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Flow velocity and nutrients affect CO2 
emissions from agricultural drainage channels 
in the North China Plain
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Abstract 

Background:  Groundwater is typically over-saturated in CO2 with respect to atmospheric equilibrium. Irrigation 
with groundwater is a common agricultural practice in many countries, but little is known about the fate of dissolved 
inorganic carbon (DIC) in irrigation groundwater and its contribution to the CO2 emission inventory from land to the 
atmosphere. We performed a mesocosm experiment to study the fate of DIC entering agricultural drainage channels 
in the North China Plain. Specifically, we aimed to unravel the effect of flow velocity and nutrient on CO2 emissions.

Results:  All treatments were emitting CO2. Approximately half of the DIC in the water was consumed by TOC produc-
tion (1–16%), emitted to the atmosphere (14–20%), or precipitated as calcite (CaCO3) (14–20%). We found that DIC 
depletion was stimulated by nutrient addition, whereas more CO2 evasion occurred in the treatments without nutri-
ents addition. On the other hand, about 50% of CO2 was emitted within the first 50 h under high flow velocity. Thus, 
in the short term, high nutrient levels may counteract CO2 emissions from drainage channels, whereas the final fate of 
the produced biomass (burial versus mineralization to CO2 or even CH4) determines the duration of the effect.

Conclusion:  Our study reveals that both hydrology and biological processes affect CO2 emissions from groundwater 
irrigation channels. The estimated CO2 emission from total groundwater depletion in the North China Plain is up to 
0.52 ± 0.07 Mt CO2 year−1. Thus, CO2 emissions from groundwater irrigation should be considered in regional CO2 
budgets, especially given that groundwater depletion is expected to acceleration in the future.
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Background
Groundwater is a critical water resource around the 
globe ensuring food and water security [1]. Irrigation 
with groundwater for agricultural activities is a common 
practice in many arid and semi-arid regions [2]. How-
ever, over exploitation of groundwater has led to severe 
groundwater depletion in several regions of the world [3]. 
Areas most affected by groundwater depletion are Cali-
fornia and Midwest in the US, Northern India, and the 

North China Plain (NCP) [4]. In the NCP approximately 
70% of the irrigated area is currently groundwater-fed [5, 
6] which causes the groundwater level to drop by more 
than 2 cm per year [7]. While several studies focus on the 
importance and influence of the dramatic groundwater 
level drop, the further fate of the pumped irrigation water 
is much less studied [8].

Groundwater is typically 10- to 100-fold over-sat-
urated with CO2 [9], even up to 250 times the atmos-
pheric equilibrium value [10]. Thus, if it is pumped to 
the surface, CO2 is released. First estimates show that 
CO2 emissions from groundwater pumping probably 
represent a globally significant source of CO2 [11], with 
both CO2 liberation from the water and CO2 produc-
tion due to pump energy generation contributing to 
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the negative climate impact of groundwater irrigation 
[12]. CO2 has been recognized as the dominant driver 
of climate change resulting in tremendous deteriora-
tive impacts on the environment and society at a global 
scale [13]. As one of the major emission sources of CO2, 
agricultural land plays an important role in the global 
carbon cycle [14]. Direct CO2 emissions from agri-
culture have been well-documented in many regions 
[15–17]. However, indirect emission sources, such as 
irrigation drainages and rivers receiving drainage water, 
may account for a large part of the uncertainties in the 
carbon budgets of agricultural ecosystems [18–21].

If CO2 containing water equilibrates with the atmos-
phere, not only the dissolved CO2 but also other spe-
cies of the carbonate system have to be considered [22]. 
Existing estimates of CO2 emissions from groundwater 
pumping assume complete evaporation of the pumped 
water, leaving solutes and solids at the surface. Under 
such conditions, each molecule of CO2 outgassing is 
theoretically produced from two molecule of carbonate 
hardness (refers to HCO3

− + CO3
2−) to re-equilibrate 

with atmospheric CO2 accompanied by one molecule of 
carbonate precipitation simultaneously [11, 23]. Thus, 
maximum CO2 liberation from groundwater dissolved 
inorganic carbon could be calculated from the bicarbo-
nate content of the groundwater [9]. When a large part 
of dissolved inorganic carbon (DIC) containing irrigation 
water drains into surface waters, DIC may have four dif-
ferent fates: evasion as CO2, carbonate precipitation, fix-
ation into biomass by TOC production, and downstream 
transport [24].

Streams are recognized as important CO2 sources 
to the atmosphere [25, 26]. In streams the distribution 
among the four fates of groundwater inorganic car-
bon is controlled by both hydrological and biochemical 
processes and their complex interactions [10, 27]. Flow 
velocity, characterized by fluctuating hydraulic condi-
tions due to flood irrigation or excessive utilization of 
water resources, usually results in enhanced carbon 
export from terrestrial and wetland habitats to fluvial 
networks that subsequently become a source of CO2 
[25, 28, 29]. Turbulence at the air–water interface, which 
is dependent on the river geomorphology and the river 
flow, affects the gas transfer coefficient of CO2, which 
ultimately determines fluvial CO2 emissions [30–32]. On 
the other hand, increasing nutrient levels stimulate bio-
logical processes such as algal growth, which decrease 
DIC concentration by converting CO2 to organic carbon 
via photosynthesis [33]. Agricultural drainage water is 
typically high in inorganic nutrients. Thus, our hypoth-
esis is that both nutrients and flow velocity mediate the 
relative importance of uptake versus outgassing of CO2 
accompanied with calcite precipitation from the dense 

agricultural drainage channels transporting pumping 
groundwater.

However, quantifying these processes of DIC deple-
tion remains challenging. It is difficult to disentangle the 
effects of both factors on the fate of inorganic carbon 
from field observations only, primarily due to uncon-
trolled environmental conditions. We, therefore, per-
formed a mesocosm experiment in the field to explore 
how CO2 emissions from irrigation groundwater respond 
to nutrients and flow velocity treatments. The goals of 
this study are to (1) quantitatively testify the effects of 
nutrients and flow velocity on CO2 emissions and the 
carbon budget of irrigation drainage channels in a typical 
agricultural region in China, and (2) provide implications 
to CO2 emission potential from the irrigation groundwa-
ter in the NCP as well as other similar regions worldwide.

Methods
Study area
Our study was conducted in the Yucheng Comprehensive 
Experiment Station of Dezhou Irrigation District (DID) 
between 115°45′–117°36′ E and 36°24′–38°00′ N, located 
in the North China Plain. The annual-averaged precipi-
tation is 587  mm (ranges from 286 to 1034  mm). Pre-
cipitation occurs mostly from June to September, which 
accounts for 75% of the total annual amount. Annual 
evaporation is between 900 and 1400  mm and annual 
mean temperature is 12.8  °C [34]. The groundwater for 
agricultural irrigation is characterized by high alkalinity 
and enriched with agricultural nutrients when it enters 
the drainage channels [35]. Groundwater bicarbonate 
concentrations in the NCP can range between 1.55 and 
7.65  mmol  L−1 [36]. The ditches and canals are mainly 
artificial and lined with concrete.

Historically, DID has been characterized by anthropo-
genic activities, particularly intensive agriculture devel-
opment, which has been causing a high demand of water 
resources in the NCP [37]. Irrigation drainages were built 
during the twentieth century to increase crop yield in the 
salinized soil by diverting water from the lower reaches 
of the Yellow River to DID. Given that the surface water 
cannot fulfill the demand from agricultural and indus-
trial production, over-exploitation of groundwater had 
been frequently observed through the sharp decrease of 
the groundwater table and heavy pollution therein [38]. 
To eliminate the influence of soil salinity on crop growth, 
flooding irrigation is still commonly applied among local 
farmers. This enhances nutrient inputs from irrigated 
groundwater into the surface water network that sub-
sequently become a source of CO2. Based on farmer’s 
practice when they irrigate the crops, our experiment 
simulate that stream drainage collected from groundwa-
ter-irrigated agricultural land. For better representation 
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of local groundwater, we used groundwater from a local 
irrigation well as inlet water to our experimental system.

Mesocosm setup
Cubic mesocosms (volume 0.2  m3) were constructed 
to mimic drainage channels. The physical design of our 
mesocosms follows that from Petersen et  al. [39]. The 
systems are composed of sixteen cuboid polyvinyl chlo-
ride plastic tanks with 0.9  m in length, 0.3  m in width, 
and 0.6 m in depth. Depth of water was set to 0.5 m. Mes-
ocosms were placed outdoor and remained open and in 
contact with the field atmosphere to ensure natural light 
and weather conditions. The containers were sunk into 
the ground to buffer heating from ambient atmosphere 
temperature and solar radiation. The electrical wiring 
for power supplying was also buried. The upper edge of 
the tanks was 10 cm above the ground so that no surface 
runoff could flow into containers during rainstorms. The 
containers allow a factorial design combining two nutri-
ent levels with two flow velocity levels in four replicates 
(Additional file  1: Figure S1). The tanks were equipped 
with two alternative submerged pumps to mimic river 
flowing. Each mesocosm had an individual pump (65 W 
or 15 W) to provide continuous flowing condition and to 
preclude water pressure differences of connected pipes 
when sharing the same pump under the same treatment. 
The pumps were placed in mesh cages to prevent snails, 
insects, and floating fragments from suction into the 
pump and to reduce the risk of clogging. The inlet of the 
pump was on the shorter side of the tank to simulate a 
unit of water channel (Fig. 1). We set the length to width 
ratio as 3:1 to establish a realistic flow regime in the 

central part of our setting. The middle section along the 
longitudinal direction of these tanks can be considered a 
homogeneous flow field with simple physical boundaries.

Experimental procedure
Groundwater was collected from a nearby agricultural 
irrigation well from a depth of 5 m and pumped into the 
pre-cleaned tanks without sediments. Nutrients were 
added into the tanks at the beginning of the experiment 
for the high-nutrient treatment, while low-nutrient tanks 
received no additional nutrients. Particularly, high-nutri-
ent tanks were instantaneously fed with 40  mg  P  m−3 
and 4000  mg  N  m−3 as K2HPO4 and Ca(NO3)2, respec-
tively. We set the nutrient enrichment level by mim-
icking the two alternative states existing in the local 
drainage system. The nitrate and ammonia concentra-
tions of the study groundwater well were approximately 
0.02 mg N L−1 and 5.8 μg N L−1, respectively, while the 
nitrate concentration of drainages in a field survey in 
Yucheng (on 16th and 17th of September) varied from 
0.02 to 0.42 mg N L−1 with a mean value of 0.17 mg N L−1 
(Table  1). Other parameters in the experimental water 
were comparable to that in the surface water as well 
(Table  1). We designed the initial nitrate concentration 
for the high nutrient experimental group at a level above 
the average nitrate concentration (0.3 mg N L−1). Phos-
phorous was added with the N:P molar ratio of 10:1 fol-
lowing Lone et al. [40].

We choose flow velocities in surrounding drainage 
channels as a reference. Flow velocity of local drainages 
varied from 0.001 to 0.340  m  s−1 during our field sam-
pling. Accordingly, two levels of flow velocity were set to 
0.1 and 0.4  m  s−1. Pumps were cleaned manually every 
3 days. It is expected that there was little CO2 degassing 
through pumping itself, since the submerged pumps were 
tested for air-tightness before usage and it is expected 
that any artifact would be equal between low and high 
nutrient treatments, because the same pumps were used.

Fig. 1  Conceptual diagram of a single container with a pump. 
The up-right insert panel shows a conceptual model of DIC 
transformation in the mesocosm. The fate of DIC was categorized into 
four pathways: CO2 evasion, TOC production, calcite precipitation, 
and downstream transport

Table 1  Characteristics of  the  groundwater and  surface 
water in the study area

pH and alkalinity data in the groundwater were from Li et al. [42], NO3
−–N 

and NH4
+–N data in groundwater were from this study; pH, DIC, NO3

−–N, 
and NH4

+–N data in surface water were unpublished from the field survey in 
September, 2018

Parameter Unit Groundwater Surface water

pH – 7.31 ± 0.13 7.06 ± 4.13

Alkalinity mmol L−1 785 ± 123 –

DIC mg L−1 – 3.83 ± 1.30

NO3
−–N mg L−1 0.02 ± 0.01 0.17 ± 0.10

NH4
+–N μg L−1 5.8 ± 1.1 3.2 ± 5.8
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Overall, there were four (2 × 2) treatments with 4 repli-
cates each in our experimental design, which are denoted 
as: high nutrient and high flow velocity (A + H); high 
nutrient and low flow velocity (A + L); low nutrient and 
high flow velocity (N + H); and low nutrient and low flow 
velocity (N + L).

The experiments was conducted between 31st August 
and 15th September 2018. Sampling and measurements 
of the physical and chemical parameters was performed 
at 0, 4, 16, 32, 64, 112, 160, 280 h. The experiment meas-
urement was finished after 12  days when the CO2 con-
centration had reached equilibrium with the atmosphere. 
Due to the mesocosm malfunction, the N + H treatment 
has only one replicate after 50 h.

Sampling and analysis
Water temperature, dissolved oxygen (DO), and elec-
trical conductivity (EC) were measured using multi-
parameter probes (Hach H40d, USA). Water level and 
flow velocity were recorded using a flow meter (HR-2, 
China) in parallel to each sampling. Water samples were 
collected to quantify concentrations of nitrate, ammo-
nium, DIC, alkalinity, and TOC. For determination of 
NO3

−–N and NH4
+–N concentration, water samples 

were filtered using 0.45  μm filters by spectrophotom-
etry (TU-1810DSPC, China). Calibration curves were 
produced using reference samples according to quality 
control standards and were then applied to evaluate data 
from each set of samples. Reagents, procedural blanks, 
and samples were measured twice in parallel, with aver-
age values reported. The differences between two repli-
cates were within 5% of the mean value for all samples. 
NO3

− and NH4
+ concentrations could be measured at 

precisions of 2.6% and 8.6%, respectively. DIC and TOC 
were analyzed with a Vario TOC Analyzer (Elementar 
Analysensysteme GmbH, Germany). The detection limits 
of DIC and TOC were 4 and 1 μg L−1 with precisions of 
1.5% and 5%, respectively. Alkalinity was determined by 
titration with ~ 0.01 M H2SO4 at a precision of 6%. While 
the measured TOC data could not be directly used. We 
used two methods to quantify CO2 emissions during our 
experiments: a carbon budget approach and direct flux 
measurements using floating chambers (see Additional 
file 1 for method details).

Calculation of C budgets
Changes of DIC in the mesocosms can be separated into 
three parts: carbon dioxide evasion, calcite precipitation, 
and total organic carbon (TOC) production (Fig. 1):

To verify whether carbonate precipitation was likely 
to occur within the mesocosm, we calculated calcite 

(1)�DIC = �CO2 +�CaCO3 +�TOC.

saturation indices (SIs) using PHREEQC [41]. Because 
we did not measure calcium concentrations in the 
mesocosm, we used historical rainy season data from 
irrigation ditches in Dezhou District [42] and derived 
possible SIs with 1.28 ± 0.16 (mean value ± standard 
deviation). Therefore, we assumed calcite precipita-
tion occurred in all mesocosms, with 1  mol each of 
CO2 outgassed and CaCO3 precipitated from 2 mol of 
HCO3

− according to Wood and Hyndman [11]:

CO2 evasion depends on CO2 concentration and the 
physical gas transfer velocity [32]. The CO2 concentra-
tion is affected by the thermodynamic carbonate equi-
librium. TOC formation is a biological process that 
converts inorganic carbon into organic matter. At any 
time, the variation for DIC is denoted as:

Equation  (3) is based on our hypothesis that CO2 in 
the system was over-saturated and TOC was generated 
during the experiment, DIC0 and TOC0 is the amount 
of DIC and TOC at the initial time, respectively, and 
DICt and TOCt is the amount of DIC and TOC at time 
t, respectively. �CO2 and �CaCO3 is the amount of 
CO2 outgassing and calcite precipitating during time 0 
to time t, respectively. Combined with Eq. (2),

This is a conservative estimate as we note that the 
ratio of �CO2 : �CaCO3 can range from 1.18 to 1.88 
[9]. The CO2 evasion could be deduced by the differ-
ence between the variation amount of DIC and the 
variation amount of TOC, re-arranging Eqs. (3) with (4) 
gives:

Because TOC data were not available, we estimated the 
TOC generation indirectly from total inorganic nitrogen 
(TIN) consumption. Assuming the molar C:N ratio in 
freshwater being higher than the Redfield ratio of 106:16 
[43, 44], TOC production could be estimated from the 
consumption of nitrate and ammonium, which are the 
main species of nitrogen in the groundwater system with 
nitrate accounting for the majority, based on a C:N ratio 
of 10:1 [45]. We assume that denitrification as a process 
that removes N from the system can be neglected in our 
case, because our system was turbulent and well aerated.

Our mass balance was calculated by multiplying the 
concentrations with the varying water volume in the 
setup (mesocosm bottom area × decreasing water level 

(2)2HCO3
− + Ca2+ = CO2 ↑ +CaCO3 ↓ +H2O.

(3)
DIC0 − DICt = �CO2 +�CaCO3 + (TOCt − TOC0).

(4)�CO2 = �CaCO3.

(5)�CO2 =
(DIC0 − DICt)− (TOCt − TOC0)

2
.
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with negligible volume of the water in pipes and pump), 
so the evaporation would not influence our result.

We performed a series of analysis of variance (ANOVA) 
to explore the patterns of DIC, TOC, and CO2 and their 
relationship to nutrient and flow velocity. The concentra-
tion of CO2 at given DIC and alkalinity was calculated 
using standard dissociation constants of the carbon-
ate system [46]. Data were log-transformed to satisfy 
assumptions of residuals normal distribution. ANOVA 
was applied to test for overall statistical differences 
among treatments. The ratio to the initial amount of the 
above parameters for each of the mesocosm was car-
ried out to test for the treatment effects using ANOVA. 
In the model, nutrient and flow velocity were treated as 
the fixed effect, and temporal pseudo-replication from 
repeated sampling over time was considered as nested 
within each mesocosm as random effects. The compari-
son of DIC and CO2 changes is given by the different 
slope of a first-order reaction of log10 DIC or log10 CO2 
over time to test for statistical differences for each treat-
ment and mesocosm. All calculations, statistical analysis, 
and data visualization were performed using R version 
3.5.1 [47].

Results
Significant differences among four treatments
The differences of flow velocities and nutrients among 
the four treatments were significant at the beginning of 
the experiment (Table 2). The nitrate concentration was 
similar between high and low flow with a larger varia-
tion range in high flow treatments. Because of some clog-
ging of the pumps, the flow velocity fluctuated at a larger 
range at high flow compared to the low flow velocity.

At first, DO saturation increased exponentially over 
time in all mesocosms (Fig.  2). The initial DO concen-
tration at high flow was higher than that at low flow at 
the starting time, probably because more turbulences at 

high flow mixed more oxygen into the water before the 
first sampling. DO saturation varied dissimilarly over 
time and treatments as well. Mesocosms with nutrient 
additions developed a clear over-saturation, showing that 
TOC production was stimulated by nutrient additions. 
The A + L treatment reached the highest over-saturation. 
On the contrary, the control mesocosms rapidly reached 
equilibrium with atmosphere. As expected, equilibration 
was faster at high flow.

EC in the high flow velocity treatments showed 
a similar trend with a sharp decrease from 2.24 to 
1.95 mS cm−1 in the first 150 h after which it stayed con-
stant (Fig.  2). The low flow velocity treatments showed 
a steadily decrease from 2.24 to 1.95 mS cm−1 from the 
start to the end of experiment.

DIC and alkalinity were used to calculate the CO2 con-
centrations at the beginning and in the end. At the end of 
the experiment in the high nutrient treatment, pCO2 in 
water was below that in the atmosphere, indicating CO2 
uptake. Assuming alkalinity has a linear decrease over 
time accompanied with known DIC changes (Fig.  3a–
d), we calculated the pCO2 at any time in each meso-
cosm using the CO2SYS program [48]. Thus, the time 
when pCO2 in each mesocosm was equal to pCO2 in the 
atmosphere (pCO2air = 395  μatm) could be estimated. 
After about 125 and 235 h, the systems switched to CO2 
uptake under the A + H and A + L treatments, respec-
tively (Additional file 1: Figure S2). The N + L treatment 
reached CO2 equilibration with atmosphere until the end 
of experiment.

DIC and TOC
The DIC amount in all treatments decreased continu-
ously by 31–48% during the experimental period (Fig. 3). 
Decrease of DIC was largest in the A + H treatment and 
lowest in the N + L treatment. The amount of DIC in 
the system was significantly different between the two 

Table 2  Flow velocities and chemical parameters at start (t = 0 h) and the end (t = 280 h) of the experiment among four 
treatments

Treatment Abbreviation Flow velocity 
(m s−1)

Time (h) NO3
−–N 

concentration 
(mg L−1)

NH4
+–N 

concentration 
(μg L−1)

DIC 
concentration 
(mg L−1)

Alkalinity 
(μmol L−1)

pCO2 (μatm)

Add + high A + H 0.37 ± 0.21 0 0.33 ± 0.01 5.6 ± 0.4 9.53 ± 4.79 721.2 ± 83.8 3537 ± 2670

280 0.06 ± 0.07 0.03 ± 0.03 6.21 ± 3.18 571.2 ± 14.5 43.3 ± 34.8

Add + low A + L 0.11 ± 0.07 0 0.33 ± 0.03 6.3 ± 1.2 10.11 ± 5.06 794.8 ± 17.0 3270 ± 2259

280 0.13 ± 0.05 0.11 ± 0.12 6.40 ± 0.86 629.3 ± 60.4 439 ± 612

Non + high N + H 0.32 ± 0.22 0 0.01 ± 0.01 6.2 ± 1.6 9.85 ± 4.94 758.3 ± 53.0 1889 ± 1349

280 0.01 ± 0.00 0.01 ± 0.00 7.02 ± 3.51 588.9 ± 22.1 15.2 ± 15.8

Non + low N + L 0.09 ± 0.06 0 0.02 ± 0.00 5.8 ± 0.9 9.33 ± 4.78 719.6 ± 81.9 3549 ± 1943

280 0.01 ± 0.00 0.03 ± 0.05 7.25 ± 3.64 591.1 ± 25.1 383 ± 605



Page 6 of 13Leng et al. Environ Sci Eur          (2020) 32:146 

nutrient treatments (p = 0.041), as well as between the 
two flow velocities (p = 0.020). DIC in the N + H treat-
ment decreased rapidly at the beginning of the experi-
ment (particularly at the first 50 h). The decreasing rate 
of DIC under the A + H treatment surpassed that under 
the N + H treatment, while the rate was relatively slow 
but steadily after 170  h. The rate of DIC decrease was 

also strongly related to flow velocity (p = 0.006) but had 
insignificant relationship with nutrients. Moreover, there 
was a significant interaction of flow velocity and nutri-
ents in the DIC decrease slope showing a combined effect 
between the two factors (p = 0.043).

The TOC increase in the high nutrient treatments was 
evidently much higher than the one in the treatment 

Fig. 2  Variations of DO saturation (a–d) and EC (e–h) during the experiment. The black dashed lines show the exponential fits and colored areas 
indicate its 95% confidence intervals. The red dashed lines show 100% of the DO saturation

Fig. 3  DIC depletion (a–d) and TOC generation (e–h) in each container over time among four treatments, the dashed lines in a–d show the 
exponential fits (p < 0.001), and the dashed lines in e–h show the linear fits with p values and colored areas indicate 95% confidence intervals
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without nutrients addition (Fig.  3) and independent of 
flow velocity. In the low nutrient treatments, TOC did 
not significantly change during the experiment, indi-
cating little TOC production in these systems. This is 
consistent with the DO data which showed no O2 over-
saturation in the low nutrient treatments (Fig. 2).

CO2 evasions among four treatments
All mesocosms were net sources of CO2 during the 
experimental period (Fig.  4). Always positive fluxes 
(except at the end of the experiment) were confirmed by 
our floating chamber measurements (Fig. 4e–h). The high 
flow treatments reached CO2 equilibrium between water 
and atmosphere faster (Additional file 1: Figure S2). The 
rate of CO2 change also shows the significant difference 
between flow velocity treatments (p = 0.024). High flow 
velocity sped up CO2 evasion. More CO2 was emitted 
significantly under the high flow velocity (p = 0.005) and 
low nutrient condition (p = 0.096). CO2 emission from 
the low nutrient treatments was 35% higher than that in 
the high nutrient treatments in average.

CO2 evasions of the N + H treatment increased rap-
idly during the first 80 h, and remained nearly constant 
after 150 h. The A + H treatment emitted markedly a lot 
of CO2 at the beginning but the flux became lower over 
time. CO2 evasion from the two low flow treatments 
exhibited a similar behavior with relatively gentle and 
steady CO2 emissions, and the N + L treatment released 
evidently more CO2 than the A + L treatment.

Combined with the result of pCO2 changes (Addi-
tional file 1: Figure S2), CO2 uptake could occur by the 
time when pCO2 concentration dropped below pCO2air. 
The floating chamber measurement also showed that 
some CO2 was taken up (CO2 flux < 0) under the high 
nutrient treatments at the time of 280  h. The rate of 
CO2 uptake can be calculated from pCO2 and the gas 
transfer velocity (k600):

kH is Henry’s constant for CO2 at a given tempera-
ture and salinity [49]. Gas transfer velocity ( k600 ) could 
be calculated from the initial DIC depletion in the low 
nutrient treatments assuming that there was little TOC 
produced in these systems (Fig.  3g, h). Assuming k600 
being constant and equivalent under the same flow 
velocity treatments, k600 was 0.93 and 0.23 m day−1 in 
the high and low flow velocity treatments, respectively. 
Using these k600 values and the final pCO2 we can cal-
culate the CO2 flux at the end of the experiment using 
Eq.  (6). Multiplying that flux with the duration of the 
under-saturated period results in an average total CO2 
uptake of 42 and 9.5  μmol in the A + H and A + L 
treatments, respectively. This is much lower than the 
observed changes in DIC. Thus, uptake did not signif-
icantly contribute to the total C budget of the experi-
ment (Fig. 4).

(6)fCO2 = k600 · kH · (pCO2 − pCO2air).

Fig. 4  Cumulative CO2 emissions in each container over time among four treatments calculated from DIC (a–d) and from floating chamber 
measurements (e–h), the dashed lines show the exponential fits (p < 0.001) and colored areas indicate 95% confidence level, the red dots indicate 
the negative CO2 fluxes, namely there was CO2 uptake occurring
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Discussion
Carbon dynamics
Our results show that flow velocity and nutrient level 
determine the rate and amount of CO2 evasion, respec-
tively. CO2 evasion depends on both CO2 concentration 
and the gas transport coefficient (k) in Eq. (6) [50, 51]. 
With the CO2 evasions under the same flow treatments 
showing similar tendency over time, flow velocity 
altered k, which determined the rate of CO2 emission. 
Meanwhile, treatments with the same nutrient level 
ended with similar amount of CO2 evasion, suggesting 
that the nutrient level ultimately dictates the quantity 
of CO2 emission. Providing that more TOC was gener-
ated in the high nutrient treatment, our results confirm 
that TOC generation reallocate the depletion of inor-
ganic carbon.

Our results also highlight the interaction of the flow 
and nutrient speeding up the depletion rate of DIC 
in drainage channels (p = 0.043). However, there was 
no significant synergistic effect of velocity and nutri-
ents on the final DIC amount remaining in the sys-
tem (p = 0.40). Flow velocity significantly altered the 
slope of DIC and CO2 over time, indicating that flow 
velocity dominated the rate of DIC consumption and 
CO2 emissions. Simultaneously, flow velocity influ-
ences the quantity of DIC consumption as well, possi-
bly by means of regulating on ecosystem metabolism. 
High flow can intensify the capacity of an ecosystem 
to store and process carbon [52]. TOC production at 
high flow velocity could be enhanced by higher light 
and nutrient availability throughout the water column 
due to better mixing [53]. Low flow on the other hand 
may promote sedimentation, thereby improving water 
clarity which may increase TOC production [33]. 
Nutrients affect the quantity of both CO2 and DIC by 
altering the pattern of the inorganic carbon utiliza-
tion through ecosystem processes (i.e., gross primary 
production, ecosystem respiration) [54, 55]. Nutrient 
enrichment may accelerate TOC processing, trans-
formation, and export, potentially altering food-web 
dynamics and ecosystem stability in the long term [54]. 
Higher water temperature enhances photosynthesis 
enzyme activity that favors the biomass growth [56]. 
In our study, the synergy of both factors cannot be 
explained by light availability or temperature, because 
turbidity was low due to lack of sediment and tempera-
ture did not differ between treatments (mean water 
temperature of 25.0 ± 1.0  ℃ within each sampling). 
Most probable, better mixing at high flow prevented 
possible local nutrient limitation of photosynthesis in 
our experiment.

Uncertainty
Effects of C:N ratio on carbon budgets
Our TOC results are sensitive towards the chosen C:N 
ratio (10:1 in our case). We examined the responsive-
ness of the C:N ratio to the DIC allocation in our exper-
iment by calculating carbon mass balances for different 
C:N ratios [C:N = 5, 106:16 (Redfield ratio), 10 (used in 
this study), and 15] (Additional file 1: Figure S3). Vari-
ation of the C:N ratio changed the absolute amount of 
CO2 emitted from the high nutrient treatments but did 
not change the general pattern.

Alkalinity dynamics
In a closed system changes in alkalinity only occur by 
processes including either a solid phase or conversion to 
a gas, which then escapes to the atmosphere [57]. Beside 
the definition of the alkalinity as acid neutralizing capac-
ity of a solution titrated to the CO2 equivalence point, the 
alkalinity can be also described by the equivalent sum of 
conservative cations (those that do not affect alkalinity) 
minus the sum of conservative anions:

The changes of alkalinity caused by nitrate and ammo-
nium consumption can account for 0.1–26.2% of the total 
alkalinity variation. The continuous EC decline during 
the experiment (Fig. 2) was also observed indicating that 
not only nitrogen transformation occurred, but there 
was also ion precipitation inducing alkalinity dropping 
down. The main ions in the groundwater were SO4

2−, 
HCO3

− (affects the DIC change), Na+, and Ca2+ [58]. 
Chemical theory predicts that upon evaporation, half of 
the bicarbonate in the groundwater will re-equilibrate 
with the atmosphere releasing CO2 while the other half 
precipitates, mostly as calcite [11]. Thus, calcite pre-
cipitation must have affected our pCO2 calculations and 
led to alkalinity decrease through Ca2+ removal from 
the system. Assuming the measured alkalinity changes 
(153 μmol L−1 in average) were completely caused by cal-
cite precipitation, then there would be 77 μmol L−1 Ca2+ 
being utilized for CaCO3 formed in each mesocosm. This 
is roughly consistent with our CO2 emission calculations, 
because assuming one calcite formed per emitted CO2 
would result in 69–168 μmol L−1 Ca2+ being utilized for 
CaCO3 formed.

(7)

Alkalinity =
[

Na+
]

+
[

K+
]

+ 2
[

Mg2+
]

+ 2
[

Ca2+
]

+ 2
[

Mn2+
]

+
[

NH+
4

]

+ 2
[

Fe2+
]

−
[

Cl−
]

− 2
[

SO2−
4

]

−
[

NO−
3

]

.
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Method uncertainties in CO2 flux measurement
We used two methods to quantify CO2 emissions dur-
ing our experiments: a carbon budget approach and 
direct flux measurements using floating chambers. 
Theoretically, the cumulative CO2 flux measured by the 
chamber should match the cumulative C loss from the 
water,

where S is the surface area of the water; f (t) is the CO2 
emission flux as a function of time; V is the volume of the 
water, c0 and ct are the CO2 concentrations at time 0 and 
t, respectively.

We found that the results of the direct flux measure-
ment and the DIC calculation were not consistent. The 
flux chamber method resulted in a twenty-time over-
estimation of the CO2 evasion especially at higher flow 
(Fig. 4). This is likely because of the artificial turbulence 
generated by the floating chamber [59, 60]. Deployment 
of floating chamber in the mesocosm system could 
cause a large overestimation of the CO2 evasion com-
pared with the one in natural waters [61, 62], which 

(8)S
t
∫
0
f (t)dt = (ct − c0)V ,

would lead to an unrealistic carbon budget with all 
carbon removed from the system by outgassing in our 
carbon budget. Thus, floating chamber measurements 
cannot be used to quantify CO2 emissions in flume 
experiments.

Implications and upscaling
Drainage channels receive irrigation water from agri-
culture and route the nutrient containing groundwater 
directly into streams. High flow velocity accelerates the 
CO2 evasion to the atmosphere rapidly (Fig.  5), leaving 
less opportunity for channel metabolism and processing 
[32]. Previous research also suggests that CO2 concentra-
tions are largely reduced by intensive primary production 
in rivers [63]. Thus, nutrient additions have the poten-
tial to attenuate CO2 emissions. The formed biomass is 
transported downstream and could be trapped in lentic 
parts of the drainage network, where particle sedimenta-
tion mainly occurs. Notably, collected particulate carbon 
needs to be properly buried or dredged. Otherwise meth-
ane production is likely to take place in the sediment 
accumulations. That would largely increase the GHG 
effect of the drainage network due to the larger global 

Fig. 5  i Fitted curves of temporal changes of the DIC, TOC, and cumulative CO2 emission among the four treatments (a, c exponential regression, b 
linear regression) and ii the percentage fate of the dissolved inorganic carbon in the mesocosm
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warming potential of methane compared to CO2 [21, 30]. 
Alternatively, in-stream plankton could potentially be 
mineralized by heterotrophic respiration [19, 64]. In that 
case, CO2 would only be temporarily bound and later lib-
erated further downstream.

At a given rate of CO2 emission, the flow velocity deter-
mines the required distance until the CO2 concentration 
in a drainage ditch equilibrates with the atmosphere. In 
a hypothetical drainage system of infinite length with no 
biological processes involved, it could be anticipated that 
the only fate of inorganic carbon is to outgas into atmos-
phere. Our study suggest that up to 20% of DIC would 
be converted to CO2 and 58% of the initial DIC would be 
transported downstream considering no other processes 
were involved until the pCO2 in the water equilibrates 
with the atmosphere. Previous study reported large varia-
tions of the release rate of atmospheric carbon from rivers 
to the atmosphere (2–30%) [65]. From field measurements 
of GHG emissions, Ran et al. [66] concluded that 35% of 
the carbon exported into the Yellow River network was 
degassed from the entire watershed during fluvial trans-
port, which is comparable with our estimation.

Irrigation in the study area mainly occurs in March–
April (to ensure the water requirement of winter-wheat 
during the growth period), and October (before wheat 
sowing). In the case of extreme drought in summer, irri-
gation is also needed for maize growth in July or August. 
During other periods the water residence time in the 
agricultural drainage is quite long, because runoff in 
irrigated agriculture is mainly related to the intensity of 
irrigation and rainfall events in comparison to the infil-
tration capacity of the soil [67]. In NCP, the streamflow 
has dramatically decreased because of the human activi-
ties. Low level of groundwater and large evaporation 
potential in this semi-arid region often lead to lentic 
water in drainages [68]. High primary production in the 
stagnant drainage channels will make them a carbon sink.

The median bicarbonate concentration of aquifer sys-
tems in the NCP is approximately 241  mg  L−1 based 
on representative samples from three plain types [36]. 
Using the conservative assumption that when ground-
water reaches the surface, half of the bicarbonate 
(121 mg L−1) is converted to CO2 [11] which is equivalent 
to 87 mg L−1 CO2. Annual groundwater net depletion in 
NCP was estimated as a volume of 8.3 ± 1.1 km3 year−1 
[7]. The estimated annual CO2 emissions due to ground-
water depletion in the NCP are thus approximately 
0.52 ± 0.07 Mt (1 Mt = 1012 g). The irrigation efficiency in 
this region is about 0.5 as reported earlier [69]. Thus, half 
of the pumped groundwater reaches the drainage chan-
nels. However, we do not know how much of the CO2 is 
set free already on the fields and which part of it is enter-
ing the drainage channels. Furthermore, no biological 
carbon fixation is considered. This makes our estimate a 
worst case scenario. Indeed, high CO2 emissions during 
irrigation the fields have been observed [70]. Agriculture 
is always an integrative practice with soil management, 
fertilization, and irrigation. Further studies are needed to 
understand how much groundwater CO2 is emitted dur-
ing the agricultural management and how much ends up 
in the drainage channels.

Groundwater depletion in the NCP contributed a great 
number of CO2 which is quite close to the groundwater 
CO2 efflux in US and India (Table  3), and accounted for 
~ 5% of the global groundwater extraction. CO2 released 
from groundwater depletion has not yet been included in 
the Chinese carbon inventory [71]. A previous study indi-
cates that groundwater loss in the NCP was approximately 
50 km3 within 8 years, which is greater than the capacity of 
China’s Three Gorges Dam (39.3 km3), the world’s largest 
power station [7]. Thus, CO2 emissions from groundwater 
pumping should be considered in global carbon budgets 
[72, 73]. This is especially relevant, because groundwater 
depletion is expected to acceleration in the future [74].

Table 3  Comparison of  CO2 emissions from  groundwater pumping in  the  NCP with  other regions of  the  world as  well 
as with other CO2 sources in the NCP

CO2 emissions Description References

9.7–13.5 Mt CO2 year−1 Groundwater irrigation global estimate [11]

~ 10 Mt C year−1 Global groundwater extraction [9]

~ 0.72 Mt CO2 year−1 Groundwater irrigation in India [73]

1.7 Mt CO2 year−1 Groundwater irrigation in the US [11]

0.52 ± 0.07 Mt CO2 year−1 Groundwater depletion in the NCP This study

8.72 Mt CO2e year−1 GHG emissions of energy use for irrigation water pumping in the NCP [75]

120.87 Mt CO2e year−1 GHG emissions from agricultural production process in the NCP by life cycle assessment [76]

121 Mt CO2 year−1 CO2 emissions from central heating supply due to natural gas usage in the NCP [77]

15.99 Mt CO2 year−1 Crop burning emissions during harvest seasons in the NCP [78]
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Conclusions
Up to now, carbon dioxide emissions from irrigation 
drainage networks remain poorly understood. Mesocosm 
experiments help to unravel the effect of different driv-
ers by experimental manipulation and replications. Here, 
we applied controlled mesocosm experiments to investi-
gate the impact of flow velocity and nutrients on carbon 
dynamics in irrigation groundwater entering drainage 
channels in an intensive agricultural landscape. High 
nutrients contributed to TOC generation and in turn 
reduce CO2 evasion on a short term. High flow velocity, 
on the other hand, promoted rapid CO2 evasion at high 
nutrient level. Overall, TOC production counteracted CO2 
evasion, whereas both of the flow velocity and nutrients 
stimulate DIC depletion. For a proper quantification of 
the real CO2 emissions from the entire network, informa-
tion about flow velocity and residence time of the water in 
the ditch network as well as information about the fate of 
organic matter formed in the ditches is necessary. Con-
trolled mesocosm experiments are a useful tool to disen-
tangle the interaction of the various processes involved.
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