loss potential of Pcoll in paddy soils, 
where Pcoll contributed up to 83% TDP in the silt + clay-sized particles. The Pcoll content was positively correlated with 
TP, Al, Fe, and the mean weight diameter. Aggregate-associated total carbon (TC), total nitrogen (TN), C/P, and C/N 
had significant negative effects on the contribution of Pcoll to potential soil P loss. The Pcoll content of the aggregates 
was controlled by the aggregate-associated TP and Al content, as well as the soil pH value. The potential loss of Pcoll 
from aggregates was controlled by its organic matter content.

Conclusion:  We concluded that management practices that increase soil aggregate stability or its organic carbon 
content will limit Pcoll loss in agricultural systems.
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Background
The loss of phosphorus (P) from agricultural soils has 
been identified as one of the main causes of eutrophica-
tion of lakes in the lower reaches of the Yangtze River 
in southern China [1]. Statistics have shown that major 
lakes and reservoirs in this area were eutrophic and 

mesotrophic [2–4], and the Yangtze River Delta region 
accounted for 17% of the 10  Tg annual increase in soil 
P around the world [2]. In soil, colloidal P (Pcoll) is the 
P fraction bound to colloids [5]. Colloidal particles are 
highly mobile and are effective adsorbents of organic and 
inorganic contaminants and nutrient elements, such as P, 
owing to the high specific surface area and charge den-
sity [6, 7]. Colloid-facilitated P transport is an important 
pathway for the migration of P into water bodies [5, 8, 9]. 
One study has reported that more than 75% of P in culti-
vated soil solution is combined with fine particles smaller 

Open Access

*Correspondence:  liang410@zju.edu.cn
1 College of Environmental and Resources Sciences, Zhejiang University, 
Hangzhou 310058, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-3521-9761
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12302-020-0299-5&domain=pdf


Page 2 of 14Li et al. Environ Sci Eur           (2020) 32:17 

than 240 nm [10]; similarly, 40–58% of molybdate-reac-
tive P, with a size less than 450 nm in the water extract 
of grassland soil, demonstrates fine-grained P with a size 
of 25–450 nm [9]. Other studies have suggested that Pcoll 
reached up to 50% of total P (TP) in surface runoff, rivers, 
and lakes [11], which may lead to environmental risks.

Soil aggregate stability plays a key role in controlling 
the erosion processes and the loss of soil nutrients [12–
14]. Water-dispersible colloids in the soil adhere to soil 
aggregates, forming a stable system [15]. Colloids either 
can bind to soil aggregates, or be physically strained from 
water flowing through pores between aggregates [16, 17]. 
Some scholars determined the colloid content in 1–2 mm 
aggregates in 39 soils and revealed a significant positive 
correlation between the water-dispersible colloid content 
and clay content in soil aggregates [18]. Furthermore, 
they reported that water-dispersible colloid content was a 
function of total organic C and total clay. Other scholars 
modeled the release characteristics of colloids from soil 
aggregates, the attachment and detachment processes at 
the air–water interface, and flocculation and straining 
from interstitial water [19]. The release of colloids from 
aggregates may result in the disintegration of aggregates 
[20]. However, soil aggregation mainly depends on the 
availability of active mineral surfaces and the dispersion/
flocculation behaviors of the colloidal components [21]. 
Meanwhile, the degree of clay colloid dispersion can be 
reduced by increasing the aggregate stability [18, 22, 23]. 
Therefore, the stability of soil aggregates directly affects 
the migration of soil colloids.

The retention of P in soil aggregates depends on the 
aggregate sizes and chemical properties [24, 25]. Notably, 
P has a relatively closed cycle, with most of the miner-
alized and dissolved P from microaggregates adsorbed 
onto unaggregated clay-sized particles (< 53  μm) or uti-
lized by plants [26]. Reportedly, some studies have shown 
that the soil aggregate stability and size affect the soil P 
distribution [27–29]. Higher percentages of both water-
extractable and Mehlich III-extractable P were observed 
in both the 0.50–0.25 and 0.25–0.125 mm aggregate frac-
tions [30]. In contrast, reports have suggested that TP is 
the highest in small soil aggregates [31], or the TP con-
tent is uniform in soil aggregates of all sizes, whereas 
available P is higher in small soil aggregates [32]. Soil 
aggregation could reduce the loss of organic P in aggre-
gates and increase the adsorption of inorganic P by silt 
and clay particles [26]. Meanwhile, the P forms in soil 
aggregates may vary with different particle sizes and 
land-use types [24, 33]. For example, a study has indi-
cated that aluminum oxide bond P (Al–P) is mainly 
dominated by soil aggregates < 1  mm; those of 2–8  mm 
were mainly iron oxide bond P (Fe–P) and calcium oxide 
bond P (Ca–P) [34]. Other investigators have claimed 

that the labile P in macroaggregates was higher under 
native land-use than other land uses, further confirming 
that soils under native use contained more Ca-bound P 
in macroaggregates than the disturbed soils [35]. These 
studies provide the first basis for the better understand-
ing the relationship between soil aggregates and P.

To date, information on the Pcoll content and its loss 
potential from aggregates remains limited. The impact 
of the aggregation process on the Pcoll content in soils 
remains unclear. Moreover, the composition and struc-
ture of soil aggregates vary under different land-use man-
agement [36, 37]. There are fewer large-sized aggregates 
present in rice soil than dryland due to long-term flood-
ing and anaerobic conditions that cause the macroag-
gregates to be dispersed [36, 38]. In addition, alternation 
between dry and wet conditions generally destroys mac-
roaggregates and enhances the decomposition of organic 
carbon in paddy soils [39]. Therefore, we suspected that 
the content of Pcoll in the macroaggregates of paddy soils 
was less than dryland soils, mainly existing in microag-
gregates and small particles, with a higher loss potential.

This study mainly aimed to understand the effect of 
soil aggregate stability on soil Pcoll content and its loss 
potential, and to assess the core environmental factors 
affecting Pcoll in soil aggregates. Hence, we collected soil 
samples from 15 sites and 6 land-use types in the Yang-
tze River Delta region, Zhejiang Province for aggregates 
and Pcoll analysis. Firstly, we isolated the different-sized 
aggregates in the soil samples. Secondly, we determined 
the Pcoll, total carbon (TC), TP, total nitrogen (TN), Al, 
Fe, and Ca content in each aggregate size fractions. We 
hypothesized that (1) larger sized aggregates have higher 
TP and Pcoll content; (2) aggregates with a higher TC con-
tent have lower loss potential of Pcoll, and (3) land-use 
management with single rice has a higher loss potential 
of Pcoll.

Materials and methods
Soil sampling and preparation
In total, soils with different land-use types (Fig. 1) were 
collected from 15 sites, which were almost evenly distrib-
uted in the Zhejiang Province (an area of 1,055,000 km2). 
Information on specific sampling points is presented in 
Table  1. The 15 sampling points covered six land-use 
types including orchards, single cropping rice, double-
cropping rice, rice–rape rotation, rice–wheat rotation, 
and vegetables, generally established in the past 5 years.

Soil samples of 0–20  cm were collected from typical 
fields (long-term farmland with conventional fertiliza-
tion by local farmers) in May 2018 during the second sea-
son of rotation systems and in other land-use types. Two 
samples, with three replicates, were obtained at inter-
vals of 1000 m at each site with the same land-use type. 
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Next, the replicates were brought back to the laboratory 
and mixed. Then, the mixed soil samples from each site 
were divided into four equal parts by the diagonal quar-
tering method and maintained for a follow-up test. All 
samples were air-dried and separated into two parts: 
one was finely milled and sieved through a 2-mm mesh 
to determine basic physical and chemical properties, and 
the other was carefully broken into small pieces manually 
and passed through an 8-mm sieve for aggregate separa-
tion and Pcoll determination.

Aggregate separation and determination
Aggregate size distribution was determined for each 
soil sample using a modified wet sieving method [40]. 
Briefly, 50 g of unground soil, passed through an 8-mm 
sieve, was carefully placed above a nest of three sieves 
(2 mm, 0.26 mm, and 0.053 mm). Then, the sieves were 
submerged for 20 min in 2.5 L deionized water at room 
temperature and oscillated 300 times for 10  min with a 
30-mm amplitude to separate aggregate fractions. Thus, 
four aggregate fractions were obtained on each sieve: 
large macroaggregates (2–8 mm), small macroaggregates 
(0.26–2  mm), microaggregates (0.053–0.26  mm), and 
(silt + clay)-sized particles (< 0.053 mm) [41]. Aggregates 
of each size were carefully removed from the sieve and 
placed into a beaker. The water used for wet sieving was 
left to rest for 48 h, silt and clay particles were collected, 
and the supernatant was used to determine total dis-
solved P (TDP), truly soluble P (TSP), and Pcoll content. 

All aggregates were oven-dried at 65 °C for 48 h, weighed, 
and placed in a zip lock bag. To obtain water-stable aggre-
gates, the sediment concentration was subtracted from 
that obtained by wet sieving as sand was not considered 
a component of water-dispersible aggregates [40]. The 
sand content was determined by the following process: 
5 g of the dry aggregates obtained above were weighed, 
dispersed into 30  mL  5  g  L−1 hexametaphosphate solu-
tion, placed into an ultrasonic cleaner, and dispersed for 
30 min. The suspension was then poured through a nest 
of sieves. The residue left on the 0.053-mm sieve repre-
sented the sand content of each sized aggregate. After 
collection, sand was dried at 65 °C and weighed.

Soil pH was determined with a glass electrode pH 
meter (PHS-3C, Shanghai) using a soil-to-water ratio 
of 1:5. Soil cation exchange capacity was measured with 
ammonium acetate (12.5  mL 1  M NH4OAc, 2.5  g soil) 
[42]. Soil and aggregate-associated TP was determined by 
H2SO4–HClO4 digestion and evaluated using the molyb-
denum-blue colorimetric method [43]. Soil particle size 
distribution was determined by the hydrometric method 
according to an international soil texture classification 
standard. Soil- and aggregate-associated TC and TN were 
determined using an elemental analyzer (dry combustion 
with Vario MAX CNS, Elementar, Germany). Soil- and 
aggregate-associated Al, Fe, and Ca were determined by 
inductively coupled plasma mass spectrometry (ICP-MS) 
after digestion with 5  mL HNO3 (16  M), 1  mL HClO4 
(12.4 M), and 1 mL HF (23 M) for 12 h. All reagents were 
acquired from Sinopharm Chemical Reagent Co., Ltd.

Colloidal P was determined as described by Ilg [44]. 
Briefly, 10 g of unground soil was placed into a 250-mL 
flask, 80  mL deionized water was added. The sample 
was shaken at 160 rpm and 25 °C for 24 h. The superna-
tant was pre-centrifuged at 3000g for 10 min to remove 
coarse particles. After pre-centrifugation, the superna-
tant was filtered with a 1-μm microporous membrane, 
5 mL of the primary filtrate was discarded, and the total 
filtrate was collected (sample I). This suspension included 
the colloidal and dissolved components. The filtrate was 
ultracentrifuged at 300,000g for 2  h to remove colloids 
(Optima TL, Beckman, USA; Sample II), and the residue 
at the bottom of the ultracentrifuge tube demonstrated 
the water-dispersible colloids. The TDP in Sample I and 
TSP in Sample II, in the solution, were determined after 
digestion with acidic potassium persulfate. The concen-
tration of Pcoll indicated the difference between TDP in 
Sample I and TSP in Sample II. Previous studies have 
shown that soil P through leaching and surface runoff 
was usually in the soluble form, that can pass through the 
0.45–1 μm filter [45, 46]; therefore, in the present study, 
TDP including Pcoll and TSP in aggregates was defined as 
the potential loss P, and the Pcoll in TDP was defined as 

Fig. 1  Location of sampling sites. Location sites of S1–S15 
correspond to Kaihua, Kecheng, Longquan, Zhuji, Lingxi, Changshan, 
Qiandaohu, Liandu, Tonglu, Zhoushan, Wuxing, Tiantai, Shengzhou, 
Mazhan, and Luqiao in Zhejiang Province, China, respectively
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Pcoll loss potential. TDP in the supernatant after 10 min 
wet sieving was considered as easy loss P.

Calculation of water‑stable aggregate (WSA) size fractions
The proportion of WSA in each size fraction was 
obtained from Eqs.  (1) and (2), as described by Alvaro-
Fuentes [47]:

where i is the ith size fraction (2–8, 0.25–2, and 0.053–
0.25  mm); dry soil aggregate (DSAi) is the oven-dried 
mass of total, non-dispersed aggregates collected on 
each sieve; sand is the oven-dried mass of sand collected 
after dispersal in the hexametaphosphate solution on the 
0.053  mm sieve; TotalSoil is the oven-dried mass of soil 
(50 g) for aggregate separation.

Calculation of mean weight diameter (MWD) 
and geometric mean diameter (GMD)
The MWD and GMD of the aggregates were obtained by 
Eqs. (3) and (4) [48]:

where i is the ith size fraction (2–8, 0.26–2, 0.053–0.26, 
and < 0.053 mm) and d is the mean diameter of each size 
(0.053–2  mm). WSAi include 2–8, 0.26–2, 0.053–0.25, 
and < 0.053 mm WSA and (silt + clay)-sized fractions.

Contribution of aggregate‑associated Pcoll to TDP
The contribution rate (CR) was used to explore the 
impact of aggregate sizes on the Pcoll loss potential, calcu-
lated using Eq. (5):

where Agg_CP is the concentration of aggregate-asso-
ciated Pcoll (mg kg−1), TDP is the concentration of total 
dissolved P (mg kg−1), and i is the ith size fraction (2–8, 
0.26–2, 0.053–0.26, and < 0.053 mm).

(1)WSAi =
DSAi − Sandi

TotalSoil −
∑

n

i=1 Sandi
,

(2)
(

silt+ clay
)

sized fraction = 1−

n
∑

i=1

WSAi,

(3)MWD =

n
∑

i=1

di ×WSAi,

(4)GMD = EXP

[
∑

n

i=1 WSAi log di
∑

n

i=1 WSAi

]

,

(5)CRi =
Agg_CP×WSAi

∑

n

i=1 TDP
,

Statistical analysis
Microsoft Excel 2016 and Origin 8.0 were used for data 
processing and cartography. Data were statistically ana-
lyzed using SPSS Statistics 22.0 (SPSS Inc. Chicago, USA) 
software. One-way ANOVA was performed using two 
samples from each site to examine differences of different 
variables as presented in Additional file 1: Tables S1, S2, 
and Figures S1, S2 and Table 3. Pearson correlation analy-
sis was used to identify the relationship between aggre-
gate-associated Pcoll and other soil parameters. Stepwise 
linear regression was performed to evaluate the relation-
ships between P indicators (content and loss potential of 
Pcoll) and soil variables (pH, TP, TC, TN, C/N, Fe, Al, Ca, 
MWD, and GMD).

Results
Soil and aggregate characteristics
Within the 15 soils collected, ten were acidic soils, two 
were neutral soils, and three were alkaline soils (Table 1). 
There were six land-use types: orchard, single cropping 
rice, rice–rape rotation, vegetable, double-cropping rice, 
and rice–wheat rotation. The TC of the soils ranged 
from 3.32 to 20.19 g kg−1; TN ranged between 0.53 and 
2.17 g kg−1. TP varied from 0.23 to 1.64 g kg−1. Soil pH 
values ranged between 3.95 and 7.83 (Table 1).

The DSA and WSA of larger macroaggregates 
(2–8 mm) generally increased with increasing pH values 
(Additional file  1: Figures  S1 and S2, Table  S2). Moreo-
ver, fractions of DSA and WSA (2–8 mm) in acidic soils 
ranged from 18.7 to 33.4% and from 10.5 to 47.1%, respec-
tively. Conversely, fractions of DSA and WSA in alkaline 
soils ranged from 39.7 to 56.1% and from 38.1 to 55.6%, 
respectively. In contrast, size fractions of < 0.053  mm 
particles gradually decreased with increasing soil pH val-
ues, while the average contents of < 0.053  mm particles 
in acidic soils were 18.8 and 17.8%, compared with only 
11.2% and 14.7% in alkaline soils, respectively.

The MWDs of acidic soils (pH < 5.5) were signifi-
cantly smaller than those of alkaline soils (P < 0.05). The 
average MWD of acidic soils was 0.78  mm (Additional 
file 1: Figure S2), while that of neutral and alkaline soils 
was 1.36  mm. However, little difference in GMDs was 
observed between acidic (0.85  mm), and alkaline soils 
(0.91 mm).

Total and colloidal phosphorus content
Generally, the 0.26–2  mm aggregate fraction demon-
strated the highest TP content, which accounted for 
29.6% of the soil TP (Fig.  2a), and soil aggregates of 
2–8  mm demonstrated the second-highest TP content. 
The TP content of (silt + clay)-sized particles was sig-
nificantly lower than that of other fractions (P < 0.05, 



Page 6 of 14Li et al. Environ Sci Eur           (2020) 32:17 

Additional file  1: Table  S1), which only accounted for 
19.7% of the soil TP (Fig. 2a). Moreover, TDP, TSP, and 
Pcoll contents were related to soil pH, and the highest 
TDP content was observed in 0.26–2  mm aggregates 
in most acidic soils and in (silt + clay)-sized particles in 
most alkaline soils (P < 0.05, Additional file 1: Table S1). 
In all soils, no significant difference was observed in the 
Pcoll fractions between different aggregate sizes (P > 0.05; 
Fig. 2b). However, the aggregate content associated with 
Pcoll was the highest in the 0.26–2  mm aggregates, and 
the lowest in the (silt + clay)-sized particles in acidic soils; 
in neutral and alkaline soils, (silt + clay)-sized particles 

demonstrated the highest TDP and Pcoll contents, fol-
lowed by the 0.26–2 mm aggregates (Table 3).

Loss potential of colloidal phosphorus
After wet sieving, about 0.16–1.87% of the soil TP was 
lost in the supernatant as TDP, and Pcoll accounted for 
8.5–84.1% of the TDP (Table  2). The proportion of the 
easy loss P content in the various soils differed due to 
variations in soil physicochemical properties.

In general, the Pcoll loss potential gradually decreased 
as the size of the soil aggregates increased (Fig.  2c). 
The Pcoll loss potential was the lowest in 2–8  mm and 
0.26–2  mm aggregates, with Pcoll accounting for 52.6% 
and 60.6% of TDP, respectively. However, the Pcoll loss 
potential of (silt + clay)-sized particles was the highest, 
with Pcoll accounting for 75.3% of TDP (Fig. 2a). The CR 
value of (silt + clay)-sized particles was mostly larger than 
that of the other aggregate sizes, except for S7, S11 and 
S15; the CR of larger macroaggregates was lowest in most 
soils (Table 3).

Considering different land-use types, the Pcoll content 
in the rice–dry land rotation and vegetable (VE) soils was 
significantly higher than that in paddy and orchard soils, 
regardless of different aggregate sizes (Fig. 3a). Higher Pcoll 
content also was found in macroaggregates (> 0.26 mm), 
except for the orchard soil (Fig. 3a). The colloidal P con-
tent in macro- and microaggregates in the paddy soils 
(including single cropping rice, and double-cropping 
rice) accounted for a relatively lower proportion of TDP 
(P < 0.05) than that in other land-use types (Fig. 3b). Over-
all, it accounted for only 39.3, 44.1, and 40.2% for the 
2–8  mm, 0.26–2, and 0.053–0.26  mm aggregates in rice 
fields, respectively. Colloidal P in (silt + clay)-sized par-
ticles (< 0.053  mm) in paddy soils accounted for a TDP 
proportion as high as 83.0%, significantly higher than that 
observed in the orchard and rice–dryland rotation sys-
tems (Fig. 3b). This indicated that the loss potential of Pcoll 
was dominated by fine-grained and (silt + clay)-sized par-
ticles in paddy soils. However, the Pcoll carried by all sized 
aggregates in dryland and rice–dryland rotation systems 
(orchard, rice–rape rotation, vegetable, and rice–wheat 
rotation) exceeded 50% of the TDP.

Factors affecting colloidal P content and loss potential
Correlation analysis revealed no significant correla-
tions between Pcoll and TC or TN (Table  4). The Pcoll 
content was significantly and positively correlated with 
TP in all aggregate sizes except for (silt + clay)-sized 
particles (Fig.  4a). Soil pH positively correlated with 
the aggregate-associated Pcoll content, but only signifi-
cantly correlated with the Pcoll content of (silt + clay)-
sized particles (P < 0.01) (Fig.  4b). Additionally, Al and 
Fe significantly and positively correlated with Pcoll in 
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total sizes of soil aggregate (P < 0.05) (Fig.  4c, d). How-
ever, only Pcoll in 2–8  mm aggregate significantly and 
positively correlated with Al and Fe (P < 0.05). Moreo-
ver, Pcoll was negatively correlated with C/P (Fig. 4e) and 
positively correlated with C/N (Fig.  4f ). The forward 
results of the stepwise regression demonstrated that Pcoll 
can be described by Al, TP, TN and MWD as follows: 
colloidal P = − 8.017+ 0.087Al+ 10.598TP− 2.257pH

−5.977MWD , (R2 = 0.605, P < 0.001, Table 4). 
The Pcoll loss potential (Pcoll in TDP) in total size of the 

soil aggregate negatively correlated with the TC, TN, 
pH, Ca, C/P, C/N ratios of aggregates (Table 4, P < 0.05). 
Considering different sizes, TC and TN significantly and 
negatively correlated with Pcoll loss potential in 0.26- to 
2-mm-sized aggregates. Except for (silt + clay)-sized par-
ticles, Pcoll loss potential was significantly and positively 
correlated with Al (P < 0.05). Pcoll loss potential in 2- to 
8-mm-sized aggregates was significantly and positively 
correlated with Fe (P < 0.05). However, Pcoll loss poten-
tial in 0.053- to 2-mm-sized aggregates negatively cor-
related with Ca (P < 0.05). The results of the stepwise 
regression demonstrated that the Pcoll loss potential can 
be described by TC, Fe, MWD, and GMD as follows: 
colloidal P/TDP = 0.478− 0.028TC+ 0.015Fe+ 0.413MWD

−0.363GMD , (R2 = 0.539, P < 0.001, Table 4).

Discussion
Total P in aggregates
In our study, we observed that the TP content was the 
highest in macroaggregates of the 15 soils, while the 
TP content in the (silt + clay) particles was the lowest. 

These results indicated that soil P was mainly carried 
by larger aggregates, which confirmed our hypothesis 
and were in line with those previously reported [28, 
49, 50]. For examples, some scholars have observed 
that P tends to concentrate in large WSAs in long-
term fertilization experiments in a reddish paddy soil 
[49], and others claim that aggregate-associated total 
organic C, TN, and TP are preferentially enriched in 
large WSAs (4.76–2.0 mm) [50], reporting that the TP 
proportion increased with increasing aggregate size 
for native lands [35]. Higher P levels may be associated 
with higher levels of TC and TN in large aggregates 
[50, 51]. Macroaggregates ([(Cl–P–OM)x]y) are usu-
ally formed by organic matter, clay (Cl) and multivalent 
ions of P, and other substances [52, 53]. Organic mat-
ter (and associated P) is protected within stable aggre-
gates against microbial degradation [54]. Moreover, it 
has been shown that the organic P forms that accumu-
late in soils are less available to enzymatic hydrolysis 
when bound to mineral surfaces [55, 56]. On the other 
hand, the aggregation promoted by organic matter 
counteracts the dispersion of the small mineral parti-
cles (mostly Fe and Al-(hydr) oxides where P is retained 
[57, 58]. Furthermore, this was validated by the positive 
correlation between aggregate-associated TP and TC, 
and the significant correlation between aggregate-asso-
ciated TP and TN observed in this study (Additional 
file 1: Tables S2).

Table 2  The total dissolved P (TDP), and truly soluble P (TSP), colloidal P, colloidal P/TDP, and ratio of TDP to soil total P 
(TP) in the supernatant of different soils after wet sieving

Data represent the average of three replicates ± standard deviations

TDP (mg kg−1) TSP (mg kg−1) Colloidal P (mg kg−1) Colloidal P/TDP (%) TDP/TP (%)

S1 5.71 ± 0.12 2.62 ± 0.34 3.1 ± 0.34 54.17 0.44

S2 3.49 ± 0.22 0.79 ± 0.18 2.7 ± 0.22 77.27 1.75

S3 6.35 ± 2.02 1.59 ± 0.45 4.76 ± 1.57 75.00 1.27

S4 3.41 ± 0.11 1.83 ± 0.11 1.59 ± 0.22 46.51 0.43

S5 6.03 ± 0.45 2.78 ± 0.34 3.25 ± 0.11 53.95 0.55

S6 2.14 ± 0.56 1.43 ± 0.67 0.71 ± 0.11 33.33 0.71

S7 1.27 ± 0.22 0.87 ± 0.11 0.4 ± 0.34 31.25 0.16

S8 5.48 ± 0.11 0.87 ± 0.11 4.6 ± 0.24 84.06 0.78

S9 29.92 ± 0.34 27.38 ± 0.11 2.54 ± 0.22 8.49 1.87

S10 3.73 ± 0.56 0.79 ± 0.15 2.94 ± 0.56 78.72 0.62

S11 5.4 ± 0.45 2.18 ± 0.62 3.21 ± 1.07 59.56 1.08

S12 1.90 ± 0.45 1.35 ± 0.56 0.56 ± 0.11 29.17 0.63

S13 7.06 ± 0.11 4.05 ± 0.11 3.02 ± 0.22 42.70 0.64

S14 6.59 ± 0.14 4.13 ± 0.90 2.46 ± 1.01 37.35 0.73

S15 6.43 ± 0.11 2.14 ± 1.01 4.29 ± 0.90 66.67 0.64
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Colloidal P content in aggregates
In this study, although no significant difference was 
observed in the Pcoll fractions between different aggre-
gate sizes in all soils, we observed that TDP, TSP, and 
Pcoll contents in soil aggregates were significantly related 
to soil pH. The TDP and Pcoll contents were high in mac-
roaggregates of acidic soils, and low in microaggregates 
and silt + clay particles; however, contrasting results 
were observed in alkaline soil aggregates. This was not 

consistent with our hypothesis which could be attrib-
uted to soil clays being mostly negatively charged, but 
the aggregation of other soil colloids strongly depend 
on their surface charge, being favored when approach-
ing their point of zero charge [59]. Under acidic condi-
tions, the protonation of Fe-, Al-oxides, and organic 
matter in colloids results in positive charges, leading to 
their association with soil particles. However, the dis-
sociation of Fe- and Al-hydroxyl and humic functional 
groups (R–COOH, R–CH2–OH, R–OH) under alka-
line conditions results in a negative charge in the col-
loid [59], which promotes the release of fine particulate 
P and colloidal substances, thus increasing the TDP and 
Pcoll contents in small-sized aggregates and particles. On 
the other hand, the lower pH enhanced the adsorption of 
organic matter on the fine particles and masked the inor-
ganic mineralogy, resulting in fewer chances of P carried 
by Fe- and Al-oxides [60–62]. In addition, we observed 
that the Pcoll content in soil aggregates positively corre-
lated with the aggregate-associated Al and Fe content. 
This was attributed to the greater contents of Fe and Al 
in acidic soil than in alkaline soil, and that the presence of 
Al and Fe oxides may have enhanced the adsorption of P 
and stabilization of soil aggregates [15, 31, 63]. Al and Fe 
oxides have been recognized as important carriers of Pcoll 
[64–67].

Loss potential of colloidal P in aggregates
We observed that the CR value of (silt + clay)-sized 
particles was larger than that of aggregates of other 
sizes, while the CR of large macroaggregates was the 
lowest in most soils, indicating that the (silt + clay)-
sized particles contribute more to the Pcoll loss poten-
tial, while macroaggregates immobilized soil Pcoll. 
Colloidal P is highly bound to Fe and Al on the surface 
of macroaggregates [15, 68], enabling the formation of 
a stable composite structure that can resist the shear 
force of pore flow [64, 65]. Similarly, soil macroaggre-
gates can increase the adsorption of Pcoll on the surface 
and reduce its mobility [26]. The ratio of Pcoll to TDP 
reflects the release potential of Pcoll in soil aggregates 
to soil solution. The high value indicates the high loss 
potential of Pcoll. We observed a negative correla-
tion between the TC and TN content and Pcoll/TDP in 
aggregates, indicating that higher the TC and TN con-
tent, the less likely release of Pcoll from the soil aggre-
gates, which was further confirmed by the negative 
correlation between TC and Pcoll/TDP in the regression 
model (Table  4). Studies had shown that C and N are 
important carriers of Pcoll (most organics act as organic 
colloidal complexes) [28, 69, 70], and the organic mat-
ter could stabilize Al/Fe colloids [71]. Therefore, 
increasing the carbon content in soil aggregates could 
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and (silt + clay) particles (< 0.053 mm) under different land-use 
types. OR orchard soils (n = 3), RICE rice fields including single- and 
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different sizes of aggregate at P < 0.05 level. Lowercase indicated 
significant difference of the same size of aggregate among land-use 
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be an important strategy to reduce the migration of 
Pcoll in the soil. The ratio of Pcoll to TDP for all macroag-
gregates in paddy soils was lower, which may be related 
to the long-term flooding of rice fields. Notably, the 
lower loss potential of Pcoll in macroaggregates of paddy 
soils does not imply that it is less likely to be lost to 
water bodies. However, this could indicate that Pcoll has 
been lost into water and discharged into the water body 
through the channels during rice seasons, particularly 
when under long-term flooding [72]. Moreover, flood-
ing resulted in an anaerobic state in soil aggregates, 
and Fe bound to colloids and aggregates was reduced, 
resulting in excessive release and loss of Pcoll [15]. We 
observed that aggregates of all sizes in dryland and 
rice–dryland rotation systems carried higher Pcoll loss 
potential. Conversely, in paddy soils, the loss potential 
of Pcoll in macro- and microaggregates was lower than 
50% of TDP. However, Pcoll in (silt + clay)-sized parti-
cles (< 0.053  mm) in paddy soils accounted for a TDP 
proportion as high as 83%, significantly higher than 
that observed in orchard and rice–dryland rotation 

systems. Therefore, we believe that Pcoll in paddy soil 
is mainly carried by small silt and clay particles, which 
may indicate that the loss of Pcoll is markedly severe in 
paddy soils.

Conclusions
This study discussed the relationship between Pcoll and 
soil aggregates, providing a potential solution for soil 
P loss in agricultural systems. The soil Pcoll content was 
affected by multiple factors including soil Al, Fe, and TP, 
and the distribution of Pcoll in aggregates can be regulated 
by altering aggregate sizes and soil pH. As small macro-
aggregates contributed the most to the immobilization of 
Pcoll, it is important to increase this fraction in the soil. To 
this end, soil organic matter must be improved owing to 
its crucial role in promoting soil aggregation and reduc-
ing the risk of Pcoll loss potential. Paddy soils, due to 
their high Pcoll/TDP ratio, are particularly at risk of high 
Pcoll loss through smaller particles and worthy of further 
attention.

Table 4  Results from correlation analyses and stepwise linear regressions of colloidal P and colloidal P/TDP in different-
sized aggregates with  soil aggregate-associated mean weight diameter (MWD), geometric mean diameter (GMD), pH, 
total carbon (TC), total nitrogen (TN), C/P, C/N, Al, Fe, and Ca

Total total soil aggregate sizes

* P < 0.05. ** P < 0.01

Indexes Aggregate sizes TC TN TP pH Al Fe Ca C/P C/N MWD GMD

Colloidal P Total 0.151 0.134 0.706** 0.223* 0.220* 0.251** 0.269** − 0.424** 0.241* 0.224* − 0.101

2–8 mm 0.302 0.328 0.769** 0.095 0.374* 0.464* 0.492** − 0.517** 0.118 0.136 − 0.247

0.26–2 mm 0.089 0.129 0.796** 0.012 0.277 0.317 0.142 − 0.644** 0.102 0.102 − 0.264

0.053–0.26 mm 0.149 0.128 0.662** 0.311 0.204 0.190 0.085 − 0.461* 0.295 0.290 − 0.124

< 0.053 mm 0.282 0.101 0.344 0.631** − 0.115 − 0.085 0.588** 0.127 0.541** 0.528** 0.189

Colloidal P/TDP Total − 0.522** − 0.471** 0.026 − 0.301* 0.474** 0.365** − 0.373** − 0.449** − 0.298* − 0.072 − 0.056

2–8 mm − 0.509 − 0.452 0.315 − 0.387 0.764** 0.707** − 0.441 − 0.807** − 0.435 − 0.048 − 0.030

0.26–2 mm − 0.645** − 0.547* 0.147 − 0.436 0.741** 0.513 − 0.688** − 0.632* − 0.411 − 0.090 − 0.097

0.053–0.26 mm − 0.485 − 0.429 − 0.008 − 0.435 0.515* 0.458 − 0.711** − 0.364 − 0.234 − 0.082 − 0.025

< 0.053 mm − 0.386 − 0.455 − 0.322 0.107 0.247 0.104 0.261 − 0.013 0.002 − 0.074 − 0.086

Stepwise linear 
regression

Colloidal P Stepwise linear 
regression

Colloidal P/TDP

R2 F P R2 F P

0.605 44.116 < 0.001 0.539 16.058 < 0.001

B t P B t P

(Constant) − 8.017 − 2.979 0.004 (Constant) 0.478 2.98 0.004

Al 0.087 3.235 0.018 TC − 0.028 − 6.947 < 0.001

TP 10.598 3.88 < 0.001 Fe 0.015 4.883 < 0.001

TN − 2.257 3.634 0.004 MWD 0.413 3.911 < 0.001

MWD 5.977 − 2.651 < 0.001 GMD − 0.363 − 2.057 0.044
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Additional file 1: Table S1. The total phosphorus (TP, g kg−1), dissolved 
P (TDP, mg kg−1), and truly soluble P (TSP, mg kg−1) of different-sized soil 
aggregates in the total 15 soils. Table S2. Correlation analysis of colloidal 
P in TP in soil aggregates and soil aggregate associated MWD, GMD, pH, 
TC, TN, C/N, C/P, Al, Fe, and Ca (n = 45). MWD = mean weight diameter, 
MWD = mean weight diameter, TC = total C, TN = total N. Figure S1. 
Water-stable aggregate (WSA) and Dry soil aggregates (DSA) fractions 
of soils. Figure S2. Mean weight diameter (MWD) and geometric mean 
diameter (WMD) of different soil aggregates. Letters indicated significant 
difference among soils at P < 0.05 level.
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