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Abstract 

Background:  Humans and wildlife are continuously exposed to chemical mixtures. These mixtures vary in compo-
sition but typically contain hundreds of micropollutants at low concentrations. As it is not feasible to measure the 
toxicity of all possibly occurring mixtures, there is a need to predict mixture toxicity. Two models, Concentration Addi-
tion (CA) and Independent Action (IA), have been applied to estimate mixture toxicity. Here, we compared measured 
with predicted toxicity of nine mixtures designed from 15 environmentally relevant substances in zebrafish embryos 
to investigate the usability of these models for predicting phenotypic effects in a whole organism short term acute 
assay.

Results:  In total, we compared 177 toxicity values derived from 31 exposure scenarios with their predicted coun-
terparts. Our results show that mixture toxicity was either correctly estimated (86%) by the prediction window, the 
concentration-effect space that is spanned between both models, or was underestimated with both models (14%). 
The CA model correctly predicted the measured mixture toxicity in 100% of cases when a prediction deviation factor 
of 2.5 was allowed. However, prediction accuracy of mixture toxicity prediction was dependent on exposure duration 
and mixture potency. The CA model showed highest prediction quality for long-term exposure with highly potent 
mixtures, respectively, whereas IA proved to be more accurate for short-term exposure with less potent mixtures. 
Obtained mixture concentration–response curves were steep and indicated the occurrence of remarkable combined 
effects as mixture constituents were applied at concentrations below their respective individual effect threshold in 
90% of all investigated cases.

Conclusions:  Experimental factors, such as exposure duration or mixture potency, influence the prediction accu-
racy of both inspected models. The CA model showed highest prediction accuracy even for a set of diverse mixtures 
and various exposure conditions. However, the prediction window served as the most robust predicator to estimate 
mixture toxicity. Overall, our results demonstrate the importance of considering mixture toxicity in risk assessment 
schemes and give guidance for future experiment design regarding mixture toxicity investigations.

Keywords:  Zebrafish embryo acute toxicity assay, Mixture toxicity, Prediction window, Concentration Addition (CA), 
Independent Action (IA), ‘Something from “nothing”’, Micropollutants
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Background
Over the course of the last century, modernization, glo-
balization, and population growth caused a tremendous 
increase in the amount of synthesized chemicals. Most 
of them are used for agricultural, industrial, domestic 
or medical purposes on a regular basis and are consid-
ered essential to modern life [1]. These chemicals end up 
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in the environment through spills on land, emissions to 
air, and discharges to water. Consequently, humans and 
wildlife are continuously exposed to complex chemical 
mixtures rather than individual entities. These mixtures 
vary in composition but typically contain hundreds of 
micropollutants at low concentrations [2, 3]. Exposure to 
low-concentrated chemical mixtures causes experimen-
tally proven toxicity and scientific evidence of elevated 
toxicity in comparison to single substance exposures is 
urgently requesting for mixture toxicity assessment in 
water quality regulation [4–8]. However, current regula-
tion is still based on individual chemical toxicity assess-
ment. As it is not feasible to measure the toxicity of all 
possibly occurring mixtures, there is a critical need to 
develop approaches to reliably predict mixture toxic-
ity. Two models, the concept of Concentration Addition 
(CA) and Independent Action (IA), have been shown and 
applied to predict mixture toxicity from known effects 
of the mixture components. CA implies that the effect 
induced by a mixture containing chemicals with simi-
lar modes of action (MoAs), hence addressing the same 
molecular target site, remains constant even if one chem-
ical is replaced by an equal fraction of an equally effective 
concentration of another chemical. The CA concept also 
assumes that every toxicant in any concentration contrib-
utes, in proportion to its toxic unit, to the overall com-
bined effect of a mixture [9, 10]. In contrast, IA predicts 
the combined effect by multiplying the relative effect of 
independently acting mixture components, hence chemi-
cals that exert their toxicity through an interaction with 
different molecular target sites [11]. The formulation of 
the IA concept indicates that only mixture constituents 
that are present in concentrations higher than their indi-
vidual effect threshold (i.e., lowest observed effect con-
centrations) are able to contribute to the combined effect 
of a mixture [10, 11]. Comparing both models, CA usu-
ally predicts lower mixture effect concentrations when 
regarding ecotoxicological studies [12–14]. This is espe-
cially the case when the prediction is based on chemicals 
that induce steep concentration–response curves (CRCs) 
[15]. Steep CRCs are particularly observed when inte-
grated endpoints, such as mortality, growth, or quantity 
of malformations are considered [15, 16]. As mentioned 
before, the CA model implies that a significant mixture 
effect is possible to be detected even if mixture con-
stituents are present in concentrations that fail to evoke 
individual toxicity. This phenomenon is known as the 
principle ‘something from “nothing”’ [17, 18]. Several 
laboratory and field studies [10–16] confirmed this con-
cept. So far, CA seems to reliably predict the combined 
effect caused by similarly acting components in multiple 
test systems, such as the freshwater algae Scenedesmus 
vacuolatus [19–21], luminescent bacteria Vibrio fischeri 

[21], Daphnia magna [22, 23], guppy [24], and fathead 
minnow [25]. The toxicity induced by mixtures of dis-
similarly acting substances, on the other hand, was only 
predictable with the IA model in rather simple organ-
isms, e.g., Scenedesmus vacuolatus [13], and Vibrio fis-
cheri [26]. In vertebrates, however, the IA model did 
not adequately estimate the mixture toxicity of dissimi-
larly acting components as expected [e.g., 19]. Hence, it 
is still not clarified whether the toxicity of a mixture of 
dissimilarly acting components is predictable with the IA 
model in complex organisms (e.g., fish) and the question 
whether chemicals with different MoAs are able to exert 
their toxicity independently is not answered yet. Fur-
thermore, it remains unclear if the accuracy of mixture 
toxicity prediction models is dependent on the observed 
phenotype (e.g., lethal, sublethal, or teratogenic effects), 
mixture potency (e.g., LC/EC10,50,90), or applied exposure 
duration.

To address these questions, we performed a time, con-
centration, and effect resolved mixture toxicity analysis in 
zebrafish embryo (ZFE, Danio rerio) and determined how 
the mixture potency and composition, exposure duration, 
and considered phenotype influence the predictability of 
mixture toxicity with the CA and IA model. Therefore, we 
analyzed the mixture toxicity of nine mixtures that were 
composed of 15 environmentally relevant substances. 
Hence, mixtures were comparable but varied in composi-
tion and chemical concentration. Some mixtures contained 
only components presumed to act similarly or only dissimi-
larly, whereas other mixtures contained a blend of both. 
The combination of the applied mixture design and selec-
tion of the ZFE as model organism provided the opportu-
nity to examine whether the CA and IA model correctly 
estimate the toxicity of respective mixtures in a complex 
organism. Furthermore, the ZFE undergoes several devel-
opmental stages from zygote to larvae within the first 96 h 
post fertilization (hpf) [27] and is, therefore, an excellent 
model organism to investigate the impact of exposure 
period on mixture toxicity predictability. Additionally, 
transparency of ZFE offers the opportunity to micro-
scopically detect multiple lethal, sublethal, and teratogenic 
effects. Overall, we measured the toxicity of 31 different 
exposure scenarios and compared 177 measured toxic-
ity values with their counterparts predicted with the CA 
and IA model. We calculated the distance between meas-
ured and predicted toxicity, the prediction deviation ratio, 
and determined the prediction window which is defined 
as the concentration-effect space that is spanned between 
both models. We further inspected the general appearance 
of mixture concentration–response curves and analyzed 
the ability of a mixture to induce a combined toxic effect, 
particularly whether the principle ‘something from “noth-
ing”’ applies for the analyzed mixtures. With this approach, 
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we (1) provide a comprehensive, time and concentra-
tion resolved picture of mixture toxicity and the accuracy 
of predictability with the CA and IA model in a complex 
organism, the embryos of the zebrafish, (2) determine 
whether mixture toxicity appearance and predictability fol-
low a systematic pattern, and (3) give advice which of the 
above mentioned factors need to be considered as potential 
bias for mixture toxicity assessment in laboratory studies or 
in water quality regulation.

Methods
Chemicals and mixtures
The chemicals used for single substance and mixture tox-
icity studies were previously monitored and detected in 
several European surface waters. Busch et  al. prioritized 
the identified chemicals with respect to their frequency of 
occurrence, hazard-quotients (HQ), and mode of action 
(MoA) [3]. Chemicals for this study were selected from a 
resulting top-30-compound-list. In total, 15 chemicals were 
selected and single substance toxicity determined. Table 1 
shows the applied chemicals, their chemical structure, CAS 
registry number (CAS RN), usage or origin, their suspected 
MoA, and calculated toxic ratio at pH = 7.4. Additional 
chemical information, such as logD and solubility values, 
are listed in Additional file 1: Table S12.

To select the appropriate model for mixture toxicity pre-
diction, it is believed important to know whether mixture 
constituents act similarly or independently. For instance, 
chemicals are considered to act similarly if they either exert 
unspecific toxicity or interfere with the same molecular tar-
get site, hence via the same MoA. For example, naproxen 
and diclofenac, two non-steroidal anti- inflammatory drugs 
(NSAIDs) exert their toxicity by inhibiting cyclooxygenase 
I and II (COX I and II) hence via the same MoA. How-
ever, chemicals that do not interact with specific targets, so 
called baseline toxicants, may also act similarly by induc-
ing narcosis. This non-specific MoA is simply triggered by 
the intercalation of a chemical with the membrane, thus 
resulting in narcosis of the organism [28]. The level of accu-
mulation and effect is directly dependent on the chemical’s 
hydrophobicity. The calculation of the baseline toxicity of 
a chemical in zebrafish embryos (ZFE) was estimated by 
applying Eq. (1) according to [29]

The EC50 is defined by the concentration that causes 
an adverse effect for 50% of evaluated ZFE. The EC50 is 
dependent on the distribution coefficient between water 
and n–octanol, the logKOW. The logKOW values were 
taken from CHEMSPIDER and were derived from the 

(1)log

(

1

EC50[mM]

)

= (0.99 ∗ logKow)− 2.02.

prediction of ACD/labs at a pH = 7.4 (see Additional 
file 1: Table S12).

Whether a chemical acts as a baseline toxicant or 
exerts a specific toxic effect can be estimated with the 
toxic ratio (TR, see Eq. 2) [30]. The TR is the quotient of 
the predicted to actually measured toxicity of a chemical:

where EC50_obs is the measured concentration of a chemi-
cal that exerts an adverse effect for 50% of the examined 
test organisms, whereas the EC50_pred is defined by its 
predicted counterpart, hence the EC50 value of a chemi-
cal calculated by QSAR models based on its logKOW 
(pH = 7.4) (see Eq. 1). According to Verhaar et al. [31] a 
TR ≤ 10 classifies a chemical to act as a baseline toxicant 
(inert or less inert chemicals), whereas chemicals with 
a TR > 10 are assumed to have a specific mode of toxic 
action (reactive and specifically acting chemicals). Here, 
we also applied a TR = 10 as the threshold to separate 
non-specifically from specifically acting chemicals.

Based on specific research questions and underlying 
MoA of selected test chemicals, nine different mixtures 
were designed. Table 2 gives an overview of the analyzed 
mixtures (mixA-F), the number of compounds in the 
specific mixture, the examined exposure duration, the 
highest test concentration, and the selected dilution fac-
tor (the dilution factor was kept constant, consequently 
the mixture ratio (MR) also remained constant through-
out one experiment).

MixB and mixC were designed to investigate whether 
the toxicity of a mixture is reliably predictable when 
consisting of only similarly (mixB) or dissimilarly acting 
components (mixC) in ZFE using the appropriate model. 
MixB consisted of five similarly acting components, 
namely bisphenol A, cyprodinil, diazinon, naphthalene, 
and triclosan. Next to known molecular interactions 
of these chemicals with individual biomolecules, the 
chemicals were expected to exert their toxicity via nar-
cosis in the ZFE as the calculated TR was below ten. In 
contrast, the TR of chemicals applied in mixC exceeded 
the threshold value of ten and were thereof suspected to 
exert their toxicity via a specific MoA. To investigate the 
predictive power of the IA model, we selected five pre-
sumed specifically and independently acting substances, 
namely carbendazim, cyprodinil, diuron, diclofenac 
sodium salt, and genistein. Cyprodinil, however, rep-
resents an exception as its  TR equals 9.34 and does, 
therefore, not imply a clear specific action according to 
our criterion. However, as cyprodinil is the only chemi-
cal with a TR < 10 in that mixture, even a narcotic MoA 
would be considered independent from the others. The 

(2)TR =
EC50_pred

EC50_obs
,
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substances for mixB and mixC were further selected with 
respect to sufficiently distinguish the CA and IA predic-
tion. Next, we were interested whether the developmen-
tal stage has impact on the accuracy of the CA and IA 

model. Therefore, we exposed the ZFE not only at the 
age of 0 hpf (mixB.1 and mixC.1) but also at the age of 
24 hpf (mixB.2 and mixC.2). The comparability of these 
mixtures was achieved through an equitoxic mixture 

Table 1  List of chemicals used in this study

*No toxicity observed at measured concentrations

Substance Structure CAS RN Usage/origin Mode of action Toxic ratio

Benzo[a]pyrene 50-32-8 PAH, incomplete burning Epoxide reacts with DNA and produces carcino-
genic adduct

*

Benzo[b]fluoranthene 205-99-2 PAH, incomplete burning Mutagenic *

Bisphenol A 80-05-7 Polymer synthesis Binding to estrogen-related receptors 5.18E−01

Carbendazim 10605-21-7 Fungicide Inhibitor of mitosis and cell division 1.51E+03

Chlorophene 120-32-1 Antiseptic drug, disinfectant Unknown 1.94E+00

Cyprodinil 121552-61-2 Fungicide Inhibition of methionine biosynthesis 9.34E+00

Diazinon 333-41-5 Insecticide Inhibition of acetylcholinesterase 8.17E−01

Diclofenac sodium salt 15307-79-6 Pharmaceutical Inhibition of cyclooxygenase I and II, non-steroi-
dal anti-inflammatory drug (NSAID)

6.54E+02

Diuron 330-54-1 Herbicide Inhibition of photosynthesis: blocking of plasto-
quinone binding site of PSII

5.40E+03

Genistein 446-72-0 Antineoplastic agent Inhibition of protein-tyrosine kinase and topoi-
somerase II: induction of G2-phase arrest in 
human and mice

2.21E+02

Naphthalene 91-20-3 Industry, insecticide Epoxide induces hemolysis, induces narcosis 1.20E+00

Naproxen sodium salt 26159-34-2 Pharmaceutical Inhibition of cyclooxygenase I and II, non-steroi-
dal anti-inflammatory drug (NSAID)

1.09E+02

Propiconazole 60207-90-1 Fungicide Inhibition of ergosterol biosynthesis 5.34E−01

Triclosan 3380-34-5 Anti-infective agent, anti-
septic drug, disinfectant

Binding of bacterial enoyl-acyl carrier protein 
reductase enzyme

8.85E−01

Triphenyl phosphate 115-86-6 Flame retardant, plasticizer Neurotoxicity, developmental toxicity, meta-
bolic disruption, endocrine activity, genotox-
icity and estrogenic activity

1.56E+00
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design and identical exposure durations. The anchoring 
point of the mixture design was based on the individual 
compounds LC10 values obtained from single substance 
toxicity testing for an exposure duration of 0-48 hpf for 
mixB.1 and mixC.1 and 24-72 hpf for mixB.2 and mixC.2, 
respectively. This means that the mixture contained 
equally effective fractions of individual mixture com-
ponents when exposed for either 0-48  hpf (mixB.1 and 
mixC.1) or 24-72 hpf (mixB.2 and mixC.2) at a certain 
mixture concentration. As the toxicity obtained from sin-
gle substance toxicity testing varied when the ZFE were 
exposed directly after hatching (0 hpf) or in a later devel-
opmental stage (24 hpf), the MR of mixture components 
was adapted for each mixture.

MixA, mixD, and mixF were designed to specifically 
investigate the impact of (1) a rather high concentrated, 
simple mixture with clear expectations regarding mixture 
toxicity based on a previous single compound study [32] 
(mixA), (2) a mixture only containing chemicals below 
their individual effect threshold (mixD), and (3) a combi-
nation of mixA and mixD to study the combined effect of 
a mixture causing a specific effect behind a background 
of chemicals at low concentrations.

MixE was part of the inter-laboratory study published 
by Altenburger and colleagues [14]. In this study, mixE.1 
was designed to have at least two bioactive compounds in 
each of the applied bioassays to guarantee detectability of 
mixture toxicity. MixE.2 contained the same components 
but at environmentally relevant concentrations. In that 
study, both mixtures were investigated for an exposure 
duration of 0–48 hpf and only mortality was determined 
with the ZFET (zebraf﻿ish embryo acute toxicity assay). In 
the current study, we expanded the dataset by elucidat-
ing the same mixtures for extended exposure durations of 
0–96 hpf and 24–96 hpf and recorded not only lethal but 
also sublethal and teratogenic effects.

For all mixtures, the toxicity, hence lethal, sublethal, 
and teratogenic effects, were observed every 24 h within 
exposure period.

Zebrafish maintenance and embryo collection
Zebrafish maintenance was performed according to 
OECD 236 [33]. Here, a breeding stock of unexposed 
zebrafish (previously obtained from a local OBI hard-
ware store) was used for egg production and the fish 
were maintained at a continuous photoperiod of 14:10 h 
light:dark. The feeding was conducted twice a day either 
with commercial dry food flakes or Artemia sp. and 
spawning initiated by a combination of light stimulus 
and a spawning mockup equipped with artificial plants. 
Eggs were collected 1  h after spawning and fertilized 
and non-fertilized eggs were immediately differenti-
ated using a visualizing microscope (Olympus IX70). 

Only fertilized, symmetrical dividing, and undamaged 
eggs within a cell stage of 4-126 cells were selected and 
stored into a petri-dish filled with oxygenated ISO stand-
ard dilution water (ISO water: ISO 7346-3; 79.99  mM 
CaCl2·2H2O, 20.00  mM MgSO4·7H2O, 30.83  mM 
NaHCO3, 3.09  mM KCl, pH = 7.4 ± 0.1). Subsequently, 
eggs were either exposed to chemicals straight after 
embryo selection (approximately within 2 h after fertili-
zation, further referred as 0 hpf ) or stored in 2 mL ISO-
water per embryo at 28  °C until exposure start, i.e., 50 
embryos were stored in 100 mL of ISO-water for 24 h. In 
this study, embryos were exposed at two developmental 
stages, thus either at the age of 0 hpf or 24 hpf.

Test conditions, exposure solutions and quality control
ISO water was aerated with oxygen 1  day prior to the 
experiment, a minimum oxygen saturation of 80% was 
verified using WTW Oxi 340 Oximeter and a pH of 
7.4 ± 0.1 adjusted with HCl/NOH and WTW SenTix 
Mic. For single substance toxicity assessment, a stock 
solution of the desired chemical in ISO-water was pre-
pared 1 day prior to the experiment and directly applied 
as highest test concentration. In case, chemicals were 
not easily soluble in ISO-water, a co-solvent was used. 
Therefore, a 1000 fold stock solution in either methanol 
or DMSO was prepared, stored at 4 °C or room tempera-
ture until usage and diluted on the day of experiment to 
the desired test concentration. At this, the solvent con-
tent did not exceed a maximum content of 0.1% solvent/
ISO-water (V:V) in all tested concentrations. For mix-
ture toxicity testing, a 1000-fold concentrated mixture 
stock solution was prepared in methanol by mixing high 
concentrated single substance stock solutions in specific 
mixture ratios (MRs). The MR describes the proportion 
of one component that is present in a mixture relative 
to the total molarity of this mixture. The total molarity 
is calculated from the entirety of all single components 
present in their specific concentrations. At the day of 
experiment, the highest concentration of either single 
substance or mixture was diluted to 10–13 serial dilu-
tions (constant dilution factor) by adding ISO-water 
containing the same solvent fraction as the highest con-
centration. The control solution consisted of ISO-water 
containing the same amount of solubilizing agent as the 
treatment solutions (0.1% V:V). For detection of effects 
induced by controls, six technical replicates were used, 
whereas three technical replicates were conducted to 
analyze the effects induced by treatment solutions. For 
each replicate, three embryos were exposed to 6  mL of 
either treatment or control solution and incubated for 
desired exposure time in 7.5 mL GC vials (VWR Interna-
tional) closed with aluminium lid and aluminium coated 
septum (Supelco Analytical). Incubation was conducted 
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at 26  °C with a 12:12 h light:dark photoperiod and vials 
shaken at 75  rpm using a horizontal agitator (Edmund 
Bühler GmbH, SM–30 control). The toxicity tests of 
individual chemicals and mixtures were repeated at dif-
ferent days and concentrations adapted to obtain suffi-
ciently resolved concentration–response curves (CRC), 
respectively. A test was classified valid if less than 20% of 
control embryos appeared with apical effects. Addition-
ally, exposure solutions of the negative controls as well as 
those with the highest test concentration were examined 
for pH level and oxygen content at the first and last day of 
exposure. For complete validation of the test, a pH level 
between 6 and 8 and a minimum oxygen level of 60% was 
required at examined time points.

Toxicity measurement of individual chemicals 
and mixtures
Single substance and mixture toxicity were analyzed 
in a similar and comparable way. The toxicity of single 
substances was determined after exposing ZFE for 0–96 
hpf and 24–96 hpf to all selected chemicals, respectively 
(15 in total, Table  1). Effects were recorded every 24  h 
within  the exposure duration. Specific exposure dura-
tions and starting points (0 hpf or 24 hpf) were selected 
to determine the toxicity of the mixtures. For both, sin-
gle substance and mixture toxicity determination, 23 
integral effects, classified in lethal, sublethal, and tera-
togenic (see Additional file  2: Table  S1), were recorded 
using a dissecting microscope (5×, Olympus IX70). In 
this study, lethal describes all effects that imply the death 
of an organism (e.g., coagulation, missing heartbeat [33]), 
whereas sublethal and teratogenic effects are defined by 
effects which lead to a change in development and fit-
ness of the organism or to malformations of the ZFE (e.g., 
change in blood circulation or frequency of heartbeat, 
formation of edema, or malformation of head, yolk, or 
tail, etc.), respectively. Additionally, abnormal hatching 
behavior was detected by determining hatching rates. 
Normally developed zebrafish larvae would hatch at 72 
hpf. The raw data of lethal and total effect determination 
as well as hatching rates are listed in Additional file  3: 
Table S13. CRC were calculated separately for lethal and 
total (lethal + sublethal + teratogenic) effects by applying 
a Hill four-parameter model (Eq. 3) using the drc pack-
age, R (version 3.4.4) [34]:

where y refers to the level of lethal or total effects, a to 
the minimum effect (0) and y0 to the maximum effect (1). 
c further refers to the LC50 or EC50 value, b to the slope 
of the tangent at the inflection point and x to the related 
concentration. For mixture toxicity analysis, we further 
derived three effect levels (LC/EC10,50,90) from mixture 
CRCs. This was done to address the potency of a mixture 
and the potential impact of mixture potency to model 
accuracy. For example, a mixture that induces an effect in 
10% of examined organisms is less potent than a mixture 
that induces effects in 90% of the organisms. The potency 
of a mixture is linked to the composition of a mixture, 
hence the amount, concentration, and toxic potential of 
present components and their ability to induce a com-
bined effect.

In conclusion, single substance and mixture toxicity 
was assessed in a concentration (10–13 dilutions of expo-
sure solution), time (every 24 h within two exposure peri-
ods (0–96  hpf and 24–96  hpf)), effect type (23 quantal 
effects categorized in lethal and sublethal or teratogenic), 
and mixture potency resolved manner (LC/EC10,50,90). 
This approach allowed us to investigate the impact of 
mixture potency, exposure duration, and phenotype to 
mixture toxicity prediction quality of the models.

Data analysis and regression models
For mixture toxicity prediction, the CRC of single sub-
stances (ss_CRC) were additionally modeled using a 
“best-fit” approach. For that purpose, two non-linear 
models, the Logit (Table  3, Eq.  4) and Weibull model 
(Table  3, Eq.  5), were fitted to the experimental data 
using a maximum-likelihood approach and the best fit-
ting model selected on the Aikaike Information Criterion 
(AIC). A smaller AIC indicates a better fit.

Where θmin is the minimum effect of 0 and θmax the 
maximum effect of 1. Furthermore, θ1 describes the 
location and θ2 the steepness of the curve. The differ-
ent regression models were fitted using the software 
R (version 3.4.4) and the package bbmle (Ben Bolker 
and R, Development Core, Team (2017). bbmle: Tools 

(3)y = y0 +

(

a ∗ xb
)

(

cb + xb
) ,

Table 3  Regression models used for calculating the concentration–response relationships

Regression model Formula

Logit
E = θmin +

θmax−θmin
1+exp(−θ1−θ2log10(conc.))

(4)

Weibull E = θmin +
(

θmin − θmax
)

∗ (1− exp(−exp
(

θ1 + θ2 ∗ log10(conc.)
)

(5)
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for General Maximum-Likelihood Estimation. R pack-
age version 1.0.20., https​://CRAN.R-proje​ct.org/packa​
ge=bbmle​). The parameter of all concentration–response 
curves are summarized in Additional file 2: Tables S2–5.

Mixture toxicity prediction
We estimated the toxicity of all mixtures with two mod-
els, the concept of Concentration Addition (CA) and 
Independent Action (IA). By the definition of the con-
cepts, CA predicts the toxicity of mixture containing 
similarly acting substances, whereas the IA model pre-
dicts the toxicity of mixtures that are composed of dis-
similarly acting components.

The CA concept is formalized in Eq. (6):
 

where ECx,mix is the total concentration of the mixture 
provoking x% effect; ECxi is the concentration of ith com-
ponent provoking the x% effect, when applied individu-
ally, and pi denotes the fraction of component i in the 
mixture. The calculation of total mixture concentrations 
for various effect levels lead to a complete iteration of an 
expected CRC [9, 26].

The IA concept is formalized in Eq.(7):

where E(CSi) are the effects of the single substances, n 
the number of individual components, and E(Cmix) is the 
total effect of the joint mixture [11, 35].

According to the mathematical formalizations of these 
two concepts, the CA concept implies that every toxi-
cant in any concentration contributes, in proportion to 
its toxic unit, to the overall combined effect of a mix-
ture [9, 10]. In contrast, the IA model implies that only 
mixture constituents that are present in concentrations 
higher than their individual effect threshold (i.e., lowest 
observed effect concentrations) are able to contribute to 
the combined effect of a mixture [10, 11].

Mixture toxicity analysis and comparison of measured 
with predicted toxicity
To determine the prediction accuracy, we compared the 
observed toxicity to the prediction by calculating the pre-
diction deviation ratio (PDR, Eq. 8). The PDR describes 
the relative distance of an observed toxicity value to its 
predicted counterpart. For example, a correct estima-
tion of mixture effect is indicated by a PDR of 1, whereas 

(6)ECx,mix =

(

n
∑

i=1

pi

ECxi

)−1

,

(7)E(Cmix) = 1−

n
∏

i=1

[1− E(CSi)],

an underestimation of effect would be indicated by a 
PDR < 1. Consequently, a PDR > 1 describes an overesti-
mation of effect:

PDR  represents the distance of a certain measured effect 
value xi (ECobs) in comparison to its predicted counter-
part yi (ECpred). To facilitate data interpretation, the log2 
values of PDR are applied for illustration.

Results
In this study, we investigated the accuracy of two mixture 
toxicity prediction models, the model of Concentration 
Addition (CA) and Independent Action (IA). We ana-
lyzed whether certain experimental and analysis param-
eters, such as the mixture design, exposure duration, 
phenotype, and mixture potency influence the predict-
ability of mixture toxicity. The approach and the analysis 
strategy are summarized in Fig.  1. Firstly, we compared 
the model accuracy of the CA and IA model in general. 
Therefore, we investigated whether the IA model reli-
ably predicts the toxicity induced by a mixture containing 
only dissimilarly acting components in a complex organ-
ism, the embryos of zebrafish (ZFE). The same was done 
for the CA model with a mixture that only contained 
suspected similarly acting components (Fig. 1a). We also 
investigated whether the developmental stage (0 or 24 h 
post fertilization (hpf)) at which the ZFE were exposed 
to the mixtures influenced the predictability of mixture 
toxicity. Secondly, we extended mixture toxicity analysis 
and examined the potential impact of exposure dura-
tion, phenotype, and mixture potency on mixture toxic-
ity predictability (Fig. 1b). Therefore, we observed lethal, 
sublethal, and teratogenic effects induced in ZFE after 
exposure to nine different mixtures for varying exposure 
durations (24, 48, 72, 96 h post exposure (hpe)). Overall, 
we analyzed 31 different exposure scenarios from which 
we obtained 28 concentration–response curves (CRCs) 
for lethal and 31 CRCs for total (lethal + sublethal + tera-
togenic) effects. We further calculated LC/ECx (x = 10, 
50, 90) values from each mixture CRC. Consequently, 
we derived 177 toxicity values from effect observations. 
These toxicity values were further compared to their 
counterparts predicted with CA and IA  by calculating 
the prediction deviation ratio (PDR). Thirdly, we ana-
lyzed the general appearance and time dependence of 
mixture toxicity concentration–response curves (mix_
CRCs) (Fig. 1c). Finally, we studied the induction of com-
bined toxic effects in ZFE after exposure to mixtures in 
which the components were present in concentrations 
that failed to evoke individual toxicity. This phenomenon 

(8)PDR =
yi

xi
=

ECpred

ECobs
.

https://CRAN.R-project.org/package%3dbbmle
https://CRAN.R-project.org/package%3dbbmle
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is considered as the principle ‘something from “nothing”’ 
(Fig. 1d).

Example mixture composed of dissimilar acting 
components
The workflow of mixture toxicity prediction and observa-
tion was similar for all investigated mixtures. This work-
flow is shown on the example of mixC.1 and selected 
results for mixC.1 are depicted in Fig. 2.

MixC.1 was composed of five suspected indepen-
dently acting substances (see Table 2), namely carbenda-
zim (triangle), cyprodinil (circle), diclofenac (diamond), 
diuron (star), and genistein (square). First, the toxicity 
of single components was determined by exposing ZFE 
at a certain age (here: 0  hpf ) to the respective chemi-
cal (Fig.  2a). After a defined exposure period (here: 
24  h and 48  h), specific endpoints (here: lethal effects) 
were observed and respective CRCs modeled. Figure 2b 
shows the CRC for single substances (ss_CRC) obtained 
after 24  h of exposure (hpe; solid, black line and pink 
symbols) and 48 hpe (dashed, grey line and purple sym-
bols). Carbendazim, cyprodinil, and genistein show no 
time dependent toxicity, whereas lethal concentrations 

of diclofenac and diuron are decreasing over time  
(LC50_diclofenac_0to24hpf = 133.15  µM, LC50_diclofenac_0to48hpf = 
15.84 µM). In this case, the ss_CRC obtained after a cer-
tain exposure period (here: 48 hpe) were further applied 
to design a mixture in which all components were pre-
sent in equally effective fractions (here: individual LC10) 
when exposed to the highest mixture concentration and 
respective exposure period. The mixture ratios (MR) and  
ss_CRCs were used to predict mix_CRCs with the CA 
(light blue) and IA model (yellow) (Fig.  2c: 24  h (pink), 
Fig.  2d: 48  h (purple)). Due to time dependence of sin-
gle substance toxicity, the impact of a certain chemical 
to a combined effect may vary over time. For example, 
diclofenac (diamond) showed the least toxic influence 
regarding the short exposure period and the most toxic 
influence regarding the longer exposure period. Subse-
quently, ZFE were exposed to the designed mixture, lethal 
effects recorded, and mixture toxicity observed (Fig. 2e). 
The mixture toxicity observation was performed analo-
gously to the single substance toxicity tests, hence the 
same exposure periods and endpoints were considered. 
Figure  2f shows the mix_CRCs obtained after 24  hpe 
(pink) and 48  hpe (purple). Here, the mixture toxicity 

Fig. 1  Workflow and outline of the mixture toxicity analysis strategy

(See figure on next page.)
Fig. 2  Experimental workflow of mixture analysis, exemplarily shown for mixC.1. Single substance toxicity observation. a Exposure of ZFE to 
different concentrations of single substances and effect determination at different time points. b Single substance concentration–response curve 
(ss_CRC) for all mixture components (triangle: carbendazim, circle: cyprodinil, diamond: diclofenac, star: diuron, square: genistein) obtained after 
an exposure duration of 24 hpe (pink) and 48 hpe (purple). Mixture toxicity prediction based on ss_CRCs (black) with the CA (light blue) and the IA 
(yellow) model, respectively, for the exposure durations of 24 hpe (c, pink), and 48 hpe (d, purple). e Exposure of ZFE to different concentrations of 
the mixture (fixed MR) and effect determination at different time points. f Observed mixture toxicity (mix_CRC) at two time points. Comparison of 
observed (black) and predicted mixture toxicity (light blue: CA, yellow: IA) for the 24 hpe (g, pink) and 48 hpe (h, purple) exposure duration
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showed no significant variation upon different exposure 
durations (LC50_24hpe = 21 µM, LC50_48hpe = 18 µM, Addi-
tional file 2: Table S8). Finally, we compared the observed 
with the predicted mixture toxicity. Figure  2g and h 
show the observed mix_CRCs  (solid, black line) vs. the 
predicted CRCs calculated with the CA (dashed, yel-
low line) and IA model (dashed, light blue line), respec-
tively, for the two different exposure durations (Fig.  2g: 
24  hpe (pink), 2H: 48  hpe (purple)). We found that the 
experimentally determined mixture toxicity was not fully 
reflected by the IA prediction but fell in the concentra-
tion-effect space that is spanned between both mod-
els. This concentration-effect space is further termed as 
prediction window. However, the observed mix_CRC 
approximates towards the IA curve at low effect concen-
trations, whereas the CA model results to better reflect 
the mix_CRC at higher effect concentrations. Both  
mix_CRCs are steep and quotients of LC75 to LC50 
obtained after 24 and 48 h of exposure are relatively small 
(LC75/LC50 (24 hpe) = 1.17, LC75/LC50 (48 hpe) = 1.18, 
Additional file  2: Table  S8). Hence a concentration 
increase of less than 20% results in double the effect.

A second mixture with the same components but dif-
ferent MRs (mixC.2) was investigated at a later devel-
opmental stage of the ZFE and exposure was started 
at 24 hpf. Again, the observed mixture toxicity fell into 
the prediction window (Additional file 2: Figure S3). The 
mix_CRCs also occurred to be steep (LC75/LC50 (24 
hpe) = 1.10, LC75/LC50 (48 hpe) = 1.15, Additional file 2: 
Table S8). However, the time dependence of toxicity was 
stronger in ZFE exposed at a later developmental stage 
(LC50_24hpe = 83 µM, LC50_48hpe = 44 µM, Additional file 2: 
Table S11).

Example mixture of similarly acting components
Next, we investigated a mixture consisting of suspected 
similarly acting components (mixB). Again, ZFE in two 
different developmental stages were exposed (from 0 hpf: 
mixB.1 and 24 hpf: mixB.2, Table 2) to two similar mix-
tures with adopted MRs. The obtained mix_CRCs and 
their comparison to predictions are shown in Additional 
file 2: Figure S2. The mix_CRCs are again located within 
the prediction window but observations were much 
closer to the CA prediction. Regarding curve steepness 
and time dependence of toxicity, mixB showed a similar 
trend as previously described for mixC. No significant 
difference between the 24 h and a 48  h exposure dura-
tion was observed for the early treatment period (mixB.1, 
LC50_24hpe = 35 µM, LC50_48hpe = 34 µM), whereas the late 
exposure start resulted in an increase in toxicity over 
time (mixB.2, LC50_24hpe = 108 µM, LC50_48hpe = 77 µM). 
Again, steep mix_CRC were detected for all respective 
mixtures (mixB.1: LC75/LC50 (24  hpe) = 1.21, LC75/LC50 

(48 hpe) = 1.15, Additional file  2: Table  S8 and mixB.2 
LC75/LC50 (24 hpe) = 1.04, LC75/LC50 (48 hpe) = 1.06, 
Additional file 2: Table S11).

To investigate the generality of the obtained results, we 
extended the mixture toxicity analysis to results obtained 
after exposure of ZFE to nine different mixtures (Table 2). 
All integrated mixture experiments were analyzed by 
applying the previously described workflow.

Mixture toxicity falls within the prediction window 
that is spanned by the CA and IA model
We compared the experimentally determined mixture 
effect concentrations with their predicted counterparts 
for all tested mixtures. Figure  3 depicts the log2 of the 
prediction deviation ratio (PDR) of observed to pre-
dicted effect concentrations that induce 50% of an effect 
in ZFE. The figure shows the relative distance of meas-
ured mixture toxicity to the prediction that is based on 
the CA (lightblue) and IA (yellow) model for lethal (left, 
LC50) and total (lethal + sublethal + teratogenic) effects 
(right, EC50). For three exposure scenarios no lethal 
effects could be observed for the tested concentrations 
(0–24_mixE.2, 24–48_mixE.2, and 24–48  h_mixF). The 
observed mixture toxicity was located within the predic-
tion deviation range between the CA and IA estimations 
in 51 out of 59 cases (86%) or was even underestimated 
by both models (8/59, 14%). As only underestimation of 
mixture toxicity occured, a mixture toxicity value was 
determined as being located within the prediction win-
dow when the PDR calculated with the CA model (CA 
is predicts the highest toxicity values in all cases) didn’t 
exceed 1.1 (PDR_CA<1.1, deviation of 10% allowed). 
Similar findings were obtained when comparing not only 
EC50 but also EC10 and EC90 values (Additional file 2: Fig-
ure S10). All 177 calculated PDRs are listed in Additional 
file 2: Table S6. In total, 149 out of 177 (84%) inspected 
mixture effect concentration values were located within 
the prediction window, whereas in 28 out of 177 cases, 
mixture toxicity was underestimated with both mod-
els. We observed that lower effect concentrations seem 
to be better predictable with the IA concept, whereas 
the CA model seems to better estimate the toxicity of 
higher effect concentrations. Additionally, high effect 
values seem even more likely to be underestimated by 
the applied prediction models. Half of the cases at which 
the mixture was more potent than predicted derive from 
comparisons of high effect values (EC90 or LC90) to their 
predicted counterparts (14/28).

Mixture toxicity prediction accuracy depends on mixture 
potency and exposure duration
To analyze whether and to which extent the predict-
ability of mixture effects in the ZFE is dependent on 
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experimental and analysis variables, such as exposure 
duration, considered phenotype, and mixture potency, 
we compared PDRs for these measures. Therefore, we 
looked at the toxicity values obtained after four exposure 
durations (24, 48, 72, 96 h), two effect types (lethal and 
total) that represent different phenotypes and three effect 
levels (ECx, x = 10, 50, 90) that represent different mix-
ture potencies.

Overall, we compared 177 toxicity values (28 lethal, 31 
total, 3 mixture potencies) obtained from measured mix-
ture toxicity testing to their counterparts that were pre-
dicted with the CA and IA model. This resulted in 354 
PDR values that could be considered (177 for each model, 
Additional file 2: Table S6). Figure 4 illustrates the distri-
butions of the log2 of these PDRs with regard to certain 
analysis parameters. Figure 4a depicts the distribution of 
all 354 determined PDRs (grey bars), whereas the colored 
density plots show the distributions of PDRs for CA (light 
blue) and IA (yellow), respectively. A further detailed res-
olution is shown in Fig. 4b, where the PDR distributions 
obtained for lethal and total effects were plotted sepa-
rately. Similar to the results shown in Fig. 3, we see that, 
on average, the measured mixture toxicity (black line) 

was again located within the prediction window spanned 
between the CA and IA estimations even when not only 
EC50 values but also EC10 and EC90 values were consid-
ered. Comparing the means of the log2PDRs for CA 
(dashed line, light blue, mean_log2PDRCA_lethal = − 0.28, 
Additional file  2: Table  S7) and IA model (dashed line, 
yellow, mean_log2PDRIA_lethal = 1.06,  Additional file  2: 
Table S7) reveals that experimentally determined mixture 
toxicity values were rather matching with the predicted 
toxicity values calculated by the CA model. This became 
even more apparent when total effect concentrations 
are considered (Fig.  4b, mean_log2PDRCA_total = − 0.20, 
mean_log2PDRIA_total = 1.17). The PDR distributions 
respecting the three effect levels (EC10: light blue, EC50: 
yellow, EC90: pink) are depicted in Fig.  4c (all data) and 
Fig.  4d (differentiated with respect to the applied mod-
els (left: CA, right: IA)). Inspecting the predictability of 
different effect levels revealed that the highest model 
accuracy was obtained when high effect concentra-
tions were predicted with the CA model. On average, 
here, the observation only deviated from the predic-
tion by a factor of 1.3 (mean_log2PDRCA_EC90 = − 0.146). 
On a single model basis, the IA model achieved highest 

Fig. 3  Comparison of observed mixture toxicity to predicted mixture toxicity. Shown are the log2PDR of EC50 values that were predicted with the 
CA model (blue) and IA model (yellow) vs. respective experimentally determined EC50 values (grey). Left panel: lethal effects. Right panel: total 
(lethal + sublethal + teratogenic) effects

(See figure on next page.)
Fig. 4  Distributions of prediction deviation ratios for mixture toxicity determined with the ZFE. Distributions are grouped by a prediction models, b 
prediction models and phenotype, c mixture potency, d mixture potencies and prediction models, e EC50 and phenotype, f by EC50 and phenotype 
and prediction model, g EC50 and exposure duration, and h EC50 and exposure duration and prediction model. Colored, dashed lines: Mean 
log2PDRs for respective groups
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prediction accuracy when low mixture effects were esti-
mated (mean_log2PDRIA_EC10 = 0.941, mean_log2PDRIA_

EC50 = 1.057, mean_log2PDRIA_EC90 = 1.178). However, 
comparing both models, the CA model was still closer 
to the observations than the IA predictions. This did not 
consolidate the trend described in Figs. 2g and h and 3, 
where IA seemed to better predict low levels of mixture 
effects.

For this reason and because the EC50 values were the 
most robust ones for prediction, we specified further 
mixture analysis on the EC50 values for lethal and total 
effects. In a next step we compared the PDR distribu-
tions for lethal and total effects, as well as for different 
exposure durations based on EC50 values (Fig.  4e, f, h). 
In Fig.  4e it is shown that the predictions were not sig-
nificantly influenced by the respective considered effect 
type (lethal or total) as PDRs were similarly distributed 
for both effect types (purple: lethal, pink: total). Again, 
the PDRs for CA were smaller than for IA for both types 
of effect (Fig.  4f, mean_log2PDRCA_lethal_EC50 = − 0.36, 
mean_log2PDRCA_total_EC50 = − 0.20, mean_log2PDRIA_

lethal_EC50 = 0.94, mean_log2PDRCA_total_EC50 = 1.17).
The PDR distributions according to exposure times 

are shown in Fig.  4g and h. Results shown in Fig.  4h 
indicate that the smallest PDRs were achieved with 
the CA model and an exposure period of 72  hpe 
(mean_log2PDRCA_72hpe_EC50 = − 0.09).

From these results we can conclude that mixture toxic-
ity in ZFE, in general, was better predicted with the CA 
model with a range of − 1.32 < log2PDR < 0.41. Overall, 
the highest model accuracy in terms of smallest PDRs 
were found with the CA model for high effect concen-
trations (mean_log2PDRCA_EC90 = − 0.15) and the 72  h 
exposure period (mean_log2PDRCA_72hpe = − 0.09). How-
ever, for the IA model, the highest model accuracy was 
achieved when low mixture effects obtained after short 
exposure durations were estimated (mean_log2PDRIA_

EC10 = 0.941, mean_log2PDRIA_24hpe = 0.978). The consid-
ered phenotype did not seem to influence the prediction 
quality significantly.

Mixture toxicity is dependent on age of ZFE at exposure 
start and on exposure duration
Next to concentrations of chemicals or mixtures, toxici-
ties are also dependent on the duration of exposure. In 
a developing system such as the ZFE, the time point of 
exposure, i.e., the age of the embryo at exposure start, is 
an additional determining factor for toxicity. An overview 
of time dependent mortality for all analyzed single sub-
stances and mixtures in this study is given in Table 4. ZFE 
were exposed at an early (0 hpf) and a later time point 
(24 hpf) and effects were determined every 24 h during 
development. We calculated a factor for time dependence 

(td) of toxicity by calculating the ratio between the LC50 
obtained after the longest exposure duration and LC50 
obtained after the shortest exposure duration. For the 
single substance exposures, we observed four possible 
cases of time dependent toxicity: (1) no time dependence 
at all (9/25 cases, e.g., diuron), (2) similar time depend-
ence for early and late exposures (3/12, e.g., bisphenol 
A), (3) time dependence is larger in early exposures (3/12 
cases, e.g., diclofenac), and (4) time dependence is larger 
in late exposures (6/12 cases, e.g., genistein).

Single chemical or mixture toxicity was considered as 
time dependent when td was below 0.8 or greater than 
1.2. Chemicals with a time dependent toxicity have a 
varying impact on the toxicity of a respective mixture 
over time, when the mixture ratio is kept constant. For 
instance, the toxic units of the chemicals in the mixtures 
change during the exposure duration and the impact of 

Table 4  Time dependence  (td) of  single substance 
and mixture toxicity

Shown is the time dependence (td) of toxicity for lethal effects obtained after 
starting exposures early (0 hpf ) and late (24 hpf ), respectively

Td is the ratio LC50 (longest exposure duration) / LC50 (shortest exposure 
duration)

* No CRC at tested concentrations, – no toxicity tested

Substance td_lethal_early td_lethal_late

Benzo[a]pyrene * *

Benzo[b]fluoranthene * *

Bisphenol A 0.658 0.680

Carbendazim 0.922 0.431

Chlorophene 0.402 0.473

Cyprodinil 1.102 0.422

Diazinon 1.124 0.866

Diclofenac 0.053 0.396

Diuron 1.045 *

Genistein 0.606 0.018

Naphthalene 1.126 0.554

Naproxen 0.604 0.241

Propiconazole 0.855 0.819

Triclosan 0.371 0.520

Triphenyl phosphate 0.755 0.982

Mean_single substances 0.740 0.534

mixA – 0.223

mixB.1 0.978 –

mixB.2 – 0.713

mixC.1 0.848 –

mixC.2 – 0.525

mixD – –

mixE.1 0.330 0.556

mixE.2 0.636 0.362

mixF – 0.712

mean_mixtures 0.698 0.561
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independently and similarly acting components in a mix-
ture may vary over time (Additional file  2: Figure  S22). 
In 16 out of 25 cases (68%) time dependent toxicity was 
detected for single substances, whereas mixture toxic-
ity was time dependent in almost all cases investigated 
therein (8/10, (80%)). Two exceptions were mixB.1 and 
mixC.1 which were directly exposed after hatching and 
only for 48 h. On average we found that an early exposure 
start resulted in less time dependence in toxicity com-
pared to exposures that started at later stages, i.e., with 
older ZFE (td_mean_early = 0.72, td_mean_late = 0.55). 
This means that the toxicity doubles during the course 
of longer exposure periods when ZFE are exposed in an 
advanced developmental stage.

Increased steepness of mixture concentration–response 
curves
In this study we found that all mixtures induce steep 
CRCs. We classified a CRC as steep when the slope (cal-
culated as quotient of EC75/EC50) was < 2 as an EC75/
EC50 ratio of 2 means that doubling the EC50 concentra-
tion leads to a double fractional effect, which is what one 
would expect under the law of mass action. The slope 
distributions of ss_CRCs and mix_CRCs obtained for 
lethal and total effects and the four different exposure 
periods (24, 48, 72, and 96  h) are shown in Fig.  5 (pur-
ple: mix_CRC, pink: ss_CRC). The slopes of all analyzed 
mixtures were steep with a trend towards steeper CRC 
for longer exposure durations. Also, the slopes of ss_
CRCs were relatively steep but showed broader distribu-
tions. On average we found that a concentration increase 
of approximately 15% resulted in twice the effect in the 
zebrafish embryo toxicity test (see Table 5) based on the 
LC/EC50. A detailed list of all data is presented in Add-
tional file 2: Tables S8–11. 

‘Something from “nothing”’ effects induced by mixtures 
in ZFE
Mixture exposures can cause the induction of significant 
toxic effects even when mixture components are applied 
in concentrations that are not evoking toxicity indi-
vidually. This phenomenon is also known as the princi-
ple ‘something from “nothing”’ [17, 18, 22, 24, 36]. Silva 
et al., for example, showed that a mixture of eight weak 
estrogenic compounds were able to evoke a significant 
combined effect in yeast although the mixture compo-
nents were present below their individual NOEC [17]. 
In this study, we also detected a combined effect for all 
tested mixtures and were interested which concentra-
tions of individual mixture components were necessary 
to evoke a significant mixture effect of 90% regarding 
either lethal but also sublethal and teratogenic endpoints 
(EC90). The EC90 of a mixture was selected, because this 

value still implies a remarkable joint effect but also guar-
antees statistical robustness. The results are exemplarily 
shown for a rather simple (mixC.1) and more complex 
mixture (mixE.1) in Fig. 6. The grey bars depict the EC90 
induced by the specific mixture concentration obtained 
after 24, 48, 72, and 96 hpe, respectively. The light blue 
(CA) and yellow bars (IA) indicate the effects predicted 
by the models for the respective mixture concentration. 
The pink (24 h), purple (48 h), orange (72 h) and rosé bars 
(96 h) depict the effects evoked by mixture components 
when applied individually at the concentration present 
in the mixture. The data shown in Fig. 6 indicate that a 

Fig. 5  Slopes of single substance and mixture concentration–
response curves (CRCs). Slopes were calculated as EC75/EC50. 
Distributions contain data for all obtained CRCs (total and lethal 
effects) for single substance effects (pink) and mixture toxicity 
(purple), respectively

Table 5  Slope calculation for  single substance (ss) 
and mixture (mix) concentration–response curves

Min. Median Mean Max.

ss 1.01 1.17 1.21 2.45

ss_24hpe 1.01 1.17 1.22 2.45

ss_48hpe 1.01 1.18 1.21 1.72

ss_72hpe 1.02 1.15 1.18 1.86

ss_96hpe 1.04 1.16 1.22 1.89

mix 1.03 1.14 1.14 1.38

mix_24hpe 1.04 1.12 1.13 1.23

mix_48hpe 1.04 1.15 1.14 1.38

mix_72hpe 1.03 1.10 1.12 1.28

mix_96hpe 1.04 1.09 1.12 1.26
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significant mixture effect was induced even though indi-
vidual chemicals were applied in concentrations below 
their individual effect thresholds (EC20, see “Methods” 
section). This phenomenon holds true for both mixtures 
but is even more distinct for the more complex, 12-com-
pound mixture.

Surveying the entirety of results revealed that for a 
remarkable number of 90% (53 out of 59 cases) a com-
bined effect of 90% is caused by a mixture constituted 
of very low concentrated chemicals (Additional file  2: 
Figure S11–21).

Discussion
For a reliable comparison of predicted and measured 
mixture toxicity, a valid and free-of-bias determination of 
toxicity values is necessary. Single substance and mixture 
toxicity observations, therefore, need  to be performed 
in a comparable manner and a high-quality single sub-
stance toxicity determination is the major requirement 
to trustfully predict mixture toxicity. Thus, toxicity deter-
mination of single substances as well as of mixtures was 
performed until an appropriately resolved concentra-
tion–response curve (CRC) was obtained. To minimize 
the influence of experimental errors and batch effects, 
we analyzed three technical replicates per tested con-
centration and further performed multiple independ-
ent experiments starting at different days (minimum 
two, maximum five). The individually obtained CRCs 
for mixture constituents were further used to predict 
mixture toxicity with the model of Concentration Addi-
tion (CA) and Independent Action (IA) for, respec-
tively, designed mixtures. All mixtures were tested in 

the zebrafish embryo  acute toxicity assay (ZFET) and 
obtained measurements were compared with respective 
predictions. Due to conceptual differences, CA and IA 
often provide different toxicity values. This is not neces-
sarily the case but is, however, frequently observed when 
mixtures consist of multiple chemicals at low concentra-
tions (e.g., [37]). In such cases, the predicted CRCs of 
both models span a concentration-effect space, the pre-
diction window. The mixture ratio and applied chemical 
concentrations can influence the separation of the CA 
and IA model, hence the size of the prediction window. 
Whether or not both models need to be sufficiently dis-
tinguishable is dependent on the research question. For 
instance, if one is only interested in the detectability of 
a combined effect evoked by a mixture, it is neglectable 
that both models distinguish from each other whereas 
investigations about which model better describes the 
toxicity of a specific mixture require a clear separation 
of both models. In this study, we were, on the one hand, 
interested in whether or not mixture toxicity of a mixture 
consisting of only similarly or dissimilarly acting com-
ponents is trustfully estimated by the appropriate model 
and, on the other hand, whether certain experimental 
factors, such as phenotype, exposure duration, and mix-
ture potency, influence the prediction accuracy of the CA 
and IA model. For this, a clear separation of both models 
is a fundamental requirement. In this study, the distance 
of two predicted ECx values (x= 10, 50, 90) ranged from 
1.4 to 5.5 with an average distance of 2.7, hence CA and 
IA were sufficiently different. Meeting the requirements 
of high-quality and consistent toxicity observation as well 
as distinctive separation of toxicity predictions allowed 

Fig. 6  ‘Something from “nothing”’: Predicted effects modeled with CA (light blue) and IA (yellow) at mixture concentrations evoking 90% effect 
in measurements (grey bars) and the effects evoked by single substances when applied individually at the concentrations present in the mixture 
at 24 hpe (pink), 48 hpe (purple), 72 hpe (orange) and 96 hpe (rosé). a mixC.1_lethal (LC50_24h = 18.17 µM, LC50_48h = 21.42 µM), b mixE.1_total 
(EC90_24h = 15.72 µM, EC90_48h = 14.05 µM, EC90_72h = 10.90 µM, EC90_96h = 9.71 µM)
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us to reliably compare measured and predicted mixture 
toxicity values and evaluate the respective comparisons.

Independent action might not be detectable with complex 
organisms and integrated endpoints
Initially, we investigated the predictability of the tox-
icity of two specifically designed mixtures. One mix-
ture contained only similarly acting substances (mixB), 
hence mixture toxicity expected to be predictable with 
the CA model, and another mixture contained only sus-
pected dissimilarly acting constituents (mixC), hence the 
IA model was assumed to best predict mixture toxicity. 
The measured mixture toxicity was reflected by CA in 6 
out of 8 analyzed exposure scenarios for mixB, i.e., the 
obtained results met our hypothesis. In contrast, toxic-
ity of mixC was not reflected by IA as expected (0 out 
of 8 cases) but was always located within the prediction 
window. It seems that in a complex organism, such as the 
ZFE, combined toxicity of similarly acting components is 
predictable with CA, whereas IA cannot reliably estimate 
the toxicity of a mixture consisting of dissimilarly acting 
components. Other studies in fish revealed similar find-
ings. The combined effect of similarly acting components 
was predictable by CA in guppy [24] and fathead min-
now [25]. A more controversial picture exists regarding 
the predictability of dissimilarly acting components with 
IA as effects were either not detectable against expecta-
tions [38] or were detected although multiple mixture 
components were suspected to act similarly by inducing 
narcosis [39]. Extending the literature research to other 
organisms revealed different results. In Gammarus pulex 
[40], mixture toxicity was underestimated by both mod-
els, whereas the combined effect of either similarly or 
dissimilarly acting components was proven to be predict-
able by the appropriate model in freshwater algae Scened-
esmus vacuolatus (CA: [19, 20, 41], IA: [13]), luminescent 
bacteria Vibrio fischeri (CA: [21], IA: [12]) and Daphnia 
magna (CA: [22, 41]). It seems that the complexity of 
the organism determines whether or not the respective 
model is capable of predicting the combined effect of a 
mixture with the associated character.

Recalling the main principle of the IA model at 
which a combined effect is induced through interac-
tion of mixture components with independent target 
sites by different modes of action, leads to the hypoth-
esis that an independent action of chemicals may not 
be exerted in complex organisms [16]. One poten-
tial explanation could be derived from the absence of 
specific target sites in the investigated organism. For 
instance, the herbicide diuron, as part of the five com-
ponent mixture with potentially dissimilarly acting sub-
stances, interferes with the photosystem II of plants 

and photosynthetic microorganisms [42]. In case an 
organism is lacking a functional photosystem, diuron 
is expected to not target a specific site and, therefore, 
is not acting via its specific mode of action (MoA) in 
zebrafish.

Complex interactions of chemicals with metabolic 
and signaling pathways could be another explanation 
for mismatches with the IA model. For instance, the 
phytoestrogen genistein, another suspected specifically 
and dissimilarly acting mixture component, has been 
shown to interact with estrogen receptors resulting 
in endocrine disruption. However, genistein was also 
identified to interfere with the aryl hydrocarbon recep-
tor (AhR), e.g., as agonist in HepG2 cells [43] and rat 
liver [44], resulting in the induction of monooxygenases 
of the CYP1 family. The CYP1A1 and A2 enzymes 
play a crucial role in biotransformation of a diversity 
of chemicals and were shown to biotransform diuron 
to 3,4-dichloronaniline (3,4-DCA) [45] and genistein 
to dihydrogenistein and 2′,4′,6′,4″-tetrahydroxy-α-
methyl-deoxybenzoin [46]. 3,4-DCA is suspected to 
influence anti-androgenic pathways which could fur-
ther be related to endocrine disruption [45]. The parent 
compound diuron might, therefore, also be categorized 
into the same mode of action group as genistein. Gene 
expression analysis in ZFE also revealed an induc-
tion of CYP1 enzymes upon exposure to diuron [32]. 
Another component of mixC, diclofenac is known to be 
metabolized to 4′-hydroxydiclofenac by CYP2C9 [47]. 
In gene expression studies with ZFE, diclofenac was 
found to induce cyp2k19 and cyp2c9 [32, 48]. These are 
just examples for the induction of the biotransforma-
tion system and the list of metabolites could easily be 
extended.

The induction of biotransformation could lead to an 
increase of compound degradation of applied chemicals 
and the hereinafter following loss of specific action. 
However, the loss of specific action does not necessarily 
result in the total inactivation of chemicals. The result-
ing transformation products could still act via a similar 
and/or different MoA. For instance, metabolites could 
intercalate into the membrane, thus inducing unspe-
cific narcotic effects. Cyprodinil, another component 
of mixC, was the only assumed baseline toxicant in this 
mixture. The biological activity of the different com-
pounds might, therefore, change towards similar path-
ways such as narcosis. The results of our study and the 
considerations above indicate that independent action 
of chemicals in a mixture seems to be more likely for 
short exposure durations and low effect concentrations. 
It seems that independent MoAs of mixture compo-
nents converge with increasing effective concentrations 
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and longer exposure durations into joint unspecific 
pathways of disturbance in a complex organism.

Mixture toxicity in ZFE can be predicted with the CA 
concept
CRCs for experimentally determined mixture toxicities 
were located within the prediction window in 51 out of 59 
cases (86%) in this study. In 8 out of 59 cases (14%), mix-
tures were even more toxic than predicted. Other studies 
performed with luminescent bacteria [12], algae [19], or 
ZFE [49] described similar results but their analyses were 
restricted to one selected mixture and specific exposure 
scenarios. Here, we demonstrate for the first time that 
mixture toxicity can be robustly estimated with the pre-
diction window for a diversity of mixtures and exposure 
scenarios. In cases where the observed mixture toxicity 
was underestimated by both models, the deviations were 
not larger than one order of magnitude, respectively. 
Hence, the prediction window serves as a reliable tool to 
predict the concentration-effect space for mixture toxic-
ity in ZFE.

Overall, the CA model predictions maximally devi-
ated from measurements by a factor of 2.5 (1.32 < log-
2PDR < 0.41). Regarding usually standard errors of 
ecotoxicological studies and concentration response 
determinations, this could be seen as reasonable predic-
tion accuracy. The highest prediction accuracies with 
CA were achieved for higher effect concentrations and 
long exposure durations (e.g., mean_log2PDRCA_72hpe_

EC50 = − 0.09). The IA model revealed its highest model 
accuracy for low effect concentrations and short-
term exposures (mean_log2PDRIA_EC10 = 0.941, mean 
log2PDRIA_24hpe =  0.978), but was on average always less 
accurate in comparison to the CA model.

Predictions appeared to be slightly more robust when 
the totality of effects were inspected (lethal, sublethal, 
and teratogenic) but the inspected effect type seems to be 
less relevant concerning the performance of both models, 
in general. One possible explanation could be that both, 
lethal and total effects, are integrated effects, but the 
quantity of integrated endpoints and consequently the 
robustness of results increases when all recorded end-
points are merged and analyzed together.

While it remains to proofed whether or not mixture 
components can cause toxicity independently in complex 
model organisms, our results demonstrate, that the CA 
model was extremely robust and adequately estimated 
the toxicity of a large variety of mixtures and exposure 
scenarios within described margins of errors. Although 
the highest mixture toxicity prediction accuracies were 
achieved for longer exposures with high concentrations, 
CA-based predictions deviated from measurements by a 
factor of 2.5 only, even for mixtures with only suspected 

dissimilarly acting components and short-term exposures 
with low concentrations. Hence, the CA model, poten-
tially applied with a safety factor, should provide a solid 
tool to predict mixture toxicity for environmental expo-
sure scenarios, water quality and risk assessment. We, 
therefore, support the general request of ecotoxicologists 
to apply this model in water quality and environmental 
risk assessment [7, 50].

In conclusion, while the prediction window serves as a 
reliable tool to describe the concentration-effect space 
in which the toxicity of a mixture is to be expected, the 
CA model serves as robust and reliable tool to predict 
mixture toxicity, even for heterogeneous mixtures and 
a variety of exposure scenarios, and should, therefore, 
be considered for water quality and environmental risk 
assessment. The precise prediction quality of the CA and 
IA model is, however, dependent on specific experimen-
tal factors and should be considered when investigating 
mixture modes of action, potential interactions of the 
mixture constituent’s pathways, and for detailed quantifi-
cations of combined effects [51].

ZFE age and exposure durations determine mixture 
toxicity
Toxicity in the ZFE is not only influenced by biotransfor-
mation processes but also by compound uptake kinetics 
and the developmental stage of the embryo. Our results 
show that longer exposure periods led to higher toxic-
ity values in the majority of cases. This was even more 
apparent when ZFE were exposed at a subsequent devel-
opmental stage (at the age of 24 hpf). The increase in tox-
icity over time and a more pronounced time dependency 
of toxicity in older embryonic stages can be explained 
with toxicokinetic (e.g., chemical uptake kinetics and 
metabolism) and toxicodynamic (e.g., presence of cer-
tain target sites and functionality of pathways) processes. 
The developmental stage of the embryo determines 
the presence and function of molecular target sites, tis-
sues, and organs. For instance, the liver, which is impor-
tant to metabolize exogenous chemicals, starts budding 
in ZFE at the age of 24 hpf. It ends with the connection 
of liver bud and intestine at 50 hpf. Subsequently, the 
growth period begins and the liver undergoes remark-
able changes in size and shape [52, 53]. A functional liver 
is required for the biotransformation of many chemicals 
which can lead to either inactivation or detoxification, 
or bioactivation due to the production of toxic metabo-
lites [54]. Evidence for bioactivation or detoxification can 
be derived from toxicity observations only when differ-
ent exposure scenarios and time points are considered. 
While we found both, increased and decreased toxicity 
over time, for the single compounds, mixture toxicity 
increased over time in all cases. Furthermore, we found 
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the mixture CRCs on average to be steeper than the sin-
gle compound CRCs with an increased steepness over 
time. On average we found that a concentration increase 
of approximately 15% resulted in double the effect. It 
seems that a certain threshold concentration is needed to 
induce an adverse effect in a complex organism such as 
the ZFE. The convergence of metabolic, stress response, 
and/or individual signaling pathways at a certain point 
and/or the additive burden within such pathways due 
to the existence of different chemicals at the same time 
might explain these observations.

Mixture exposure leads to the ‘something from “nothing”’ 
phenomenon
In the environment, chemicals occur in multitudes of low 
concentrated mixtures rather than as individual entities. 
Although acute toxicity disappears more and more off the 
monitor of concern, the environmental status of Euro-
pean surface waters is still in very poor condition [55]. 
The potential interaction of low concentrated chemicals 
and their ability to evoke combined toxic effects has been 
intensely discussed to be a plausible explanation. During 
the last three decades, scientific evidence has verified the 
hypothesis that combined effects of chemicals may be 
induced even when all mixture constituents are applied 
in very low concentrations. Several studies, conducted in 
yeast [17], algae [13, 37], daphnids [22], gammarus [40, 
56], and fathead minnow [18], reported the detection 
of combined effects which were always higher than the 
effects induced by mixture constituents if applied indi-
vidually. It has been reported that combined toxic effects 
were even observable when chemicals were applied in 
concentrations below their individual effect thresholds. 
This ‘something from “nothing”’ phenomenon could be 
shown for similarly acting components inducing narcosis 
[22, 24, 36] as well as for independently acting substances 
[13] and a blend of both [14]. All these examples refer to 
situations, where experiments were specifically designed 
to investigate the impact of low concentrated chemicals 
and to assess their ability to evoke a combined effect. 
Additionally, the toxicity of the tested mixtures was usu-
ally elucidated for specific exposure scenarios. In this 
study, we demonstrate that ‘something from “nothing”’-
effects could be detected although the mixtures were not 
designed to show this on purpose. Furthermore, we show 
that the detection of this phenomenon is not depend-
ent on the examined exposure scenario and considered 
phenotype. However, exceptions derived from mixtures 
consisting of only a small number of chemicals (e.g., 
mixA containing only three chemicals) or short exposure 
periods, whereas the overall significance of the phenom-
enon ‘something from “nothing”’ increased the more sub-
stances a mixture contained and the longer the ZFE were 

exposed to the mixture. Combining these findings with 
the chemical status quo of water bodies, at which water 
samples have been described to consist of 400-500 chem-
icals at low concentrations [3], is leading to the request of 
finally integrating mixture toxicity assessment into water 
quality assessment.

Conclusions
In this study, we show that the CA model provides 
a robust tool to predict mixture toxicity in zebrafish 
embryo. This conclusion is based on the investigation of 
9 different mixtures and 31 different exposure scenarios 
and their toxicities in zebrafish embryos. The CA model 
correctly estimated the toxicity in 100% of analyzed 
mixtures when allowing a prediction deviation ratio 
of 2.5. This was not only the case for mixtures contain-
ing exclusively similarly acting components but was also 
true for mixtures that contained only dissimilarly acting 
components or a blend of both. We found experimen-
tally determined mixture toxicity within the prediction 
window, the concentration-effect space that is spanned 
between CA and IA predictions, in 51 of 59 cases. In 8 of 
59 cases mixture toxicity was underestimated with both 
models, whereas an overestimation was never observed. 
All investigated mixtures induced steep concentration-
response curves and increased toxicity over time. Finally, 
remarkable joint toxic effects were detectable for the 
majority of analyzed mixtures even if mixture constitu-
ents were present in concentrations that failed to evoke 
individual compound toxicity. This study demonstrates 
that combined effects of chemicals need to be consid-
ered as potential risk and that the CA model can serve as 
a robust tool to estimate mixture toxicity.
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