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Abstract 

Background:  The paper presents an overview of air quality in the 27 member countries of the European Union (EU) 
and the United Kingdom (previous EU-28), from 2000 to 2017. We reviewed the progress made towards meeting 
the air quality standards established by the EU Ambient Air Quality Directives (European Council Directive 2008/50/
EC) and the World Health Organization (WHO) Air Quality Guidelines by estimating the trends (Mann-Kendal test) in 
national emissions of main air pollutants, urban population exposure to air pollution, and in mortality related to expo-
sure to ambient fine particles (PM2.5) and tropospheric ozone (O3).

Results:  Despite significant reductions of emissions (e.g., sulfur oxides: ~ 80%, nitrogen oxides: ~ 46%, non-methane 
volatile organic compounds: ~ 44%, particulate matters with a diameter lower than 2.5 µm and 10 µm: ~ 30%), the 
EU-28 urban population was exposed to PM2.5 and O3 levels widely exceeding the WHO limit values for the protection 
of human health. Between 2000 and 2017, the annual PM2.5-related number of deaths decreased (- 4.85 per 106 inhab-
itants) in line with a reduction of PM2.5 levels observed at urban air quality monitoring stations. The rising O3 levels 
became a major public health issue in the EU-28 cities where the annual O3-related number of premature deaths 
increased (+ 0.55 deaths per 106 inhabitants).

Conclusions:  To achieve the objectives of the Ambient Air Quality Directives and mitigate air pollution impacts, 
actions need to be urgently taken at all governance levels. In this context, greening and re‐naturing cities and 
the implementation of fresh air corridors can help meet air quality standards, but also answer to social needs, as 
recently highlighted by the COVID-19 lockdowns.
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Background
Outdoor air pollution is a major global public health 
issue [48], leading to 4.2 million premature deaths world-
wide [74] and half a million in the European Union (EU) 
in 2016 [24]. The EU identifies seven main air pollutants 
[45]: ammonia (NH3), nitrogen oxides (NOx), carbon 
monoxide (CO), particulate matter with an aerodynamic 
diameter lower than 2.5 µm and 10 µm (PM2.5 and PM10), 
sulfur oxides (SOx), tropospheric ozone (O3), and non‐
methane volatile organic compounds (NMVOCs). In 
cities, where 74% of the EU population lives [33], PM2.5 

and ground-level O3 have potentially the most signifi-
cant effects on human health associated with respiratory 
and cardiovascular diseases and mortality, compared 
to other air pollutants [9, 55, 75]. In 2016, 374,000 and 
14,600 non-accidental premature deaths were attrib-
uted to air pollution (PM2.5 and O3, respectively) in the 
EU-281 countries [24]. Air pollution also damages plant 
ecosystems [35, 49, 63], and surface O3 is considered as 
the most detrimental air pollutant in terms of effects on 
vegetation and biodiversity [1, 52, 63].

The legislated ambient air quality standards and the 
emission control policies (e.g., [10, 18, 77]) control 
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emissions of harmful substances into the atmosphere, 
and regulate the concentrations of air pollutants such 
as PM2.5, PM10, NO2 and O3, by setting limit and target 
values for the protection of human health Table  1 and 
requirements to ensure that Member States adequately 
monitor air quality in a harmonised manner. Therefore, 
the number of air quality monitoring stations grew rap-
idly in Europe, by an order of magnitude in 1996, with 
databases gathering air quality data such as the AirBase 
system of the European Environment Agency. The num-
ber of urban and suburban monitoring stations in Europe 
ranged from 1300 in 1990 to 3600 in 2000 and about 5000 
stations in 2020. Due to the spatial representativeness of 
monitoring stations and the duration of time series, the 
above database offers an unprecedented way for trends 
analysis, and peer-reviewed articles. The Clean Air Pro-
gramme for Europe (CAPE), published by the European 
Commission in 2013, aims to improve air quality in 
Europe by 2030 and to reduce the number of premature 
deaths by half compared with 2005 [16].

For the first time, through an extensive literature 
review and trends analysis, this study aims to (i) quan-
tify the annual trends in national emissions of main air 

pollutants in the EU-28 countries over the time period 
2000–2017, (ii) analyze the trends in real-world air pol-
lutants concentrations over the last two decades; (iii) 
assess the effectiveness of emissions control policies for 
reducing the exposure of EU-28 population to ambi-
ent air pollution, and (iv) evaluate the impact of control 
policies on the number of premature deaths attributed to 
exposure to ambient PM2.5 and O3 levels over time.

Materials and methods
Data collection
The official national emissions of main air pollutants 
(SOx, NH3, PM2.5, PM10) and main O3 precursors (NOx, 
NMVOCs, CO), submitted by the Parties to the LRTAP 
Convention, were obtained through the Centre on Emis-
sion Inventories and Projections (CEIP) under the Euro-
pean Monitoring and Evaluation (EMEP) Program.2 The 
EU-28 urban population exposure was estimated by the 
European Environmental Agency (EEA) from data reported 
in Airbase, and the number of premature deaths attributed 
to exposure to ambient PM2.5 and O3 (per 106 inhabitants) 
were obtained by the Organization for Economic Co-oper-
ation and Development3 (OECD). The above datasets were 
obtained over the time period 2000–2017.

Table 1  Examples of air quality standards for common air pollutants as given in the European Ambient Air Quality Directive (Directive 
2008/50/EC) and World Health Organization Air Quality Guidelines (WHO AQG) for the protection of human health

a  Annual mean PM10 concentration and number of days with 24-h PM10 concentration over 50 µg m–3 for the protection of human health. The annual mean PM10 
concentration does not to exceed 40 µg m–3 (Directive 2008/50/EC) or 20 µg m–3 (WHO AQG). The 24-h PM10 mean concentration does not to exceed 50 µg m–3 (WHO 
AQG) or more than 35 times a year (EC)
b  Annual mean PM2.5 concentration and numbers of days with 24-h PM2.5 mean concentration over 25 µg m−3 (WHO AQG). The annual mean PM2.5 concentration 
does not to exceed 25 µg m–3 (EC) or 10 µg m–3 (WHO AQG)
c  For the protection of human health, the Directive 2008/50/EC has introduced a threshold of 120 µg m–3 for the daily maximum 8-h average. The threshold level 
should not be exceeded on more than 25 times a year. Number of days with daily maximum 8-h O3 concentrations over 100 µg m–3 as limit value for the protection of 
human health (WHO AQG)
d  Annual mean NO2 concentration and number of hours with NO2 concentrations above 200 µg m−3. The annual mean NO2 concentration does not to exceed 
40 µg m–3 (EC and WHO AQG) while the hourly threshold should not be exceeded more than 18 times a year (EC)
e  The 24-h SO2 mean concentration does not to exceed 125 µg m–3 more than 3 times a year (EC) and does not to exceed 20 µg m–3 (WHO AQG). f The Directives have 
introduced a threshold of 10 mg m–3 for the maximum daily 8-h mean concentration

Air pollutant EU limit and target value (threshold in µg m−3) WHO AQG (threshold in µg m−3)

PM10 a Annual mean (40) Annual mean (20)

PM10 a Number of exceedance of 24-h mean (50) Number of exceedance of 24-h mean (50)

PM2.5 b Annual mean (25) Annual mean (10)

PM2.5 b – Number of exceedance of 24-h mean (25)

O3 c Number of exceedance of maximum daily 8-h mean (120) Number of exceedance of maximum 
daily 8-h mean (100)

NO2 d Annual mean (40) Annual mean (40)

NO2 d Number of exceedance of 1-h mean (200) Number of exceedance of 1-h mean (200)

SO2 e Number of exceedance of 24-h mean (125) Number of exceedance of 24-h mean (20)

COf Maximum daily 8-h (10,000) Maximum daily 8-h (10,000)

2  https​://www.ceip.at.
3  https​://stats​.oecd.org.

https://www.ceip.at
https://stats.oecd.org
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Estimation of urban population exposure
For each city included in the Urban Audit,4 the EU-28 
urban population exposure to air pollutants above the EU 
limit values and WHO AQG was estimated by combining 
the concentration maps, from measured concentrations 
at urban and suburban background monitoring stations 
with more than 75% of validated hourly data per year, 
with the population density, and considering that the 
entire population is potentially exposed to the averaged 
concentrations, i.e., excluding human mobility [22–32]. 
The estimation of population exposure was based on data 
from about 1300 stations in 2000 to 3100 stations in 2017 
in EU-28 countries.

Estimation of the national number of premature deaths
The number of non-accidental premature deaths attrib-
utable to ambient PM2.5 and O3 were estimated for each 
EU member country and year by the method described in 
detail in Global Burden of Diseases [36] and widely used 
for the health risk assessment of air pollution [2, 3, 12, 37, 
42–44, 61].

WHO set daily maximum 8-h concentrations for O3 
and 24-h average concentration for PM2.5 as metrics to 
represent the mean daily exposure of population [76]. The 
daily population exposure to O3 and PM2.5 is estimated 
by combining concentrations maps from satellite and 
modeled data, and calibrated by ground measurements, 
with epidemiological data including relative risk values 
and baseline incidence rates [36]. For a health endpoint, 
the number of cases NCc attributed to the exposure to the 
air pollutant c is calculated as NCc = BI × AP where BI is 
the baseline incidence rates and AP the attributable pro-
portion, i.e., the fraction of a health endpoint that can be 
related to the exposure to c in a population Pc where RR 
is the relative risk value, i.e., the probability of developing 
a disease associated to an increase of 10 μg m−3 of the air 
pollutant c concentration [73].

The demographic data were taken from Eurostat  [34], 
and the mortality data and BI were obtained by WHO 
[72]. The RR values were obtained from exposure–
response functions, based on epidemiological studies, 

(1)AP =

∑
[(RRc − 1)× Pc]
∑

[RRc × Pc]

following recommendations from the Health Risks of Air 
Pollution in Europe project, and published by WHO [75]. 
For the non-accidental mortality (all ages), RR = 1.0123 
and RR = 1.0029 are reported for PM2.5 and O3, respec-
tively, i.e., for instance, a 10 μg m−3 increase in the 24-h 
average PM2.5 concentration is associated with a 1.2% 
increase in the risk for mortality attributed to non-acci-
dental causes. However, the use of RR values and BI data 
from local (or national) epidemiological studies is recom-
mended to obtain robust results.

Statistical estimation of annual trends
A 10-year time-series is considered long enough to assess 
short-term changes [66]. The non-parametric Mann–
Kendall test and the non-parametric Sen’s slope estima-
tor were used to detect changes within time-series and 
estimate the magnitude of trends [38, 65]. Both tests were 
applied for annual national emissions of main air pollut-
ants and the number of premature deaths attributed to 
exposure to ambient PM2.5 and O3 levels in EU-28 coun-
tries over the time period 2000–2017. In this study, we 
used MAKESENS program version 1.0 [56]. Results were 
considered significant at p < 0.05.

Literature review
To report robust short-term air pollutants changes over 
the last 2 decades, approximately 50 peer-reviewed arti-
cles and technical report spanning over the time period 
2000–2017 were retrieved from literature databases 
(Science Direct, Web of Science, and Google scholar). 
We selected the studies with: (i) in-situ observations 
from air quality monitoring networks (excluding mod-
eled data); (ii) annual mean concentrations; (iii) at least 
10-year time-series of data; (iv) more than 75% of data 
coverage annually; and (v) significant trend, i.e., with a p 
value < 0.05.

Results and discussion
Trends in national emissions
Significant reductions were observed for the emission of 
all primary pollutants, i.e., − 4.7% year−1 for SOx, − 2.7% 
year−1 for NOx, − 2.6% year−1 for NMVOCs, − 0.6% 
year−1 for NH3, − 2.9% year−1 for CO and− 1.8% year−1 
and− 1.7% year−1 for PM2.5 and PM10, respectively, 

(See figure on next page.)
Fig. 1  Annual trends of national emissions (% year−1) in the 28 European Union countries (EU-28) for sulfur oxides (SOx), nitrogen oxides (NOx), 
non-methane volatile organic compounds (NMVOCs), ammonia (NH3), carbon monoxide (CO), particulate matter with an aerodynamic diameter 
lower than 2.5 µm and 10 µm (PM2.5 and PM10) over the time period 2000–2017 (see Additional file 1: Table S1 for raw data). All trends are significant 
at p < 0.05 (Mann–Kendall)

4  https​://ec.europ​a.eu/euros​tat/web/citie​s/data/datab​ase.

https://ec.europa.eu/eurostat/web/cities/data/database
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over the time period 2000–2017 in the EU-28 countries 
(Fig. 1). The SOx emissions decreased in all EU-28 coun-
tries, from − 2.9% year−1 (Germany) to − 6.0% year−1 
(Slovenia). For NOx, the highest decrease was observed 
in the United Kingdom (− 3.4% year−1), while the low-
est reduction was found in Lithuania (− 0.6% year−1) 
and Poland (− 0.7% year−1). For NMVOCs, the decrease 
ranged from − 0.6% year−1 (Poland) to − 4.0% year−1 
(France). In general, small reductions were exhibited 
in the agricultural sector, contributing to 92% of NH3 
emissions [22], but an increase could be determined 
in Austria, Estonia, Germany, Latvia and Lithuania, 
ranging from 0.1 to 1.0% per year. The domestic heat-
ing represents 48% of CO emissions [22]. Also, the CO 
emissions usually decreased, except in Malta (+ 0.6% 
year−1). A decrease of PM2.5 emissions was observed in 
all EU-28 countries, except Bulgaria (+ 0.5% year−1), 
Hungary (+ 0.9% year−1) and Romania (+ 0.3% year−1), 
associating with a slighter reduction in PM10 emissions 
(− 0.2% year−1 in Bulgaria, − 0.1% year−1 in Hungary). 
An increase of PM10 emissions was noted in Lithuania 
(+ 0.8% year−1) and Romania (+ 0.1% year−1). The high-
est decrease for PM2.5 (− 4.2% year−1) and PM10 (4.0% 
year−1) emissions occurred in Malta (Fig. 1).

The emissions of all primary air pollutants contribut-
ing to ambient levels of PM, O3, and NO2 decreased 
between 2000 and 2017 in the EU-28 (observed reduc-
tions SOx: − 80%; NOx: − 46%; NMVOCs: − 44%; NH3: 
− 10%; CO: − 49%; PM2.5: − 31%; PM10: − 29%), in line 
with stringent EC Directives, e.g. Air Quality Framework 
Directive [21], Large Combustion Plant Directive [19], 
and National Emission Ceilings Directives [17, 20], set-
ting emission reduction commitments by 2030 compared 
to 2005 (expected reductions SO2: − 79%, NOx: − 63%, 
NMVOCs: − 40%, NH3: − 19%; PM2.5: − 49%). The emis-
sion reductions were mainly achieved as a result of the 
progress in e.g. the use of flue-gas abatement techniques, 
energy production and distribution, storage and distribu-
tion of solvents [28, 71], and vehicle technologies related 
to legislative “Euro” standards [59].

In EU-28 countries, the “on-road transport” sector 
is the largest contributor to total NOx emissions (road 
transport: 40–55%), and represents 8–15% of VOCs 
emissions [22]. Diesel-powered motor vehicles account 
for about 91% of the fleet (from 81% in Czech Republic 
to 99% in Portugal) in all EU countries except for Greece 
(37%), and gasoline-powered motor vehicles account for 
about 7% of the fleet [41]. The Euro-2 to Euro-6 stand-
ards for light-duty vehicles were enforced from 1997 to 
2015. For diesel cars, the average NOx + VOCs limit 
ranged from 0.70  g/km (Euro-2) to 0.17  g/km (Euro-6), 
from 1.00  g/km to 0.50  g/km for CO and from 0.08  g/
km to 0.0045 g/km for PM. For gasoline cars, the average 

NOx + VOCs limit ranged from 0.500 g/km (Euro-2) and 
0.128 g/km (Euro-6) and from 2.2 g/km to 1.0 g/km for 
CO. In 2017, the successive Euro standards have low-
ered the PM (94%), CO (50%) and NOx + VOCs (76%) 
emission intensity in the EU compared to early 2000s. 
An investigation by Breuer et al. [7] in Germany showed 
that 91% of road transport NOx emissions are produced 
by diesel-powered motor vehicles. At national level, 
emissions of NOx from on-road transport decreased in 
all EU countries (from − 0.81% year−1 in Lithuania to 
− 4.29% year−1 in Finland) except in Poland (+ 1.51% 
year−1) and Romania (+ 1.17% year−1) between 2000 and 
2017 (Additional file 1: Table S1). Investigations on NOx 
emissions by diesel cars showed that, on average, their 
real-world NOx emissions are seven times the limit of 
0.08 g/km mandated by the Euro 6 standard [41]. There-
fore, the reported reduction of NOx emissions (− 46%) 
can be overestimated compared to the real-world NOx 
emissions.

Trends in urban population exposure
Despite the reduction of PM10 emissions over the time 
period 2000–2017, the minimum and maximum per-
centage of the EU-28 urban population exposed to PM10 
concentrations above the EU daily limit value ranged 
from 18 to 44% in 2000–2010 to 13–30% in 2010–2017 
(Fig. 2), with the highest extent of exposure observed in 
2003 (44%). Between 2000 and 2017, the EU daily limit 
value for PM10 was widely exceeded in Europe, mostly 
in Eastern Europe [38], e.g., Bulgaria, Cyprus, Czech 
Republic, Hungary, Poland, Slovakia, Greece, and Italy. 
In 2017, the EU daily limit value was exceeded in Bul-
garia, Croatia, Czech Republic, Poland and Italy [22, 31]. 
Before 2006, more than 80% of the EU-28 population was 
exposed to PM10 levels exceeding the WHO AQG, reach-
ing 42–52% in 2014–2017 (Additional file  1: Table  S2). 
From 2000 to 2017, the annual averaged PM10 concen-
trations decreased by 0.65  μg  m−3  year−1 on average at 
urban stations in the EU-28 [22]. In 2010–2017, 6–14% of 
the EU-28 population was exposed to PM2.5 levels above 
the EU annual target value, while the range was 16–52% 
in 2000–2010 (Fig.  2). The target value was exceeded 
mostly in Bulgaria, Czech Republic, Poland, and Slova-
kia between 2000 and 2013. The population exposure to 
PM2.5 levels above the WHO AQG ranged from more 
than 90% before 2006 to 74–80% in 2014–2017 Addi-
tional file 1: Table S2. Between 2000 and 2017, the annual 
averaged concentrations of PM2.5 decreased by on aver-
age 0.42 μg m−3 per year at urban background stations in 
the EU-28 [22].

The percentage of the EU-28 population exposed to 
NO2 concentrations above the EU annual limit value and 
the WHO AQG decreased from 14 to 31% before 2006, 
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with the maximum recorded in 2003, to less than 10% 
since 2012 (Fig.  2). The annual limit value was mostly 
exceeded in Italy, Greece, and in the United Kingdom in 
2000–2005, and in Germany in 2010–2016 [22–31]. The 
NO2 annual mean concentrations decreased by on aver-
age 0.39 μg  m−3  year−1 over the time period 2002–2011 
by joining 708 urban stations in the EU-28 [38]. The 
percentage of the EU-28 urban population exposed to 
SO2 levels above the EU daily limit value ranged from 1 
to 2% in 2000–2005 to lower than 0.5% since 2007 (data 
not shown). The percentage of the EU-28 urban popu-
lation exposed to SO2 levels exceeding the WHO AQG 
decreased from more than 70% before 2006 to less than 
40% since 2013 [22–31]. Less than 2% of the EU-28 urban 
population was exposed to maximum CO daily 8-h mean 
concentrations above the EU and the WHO AQG (data 
not shown). Only a few traffic stations in Bulgaria, Poland 
and Romania have reported exceedances of the SO2 and 
CO EU limit values over the time period 2000–2017 [22, 
38].

The EU-28 urban population exposed to O3 levels 
above the EU target value for human health protec-
tion ranged from 7 to 62% since 2000 (Fig.  2), with the 

highest extent of exposure observed in 2003. As for 
NO2 and PM10, the maximum O3 concentrations were 
observed in 2003, due to extremely warm summer in 
Europe, with a heatwave occurred in August, and stag-
nant weather conditions leading to accumulation of air 
pollutants [70]. The EU target value was mostly exceeded 
in Southern Europe, where higher background O3 levels 
(annual mean > 30 ppb) are observed [65], such as Croa-
tia, Cyprus, France, Greece, Italy, Slovenia, Spain, Malta, 
Portugal, but also in Austria, Hungary, Luxembourg, and 
Poland recently. More than 95% of the total EU-28 urban 
population was exposed to O3 levels exceeding the WHO 
AQG since 2000 (Additional file 1: Table S2). In the EU, 
the annual mean of daily O3 concentrations increased 
by on average 0.05 ppb year−1 at 260 urban stations over 
the time period 2000–2014 Table 2. The annual O3 mean 
concentrations increased by on average 0.34  ppb  year−1 
at more than 80% of urban stations between 2005 and 
2014, except in the United Kingdom where a decrease 
(− 0.18  ppb  year−1) was observed at 65% of urban sta-
tions [59]. In Germany, an increase of 0.18  ppb  year−1 
was reported at 79 urban stations over the time period 
2005–2018 [59]. A significant increase in the annual O3 

Fig. 2  Minimum and maximum percentage of EU-28 population (in %) exposed to air pollutants concentrations (particulate matter PM2.5 and PM10, 
nitrogen dioxides NO2 and tropospheric ozone O3) exceeding the European Union limit or target values between 2000 and 2017 (see Additional 
file 1: Table S2; data source: [22–32]
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mean (on average, + 0.29 ppb year−1) was found at urban 
stations in Southern Europe between 2000 and 2010 [46, 
65]. In France, an increase of + 0.14 ppb year−1 at 76% of 
urban stations was reported between 1999 and 2012 [64]. 
Despite an increasing fleet size, the reduction in NOx 
and VOCs emissions since the early 1990s, due to the 
vehicle emission regulations, allowed a reduction in O3 
peaks and high percentiles [11, 26, 62]. At EU-28 urban 

stations, a reduction in O3 annual mean of the maximum 
daily 8-h mean values (− 0.75 ppb year−1) was found over 
the time period 2000–2014 [26]. In Southern Europe, sig-
nificant reductions in 98th percentile (− 0.51 ppb year−1) 
and hourly maximum (− 1.81  ppb  year−1) values were 
found at urban stations between 2000 and 2010 [65]. 
Simpson et  al. [68] found an increase of O3 concentra-
tions of 0.1–0.4 ppb year−1 up to the 95th O3 percentile 
over the time period 1990–2009. The surface O3 levels 
are rising in cities in Europe from 2000 (e.g., [8, 47, 59, 
64, 67, 78], mainly due to a reduced titration of O3 by NO 
[40, 59].

Trends in national mortality from exposure to ambient 
PM2.5 and O3 levels
At present compared to other air pollutants, PM2.5 poses 
the most serious health risk in the EU-28 cities, associ-
ated with premature deaths and increased morbidity, 
followed by ground-level O3 [9, 55]. In the EU-28, the 
number of deaths due to ambient PM2.5 levels decreased 
by on average 4.85 per 1,000,000 inhabitants annu-
ally between 2000 and 2017 (Fig. 3). The highest annual 
decreases were observed in the United Kingdom and 
Estonia (− 11.74 and − 10.46 deaths per 106 inhabitants, 
respectively) while a slighter reduction was found in Por-
tugal (− 0.50 deaths per 106 inhabitants). In Greece and 
Lithuania, an increase of annual mortality due to ambient 
PM2.5 levels was observed (+ 1.22 and + 1.72 deaths per 
106 inhabitants, respectively). In line with rising O3 levels 
in cities [59, 62], the annual O3-related number of pre-
mature deaths increased in the EU-28 (on average + 0.55 
deaths per 106 inhabitants). The highest annual decrease 
of mortality was observed in Greece (+ 2.41 deaths per 
106 inhabitants), Hungary (+ 2.05 deaths per 106 inhabit-
ants) and Czech Republic (+ 1.40 deaths per 106 inhab-
itants), while a non-significant increase was found in 
Spain (+ 0.03 deaths per 106 inhabitants). Between 2000 
and 2017, the annual number of deaths attributed to 
O3 declined mostly in Northern Europe (e.g., Belgium: 
− 0.24, Ireland: − 0.30, Lithuania: − 0.23 deaths per 106 
inhabitants per year) where lower background O3 lev-
els (annual mean < 20 ppb) were observed [4, 59]. In this 
study, only the outdoor exposure to air pollution was 
considered while people spend about 80–90% of time 
in indoor environments [54]. As the spatio-temporal 

Table 2  National-averaged trends magnitude (ppb per 
year ± standard deviation) of annual ozone mean concentrations 
at urban and rural background monitoring stations in Europe

The studies were selected for more than 10-year time-series of ozone data, for 
stations with at least 75% of validated hourly data over the time period, and 
with a significant trend, i.e., with a p value < 0.05. Number of stations (n, with 
n ≥ 2)

Countries Time period References n Urban stations

Europe 1995–2012 [78] 289  + 0.27 ± 0.10

Austria 1995–2014 [62] 6  + 0.17 ± 0.12

Belgium 2  + 0.08 ± 0.15

Germany 60  + 0.19 ± 0.06

Greece 3  + 0.18 ± 0.50

Netherlands 5  + 0.19 ± 0.11

Slovenia 2  + 0.14 ± 0.08

Spain 12  + 0.36 ± 0.24

Sweden 3  + 0.37 ± 0.10

Switzerland 11  + 0.28 ± 0.11

United Kingdom 12  + 0.21 ± 0.12

France 1999–2012 [64] 179  + 0.14 ± 0.19

France 2000–2010 [46, 65] 29  + 0.10 ± 0.30

Greece 3  + 0.41 ± 0.15

Italy 20  + 0.04 ± 0.30

Portugal 8  + 0.40 ± 0.33

Spain 14  + 0.48 ± 0.53

Europe 2000–2014 [8] 260  + 0.05 ± 0.13

Belgium 2005–2014 [59] 2  + 0.42 ± 0.05

France 136  + 0.31 ± 0.42

Germany 79  + 0.09 ± 0.17

Greece 4  + 0.85 ± 0.43

Italy 50  + 0.43 ± 0.84

Portugal 2  + 0.48 ± 0.12

Spain 77  + 0.54 ± 0.73

United Kingdom 29 - 0.18 ± 0.34

Germany 2005–2018 [59] 79  + 0.18 ± 0.15

(See figure on next page.)
Fig. 3  Annual trends of mortality (number of deaths per 1,000,000 inhabitants per year) due to ambient particulate matter with an aerodynamic 
diameter lower than 2.5 µm (PM2.5) and tropospheric ozone (O3) over the time period 2000–2017 in the 28 European Union countries (EU-28). Points 
below the thick line show a decrease in O3- and PM2.5-related mortality, while points above the thick line show an increase (see Additional file 1: 
Table S3 for raw data)
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variability of air pollutants levels and human mobil-
ity were ignored, the individual exposure estimates are 
slightly biased.

Conclusions
Between 2000 and 2017, the EU-28 emissions fell for SOx 
by about 80%, NOx: 46%, NMVOCs: 44%, NH3: 10%, CO: 
49%, PM2.5: 31%, and PM10: 29%. This confirms successful 
control strategies of air pollutants emissions. However, 
the current levels of air pollutants in cities continue to 
exceed the EU standards and WHO AQG for the protec-
tion of human health in Europe, especially for the sec-
ondary air pollutant O3 [12, 23, 38, 61]. In 2015–2017, 
the percentages of EU-28 urban population exposed to 
concentrations exceeding the WHO limit values were 
74–81% for PM2.5, 42–52% for PM10, 95–98% for O3, 
21–31% for SO2 and 7–8% for NO2 [22]. In agreement 
with a reduction of ambient PM2.5 levels in cities, the 
annual PM2.5-related number of deaths decreased (− 4.85 
per 106 inhabitants) between 2000 and 2017. The con-
trol strategies of O3 precursor emissions were effective 
in rural areas [53, 65]. However, the rising O3 levels have 
become a major public health issue in the EU-28 cities 
[47, 59, 62], where the annual O3-related number of pre-
mature deaths increased (+ 0.55 deaths per 106 inhabit-
ants) over the time period 2000–2017.

Barmpadimos et al. [5] have reported a positive correla-
tion between PM10 and air temperature in summer (e.g., 
higher emissions from agriculture), and negative in win-
ter (e.g., lower emissions by tertiary sector for heating). 
In Europe, the average annual air temperature increased 
by 0.22–0.40 °C per decade since 1965 [24]. The highest 
air temperature increase was observed over Eastern and 
Northern Europe in winter, and over Southern Europe 
in summer (EEA, 2018b). Climate change is projected to 
reduce the benefits of PM and O3 precursor emissions 
controls leading to higher PM and O3 levels.

There is an urgent need to take decisive actions at all 
governance levels to achieve the objectives of the Ambi-
ent Air Quality Directives as reported by the EC COM 
[15]. These actions span from improving air quality mon-
itoring network, control of emission sources, improved 
mobility plans and raising awareness to citizens on the 
problem of air pollution, among others. In this context, 
urban and peri-urban reforestation and an implementa-
tion of fresh air corridors can help improve air quality 
and meet air quality standards in cities [6, 13, 51], but 
also answer to social needs, e.g., recreation, cultural, 
aesthetic [57, 58]. The cold air corridors are needed to 
reduce the climatic extreme events in large cities, which 
can lead to air pollution peaks.

Although outside the period of analysis, it is relevant to 
note that the recent COVID-19 pandemic could represent 

an opportunity for adopting measures that contribute to 
improve air quality in European cities in the future. Com-
pared to the same period in 2017–2019, the lockdown 
measures in 2020 led to a decrease of NO (~ 63%) and 
NO2 (~ 52%) concentrations in Southern European cities 
due to the reduction of road and non-road transport [60, 
69]. However, these measures did not significantly reduce 
the PM2.5 and PM10 levels (~ 8%) attributed to an increase 
of PM emissions from the activities at home (e.g., domes-
tic heating, biomass burning), and during the lockdown, 
the ground-level O3 levels increased by ~ 17% due to 
a lower titration of O3 by NO [60]. While it is true that 
“Air pollution rebounds in Europe’s cities as lockdowns 
ease” (Financial Times, 24 June 2020) and that COVID 
discourages the use of public transport, there are some 
positive changes that, if sustained over time, might result 
in improvements of air quality in the cities in the future. 
Partial or total telework has been implemented in many 
companies and public offices, a change that will last to 
certain extent after the COVID pandemic reducing pri-
vate car mobility. Cities like Barcelona and Paris have 
widened sidewalks to ensure social distancing on pedes-
trians, created more bicycle lanes and separated traffic 
and bus lanes for each direction.5

The COVID-19 lockdowns showed us the value of green 
urban spaces for our physical and mental wellbeing. Green-
ing and re‐naturing cities are keywords of the EU Biodiver-
sity Strategy for 2030 EC COM [14]. European Commission 
calls on European cities of at least 20,000 inhabitants to 
develop “ambitious Urban Greening Plans” by including 
the promotion of green infrastructure, nature-based solu-
tions, and by planting at least 3 billion additional trees in 
the EU by 2030. Then, the COVID pandemic can be taken 
as an opportunity for the cities to foster changes in organi-
zation of the urban public space and re-think mobility [39], 
which hopefully may have relevant and lasting impacts on 
the quality of urban air. However, to efficiently reduce air 
pollution in cities, municipalities and city planners urgently 
need to base the selection of tree species upon quantita-
tive and concrete assessments of the role of urban trees in 
affecting air quality either positively or negatively [62]. For 
improving air quality and thermal comfort in cities, tree 
planting programs need to: (a) plant and sustain healthy 
trees by selecting a diversity species well adapted to local 
conditions, (b) avoid species sensitive to air pollution, (c) 
use low VOCs and pollen emitting trees, (d) supply ample 
water to vegetation; (e) use long-lived and low maintenance 
species; and (f) implement cold air corridor in large cities 
to minimize the health risk of air pollutants [50, 62].

5  http://www.xinhu​anet.com/engli​sh/2020-05/19/c_13907​0452.htm; https​://
www.rfi.fr/en/franc​e/20200​520-franc​e-bicyc​le-use-jumps​-44-perce​nt-since​
-end-coron​aviru​s-confi​nemen​t-paris​-anne-hidal​go.

http://www.xinhuanet.com/english/2020-05/19/c_139070452.htm
https://www.rfi.fr/en/france/20200520-france-bicycle-use-jumps-44-percent-since-end-coronavirus-confinement-paris-anne-hidalgo
https://www.rfi.fr/en/france/20200520-france-bicycle-use-jumps-44-percent-since-end-coronavirus-confinement-paris-anne-hidalgo
https://www.rfi.fr/en/france/20200520-france-bicycle-use-jumps-44-percent-since-end-coronavirus-confinement-paris-anne-hidalgo
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