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Abstract 

Background:  Sediments function as a secondary and significant source of tributyltin (TBT) and triphenyltin (TPT) in 
aquatic ecosystems and may pose a potential threat on benthic organisms and human health. The subchronic toxic-
ity of sediment-associated TBT or TPT to snails Bellamya aeruginosa at environmentally relevant concentrations was 
investigated in this study. Multiple endpoints at the biochemical [ethoxyresorufin-O-deethylase (EROD), superoxide 
dismutase (SOD), catalase (CAT), protein carbonyl content (PCC) and lipid peroxidation (LPO)] and transcriptomic 
levels were examined.

Results:  TBT or TPT in sediment could induce antioxidant enzymes’ activities and result in oxidative damage in the 
hepatopancreas of B. aeruginosa after 28-day exposure. A transcriptomic profile of B. aeruginosa exposed to TBT and 
TPT was reported. CYP genes and EROD activity were sensible and reliable biomarkers for toxicity assessment of TBT or 
TPT in sediments. Comparative pathway analysis revealed the alteration of steroid hormone biosynthesis and retinol 
metabolism in B. aeruginosa after 90-day exposure to sediment-associated TBT at the concentration of 2000 ng/g dw, 
which might affect both reproduction and lipogenesis functions. The ubiquitin proteasome system and immune 
system might be the toxicity target in B. aeruginosa after exposure to sediment-associated TPT for 90 days.

Conclusions:  The results offered new mechanisms underlying the toxicity of sediment-associated tributyltin and 
triphenyltin.
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Background
Two organotin compounds, tributyltin (TBT) and tri-
phenyltin (TPT), have been widely used as fungicides in 
agricultural activities and as ingredients of antifouling 
paints since the 1960s [1]. They are potent endocrine dis-
ruptors, which may cause developmental malformations 
in oyster, death of mussels and deformation of gastropod 

after aqueous exposure in ng/L concentrations [2, 3]. Due 
to their high toxicity and persistency, the application of 
TBT-based antifouling paints has been prohibited by the 
International Maritime Organization. However, TPT 
compounds are still used as contact fungicides to pro-
tect crops. Despite the amount of TBT and TPT directly 
released into the aquatic ecosystem from antifouling 
paints has been greatly reduced, their concentrations in 
marine sediments and organisms remain high in several 
coastal areas with frequent shipping activities and agri-
cultural activities, which results in various local eco-
logical problems [4–7]. In costal systems, sedimentary 
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concentration levels of TBT were reported as ranging 
from 9 to 469 ng/g dw from Jinhae Bay in Korea [8], and 
from 0.3 to 174.7 ng/g dw at the ports of Xiamen, Shan-
tou and Huiyang in China [9]. Chen et al. [10] found that 
sediment samples from the Estuarine Turbidity Maxima 
zone of the Yangtze Estuary had the TBT levels above 
10 ng/g dw, which are sufficient to bring harmful effects 
to benthic organisms and pose serious ecological risks. 
The organotin compounds’ contamination was dem-
onstrated to vary slightly during the year 2014–2016 in 
the Yangtze Estuary [10]. It is expected that the TBT and 
TPT effects will be present in marine environments and 
freshwater ecosystems for some years ahead [11]. The 
sediments may act as a secondary and significant source 
of TBT and TPT pollution for aquatic ecosystems [12], 
which may pose a potential threat to aquatic organisms.

Benthic organisms play an essential role in aquatic 
ecosystems and may be good bioindicators of sediment-
bound contaminants. The deposit-feeding benthic gas-
tropods are exposed to organotin compounds through 
direct contact with sediments and ingestion of sediment 
particles [13]. Gastropod snails have been demonstrated 
to be exceptional test organisms for the assessment of 
endocrine-disrupting effects, such as effects on repro-
duction and development, defeminization and mas-
culinization, decreased fertility, hatching success, or 
hermaphroditism [14–16]. The superimposition of 
male sexual characteristics onto females (“imposex”) in 
response to organotin pollution occurs on more than 
260 species of gastropods worldwide, while there are 42 
species that are unaffected even though they are exposed 
to high aqueous TBT or TPT concentrations [17, 18]. 
The snail Bellamya aeruginosa (Gastropoda, Caenogas-
tropoda, Viviparidae) is a widely distributed species that 
can be found in Chinese rivers, lakes and ponds and has 
great importance for human consumption [19, 20]. This 
organism is closely related to surficial sediments, where 
it burrows in the surface layer and consumes particu-
late organic matters in sediments. As a result, it might 
be greatly exposed to sediment-bound organotin com-
pounds. B. aeruginosa has been reported to be relatively 
sensitive to different sorts of anthropogenic pollutants 
[21], which makes it as a test species for sediment toxicity 
assessments.

Biochemical biomarkers are widely applied to deter-
mine the ecotoxicity of many contaminants and might 
give insights into the underlying toxic mechanisms 
[22]. The exposure of aquatic organisms to organic 
compounds results in phase-I biotransformation reac-
tions (i.e., monoxygenation), which would lead to the 
production of reactive oxygen species (ROS) [23]. The 
antioxidant system includes various enzymes such 
as superoxide dismutase (SOD), which catalyzes the 

conversion of superoxide radical (O2
−) to hydrogen per-

oxide (H2O2), and catalase (CAT), which reduces H2O2 
to H2O. The failure of antioxidant defenses to counteract 
ROS-mediated damage may lead to significant oxidative 
stress such as lipid peroxidation and protein carbonyl for-
mation [24]. The increase in lipid peroxidation (LPO) and 
protein carbonyls content (PCC) have been employed 
as biomarkers to indicate oxidative stress induced by 
organic contaminants [25]. The application of such mul-
tiple biochemical parameters is more advantageous than 
the use of only one parameter and is demonstrated to get 
better acquainted with the physiological responses of the 
organisms to the contamination [26].

Omic approaches have been extensively applied for 
toxicity evaluation and mechanism studies [27, 28]. 
Recent developments in high-throughput sequencing 
(HTS), particularly in the field of RNA sequencing (RNA-
seq) and de novo assembly technology, have provided a 
way to analyze alternations in gene expression patterns 
across whole transcriptomes of non-model species [29, 
30]. RNA sequencing has been applied to several aquatic 
organisms, such as roach Rutilus rutilus [30], the Pacific 
oyster Crassostrea gigas [31] and green mussel Perna vir-
idis [32] for studying their transcriptomic responses to 
environmental stress. In toxicology, comparative tran-
scriptome analysis functioned as a powerful approach to 
improve the discovery of novel biological effects, includ-
ing the differential expression patterns of genes, toxicity 
pathways and adaptation mechanisms [33, 34]. Zhang 
et  al. [35] have demonstrated that the profile of hepatic 
genes of rare minnow (Gobiocypris rarus) was up-reg-
ulated in the steroid biosynthesis pathway and down-
regulated in the retinol metabolism pathway after TBT 
exposure for 60 days.

In the present study, snails Bellamya aeruginosa were 
employed to assess the effects of the sediment-associated 
tributyltin or triphenyltin at environmentally relevant 
concentrations on the benthic organisms. The responses 
in hepatic antioxidant defense system through a wide 
range of biochemical parameters were investigated, and 
the changes in transcriptome profile using the RNA 
sequencing approach were examined. The aims were to 
better understand the toxic mechanism of sediment-
associated tributyltin and triphenyltin at environmentally 
relevant concentrations on snails B. aeruginosa after the 
subchronic exposure.

Materials and methods
Reagents and chemicals
Tributyltin chloride (TBTCl; CAS number 1461-22-9) 
and triphenyltin chloride (TPTCl; CAS number 3342-
67-4) were obtained from Merck Schuchardt Chemi-
cals, Germany, with a purity of greater than 97%. A stock 
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solution of TBT chloride and TPT chloride was prepared 
by dissolving TBTCl and TPTCl in acetone and stored at 
4 °C in the dark before experiments. The commercial rea-
gent kits of total protein, superoxide dismutase (SOD), 
catalase (CAT), lipid peroxidation (LPO), and protein 
carbonyl content (PCC) were obtained from Sigma-
Aldrich, USA. Other analytical grade reagents and chem-
icals were purchased from Aladdin Reagent Co., Ltd.

Test organisms
Bellamya aeruginosa (length 20.56 ± 1.28 mm and weight 
3.23 ± 0.44 g) raised in lab were applied as the test organ-
isms. Snails were acquired from a pond in the Wuhan 
Botanic Garden of the Chinese Academy of Sciences, 
and the pond was believed to be free of pollution [21, 36]. 
They were acclimated in the laboratory at a temperature 
of 24 ± 1 °C and under a 24-h light–dark cycle in a 70-L 
(50  cm × 40  cm × 35  cm) glass aquarium for more than 
3 months before the experiment. The acclimation fresh-
water with a hardness concentration of 250  mg/L and 
a pH value of 7.5 ± 0.5 was aerated with an air pump. 
Ground aquarium fish food (Sanyuan®, Beijing, China) 
were selected to feed snails. No initial tributyltin and tri-
phenyltin concentrations were detected in the snails and 
fish food.

Sediment spiking
The natural sediments used for all treatments were 
acquired from Dehang Nature Reserve located in Hunan 
Province, China [37]. Coarse particles were removed 
from wet sediments by passing through a nylon filter 
of 150  μm and supernatant water was decanted after 
thoroughly settlement. Then the sediments were kept 
under a temperature of 80 °C overnight to remove unde-
sired fauna and then homogenized [37]. The pretreated 
sediments were stored at 4  °C until sediment spiking. 
Notably, the sieved sediment had no background concen-
trations of tributyltin and triphenyltin.

Four exposure concentrations (100, 500, 1000, and 
2000 ng/g) for either TBT or TPT were chosen accord-
ing to the environmentally relevant concentrations in 
sediments in this study. The experiments were conducted 
in 5-L glass aquarium. Each treatment contained 600  g 
of dry sediments. Prepared TBT or TPT stock solutions 
were added into sediment samples and homogenized by 
stirring. Control groups were set without any additional 
pollutants in sediments. In the solvent control group, 
acetone was added at the concentration of 0.03%. Three 
replicates were set for each treatment and control groups. 
All sediments were kept in darkness for a month to 
ensure chemical equilibrium between the sediment sam-
ples and the water [38]. Organotin levels in sediments 

were quantified according to the method described by 
Chen et al. [39] to ensure the validation of exposure.

Exposure experiment and sampling
Four liters of overlying water (Milli-Q water) were grad-
ually supplied to the sediments of each glass aquarium. 
All chambers were aerated and allowed to settle for 48 h 
before the introduction of snails. Exposure experiments 
were carried out under static conditions with aeration. 
The test conditions were identical to the acclimation con-
ditions. Each glass aquarium was covered with plastic 
wrap to avoid the moisture evaporation. The subchronic 
exposure period lasted for 28 days in total. Eventual mor-
tality in each treatment was recorded and dead snails 
were counted and removed. Nine snails were collected 
from each treatment group on day 0, 7, 14 and 28. A care-
ful dissection was performed on snails and the hepato-
pancreas was separated from the visceral mass, which 
was snap-frozen with liquid nitrogen immediately and 
stored at a temperature of − 80 °C for further biochemi-
cal analysis. To capture an organismal-level and tem-
porally representative transcriptomic response to TBT 
or TPT contamination, the remaining snails were con-
tinuously exposed until 90  days and collected for RNA 
extraction. All experiments were conducted in conform-
ity to guidelines approved by the Animal Ethics Commit-
tee at Tongji University.

Biochemical analysis
The homogenates of hepatopancreas tissue were pre-
pared according to Li et al. [36] for the determination of 
biochemical parameters. Total protein concentrations 
were detected using the total protein kit (Sigma-Aldrich, 
USA) in accordance with the Bradford method. The 
activities of all biochemical biomarkers were determined 
with assay kits from Sigma-Aldrich following the manu-
facture’s protocols. All biomarker responses were meas-
ured by BioTek Synergy 4 multi-mode microplate reader 
(BioTek, USA). The ratio of specific enzyme activity from 
treated snail samples to specific enzyme activity of the 
controls was expressed as an index, the relative enzyme 
activity (REA) [40].

Statistical analyses of data were performed with IBM 
SPSS version 19.0. Biomarker results pertaining to eth-
oxyresorufin-O-deethylase (EROD), SOD, CAT, LPO and 
PCC were checked for normality and variance homo-
geneity using the Shapiro–Wilks and the Levene test, 
respectively. Analysis of variance (ANOVA) followed by 
a Dunnett’s test was performed to compare statistical 
differences of biochemical parameters between treat-
ment and control groups. The significance level was set at 
p < 0.05 and p < 0.01 for all tests performed.
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RNA sequencing
Snails from the control, 2000 ng/g TBT exposure group 
and 2000  ng/g TPT exposure group were collected for 
RNA isolation and the RNA samples would be applied for 
sequencing and library preparation. Snail samples were 
frozen in liquid nitrogen and total RNA was extracted 
from samples following the instructions of the Trizol® 
reagent (Invitrogen, USA). RNA quality was examined 
with 2% agarose gel and the concentration was measured 
with a Nanodrap spectrophotometer (NanoDrop, USA).

RNA-seq transcriptome library was constructed in 
accordance with Truseq™ RNA sample preparation kit 
(Illumina, USA). Messenger RNA was isolated follow-
ing the polyA selection method and then fragmented. 
Double-stranded cDNA was synthesized with a Super-
Script double-stranded cDNA synthesis kit (Invitrogen, 
USA) and random hexamer primers (Illumina, USA). The 
synthesized cDNA was subjected to end-repair, phos-
phorylation and ‘A’ base addition in accordance with 
the protocol of Illumina’s library construction. The frag-
ments of 200–300 bp were selected for the libraries and 
amplified with Phusion DNA polymerase for 15 PCR 
(polymerase chain reaction) cycles. Finally, the libraries 
were sequenced on the Illumina HiSeq 4000 platform. 
The cDNA libraries were constructed and sequenced 
by Shanghai Majorbio Bio-Pharm Technology (Shang-
hai, China). There were 60,657,066, 60,160,828 and 
61,357,620 clean reads produced from the control group, 
TBT exposure group and TPT exposure group, respec-
tively. Approximately 91.29%, 92.14% and 91.84% of reads 
met the quality requirement and the quality percentage 
values were above Q30%.

Neither the genome nor the transcriptome of B. aer-
uginosa has been characterized previously. Therefore, a 
reference transcriptome of B. aeruginosa was assembled 
from all the sequencing reads acquired in the present 
study. Prior to assembly, raw paired-end reads in FASTQ 
format were processed using SeqPrep (https​://githu​
b.com/jstjo​hn/SeqPr​ep) and Sickle (https​://githu​b.com/
najos​hi/sickl​e) software. Clean reads were acquired after 
removing adapter sequences, reads with poly-N (> 10%) 
and low-quality raw reads. Sequences less than 20 bp in 
length were eliminated from read libraries. The paired 
reads from each of both two samples were merged in 
order that any overlapping reads were combined into a 
single read. De novo assembly was carried out with the 
merged reads and unmerged paired-end reads from each 
of the two sequence libraries using the Trinity software 
(http://trini​tyrna​seq.sourc​eforg​e.net/). The minimum 
length of a contig was set to 201  bp. The open reading 
frame (ORF) of each unisequence was also predicted 
using Trinity software. A total of 111,202 transcripts were 
obtained for the reference transcriptome database of B. 

aeruginosa. All transcripts were clustered into 74,513 
unigenes, the average size of which was 1286 bp.

Gene function was annotated against the NCBI non-
redundant protein sequences (NR), STRING, the Swis-
sprot database, and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) using BLASTX with a typical E value 
threshold of less than 1.0 × 10−5. Functional annota-
tion by gene ontology (GO) terms was analyzed using 
BLAST2GO software (http://www.blast​2go.com/b2gho​
me). The unigene sequences were functionally anno-
tated by the NR (26,056), Swissprot (12,869), KEGG 
(14,656) and String (5797) databases with a cut-off E 
value < 1.0 × 10−5.

Differential gene expression and pathway analysis
To identify differentially expressed genes (DEGs) between 
the control and treatment group, the expression level of 
each transcript was calculated following the fragments 
per kilobase of exon per million mapped reads (FRKM) 
method. Gene abundances were quantified with RSEM 
(RNA-seq by expectation-maximization). The analy-
sis for DEGs between the control and treatment group 
was performed with the edgeR software package [41]. 
A fold change ≥ 2 and a false discovery rate (FDR) < 0.05 
were set as the threshold for the DEGs caused by TBT 
or TPT exposure. Metabolic pathway analysis was car-
ried out according to the Kyoto Encyclopedia of Genes 
and Genomes (KEGG, http://www.genom​e.jp/kegg/). 
KEGG pathway enrichment analysis of DEGs was con-
ducted with Goatools software and KOBAS program. A p 
value < 0.05 was regarded as the threshold for significant 
enrichment [42].

Results
Biomarker responses
EROD changes induced by tributyltin and triphenyltin
The EROD changes of the hepatopancreas in B. aer-
uginosa after 7-day, 14-day and 28-day exposure to 
sediment-associated tributyltin (TBT) and triphenyltin 
(TPT) are shown in Fig.  1. Snails exposed to 100  ng/g 
sediment-associated TBT showed a significant (p < 0.05) 
increase of relative EROD activity at day 7 and day 28 
than the control group. The REA of EROD challenged 
with 500  ng/g TBT increased significantly at day 28 
(p < 0.05). The REA of EROD in 1000  ng/g TBT group 
increased significantly at day 14 and day 28 (p < 0.05 and 
p < 0.01, respectively). Snails exposed to 2000  ng/g TBT 
showed a significant (p < 0.01) enhancement of rela-
tive EROD activity at day 14 and day 28 than the control 
group. 2000  ng/g TBT increased the EROD activity by 
2.71-fold of the control group at day 28. Snails exposed 
to 100  ng/g and 2000  ng/g sediment-associated TPT 
exhibited a significant increase of relative EROD activity 
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at day 7, 14 and 28 than the control group. The REA of 
EROD activity in 500  ng/g TPT group did not reveal a 
significant difference during the exposure period. Snails 
exposed to 1000  ng/g TPT treatment group exhibited a 
significant (p < 0.01) increase of relative EROD activity 
at day 14 and 28. 2000 ng/g TPT exposure increased the 
EROD activity by 1.81-fold of the control group at day 28.

Antioxidant enzyme responses after exposure to triphenyltin 
and triphenyltin
The relative SOD and CAT activities of the hepatopan-
creas in B. aeruginosa after 7-day, 14-day and 28-day 
exposure to sediment-associated tributyltin (TBT) and 
triphenyltin (TPT) are shown in Fig. 2. The REA of SOD 
in 100  ng/g TBT group did not reveal a significant dif-
ference during the exposure period. Snails exposed 
to 500  ng/g and 1000  ng/g sediment-associated TBT 
showed a significant increase of relative SOD activity 
with the exposure duration than the control group and 
the relative SOD activity increased before day 14 and 
then decreased at day 28. The REA of SOD in 2000 ng/g 
TBT group increased significantly during the exposure 
period than the control group and the relative SOD activ-
ity increased at day 7 following decreased at day 14 and 
day 28. Snails exposed to 100  ng/g and 2000  ng/g sedi-
ment-associated TPT showed a significant increase of 
relative SOD activity at day 7, 14 and 28 than the con-
trol group. REA of SOD activity in snails challenged with 
500  ng/g TPT was significantly increased at day 14 and 
28. Snails exposed to 1000  ng/g TPT treatment group 
exhibited a significant (p < 0.01) increase of relative SOD 
activity with the exposure duration and reached its maxi-
mum level at day 28. Snails exposed to all TBT treatment 
or TPT treatment groups showed a significant (p < 0.01) 

enhancement of relative CAT activity with the exposure 
duration than the control group. After a 28-day exposure, 
2000 ng/g TBT and TPT treatment resulted in significant 
increases of CAT activities by 2.44- and 3.42-fold com-
pared with the control group, respectively.

Oxidative stresses after exposure to triphenyltin 
and triphenyltin
The relative LPO and PCC levels of the hepatopancreas 
in B. aeruginosa after 7-day, 14-day and 28-day expo-
sure to sediment-associated tributyltin (TBT) and triph-
enyltin (TPT) are shown in Fig. 3. The REA of LPO level 
in 100  ng/g and 2000  ng/g TBT group did not reveal a 
significant difference during the exposure period. Snails 
exposed to 500 ng/g sediment-associated TBT showed a 
significant (p < 0.05) enhancement of relative LPO level 
at day 28 than the control group. The REA of LPO level 
in 1000 ng/g TBT group increased significantly (p < 0.01 
and p < 0.05, respectively) at day 14 and day 28. The REA 
of LPO level in snails challenged with 100  ng/g TPT 
increased significantly (p < 0.05) at day 14 and recovered 
to the control level at day 28. The relative LPO level in 
snails exposed to 500  ng/g TPT increased significantly 
(p < 0.05) at day 14 and 28. Snails exposed to 1000  ng/g 
sediment-associated TPT showed a significant (p < 0.05) 
enhancement of relative LPO level at day 28 than the 
control group. The REA of LPO level in 2000 ng/g TPT 
group increased significantly (p < 0.01) at day 14. The 
relative PCC level in snails exposed to 100 ng/g TPT sig-
nificantly (p < 0.05) increased at day 14 and day 28. Snails 
exposed to 500, 1000 and 2000 ng/g TBT or TPT exhib-
ited a significant increase of relative PCC level with the 
exposure duration than the control group.

Fig. 1  Relative enzymatic activity (REA) of ethoxyresorufin-O-deethylase (EROD) in the hepatopancreas of Bellamya aeruginosa exposed to 
sediment-associated tributyltin (a) and triphenyltin (b) of 100, 500, 1000 and 2000 ng/g. Results are mean ± SD. Asterisks indicate significant 
difference from the control (p < 0.05); double asterisks indicate significant difference from the control (p < 0.01)
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DEGs and KEGG pathway after exposure to tributyltin 
and triphenyltin
A total of 392 DEGs were identified for TBT treatment 
group. 171 DEGs were up-regulated with a range of log2 
FC from 3.78 to 10.45, while the remaining 221 DEGs 
were down-regulated with a range of log2 FC from 
− 11.93 to − 2.64. The annotation could be performed 
on 123 DEGs with functional descriptions (data shown 
in Additional file  1). Up-regulated and down-regulated 
DEGs from TBT treatment group and control group were 
exhibited in a volcano plot, which is given in Additional 
file 2.

KEGG pathway analysis was conducted for biologi-
cal elucidation of DEGs. Total 36 annotated DEGs for 
TBT treatment group were functionally assigned to 11 
KEGG pathways (Fig.  4). Among these KEGG path-
ways, the pathways of the Steroid hormone biosynthesis 
(ko00140), Retinol metabolism (ko00830) and Chemi-
cal carcinogenesis (ko05204) were demonstrated to be 
significantly enriched. Additional file  3: Table  S1 and 

Fig. S1 exhibits the profile of genes which were up-reg-
ulated in the pathway of steroid hormone biosynthesis 
induced by sediment-associated TBT in B. aeruginosa. 
Genes up-regulated include alcohol sulfotransferase 
(SULT2B1, EC:2.8.2.2), 17beta-estradiol 17-dehydroge-
nase (HSD17B1, EC:1.1.1.62), cytochrome P450 family 
1 subfamily A polypeptide 1 (CYP1A1, EC:1.14.14.1), 
cytochrome P450 family 3 subfamily A (CYP3A, 
EC:1.14.14.1) and cytochrome P450 family 3 subfamily 
A polypeptide 4 (CYP3A4, EC:1.14.13.32). Additional 
file  3: Table  S2 and Fig. S2 exhibits the profile of genes 
up-regulated in the retinol metabolism pathway induced 
by sediment-associated TBT in B. aeruginosa. Up-regu-
lated genes include cytochrome P450 family 1 subfam-
ily A polypeptide 1 (CYP1A1, EC:1.14.14.1), cytochrome 
P450 family 3 subfamily A polypeptide 4 (CYP3A4, 
EC:1.14.13.32) and cytochrome P450 family 3 subfamily 
A polypeptide 5 (CYP3A5, EC:1.14.14.1).

A total of 1430 DEGs were identified for 2000  ng/g 
TPT exposure group. 562 DEGs were up-regulated with 

Fig. 2  Relative enzymatic activity (REA) of superoxide dismutase (SOD) in the hepatopancreas of Bellamya aeruginosa exposed to 
sediment-associated tributyltin (a) and triphenyltin (b) of 100, 500, 1000 and 2000 ng/g. Relative enzymatic activity (REA) of catalase (CAT) in the 
hepatopancreas of Bellamya aeruginosa exposed to sediment-associated tributyltin (c) and triphenyltin (d) of 100, 500, 1000 and 2000 ng/g. Results 
are mean ± SD. Asterisks indicate significant difference from the control (p < 0.05); double asterisks indicate significant difference from the control 
(p < 0.01)
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Fig. 3  Relative levels of lipid peroxidation (LPO) in the hepatopancreas of Bellamya aeruginosa exposed to sediment-associated tributyltin (a) and 
triphenyltin (b) of 100, 500, 1000 and 2000 ng/g. Relative level of protein carbonyl content (PCC) in the hepatopancreas of Bellamya aeruginosa 
exposed to sediment-associated tributyltin (c) and triphenyltin (d) of 100, 500, 1000 and 2000 ng/g. Results are mean ± SD. Asterisks indicate 
significant difference from the control (p < 0.05); double asterisks indicate significant difference from the control (p < 0.01)

Fig. 4  Significant enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for differentially expressed genes (p < 0.05) 
compared 2000 ng/g sediment-associated tributyltin exposure group with control group from Bellamya aeruginosa. a Bubble chart of pathway 
enrichment analysis of DEGs. b Enrichment analysis of up-regulated and down-regulated DEGs. The red bar represents the number of up-regulated 
genes in a pathway, and the blue bar represents the number of down-regulated genes in a pathway
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a range of log2 FC from 1.37 to 9.72, while the remaining 
868 DEGs were down-regulated with a range of log2 FC 
from − 12.62 to − 1.99 (data shown in Additional file 4). 
Up-regulated and down-regulated genes from TPT expo-
sure group and control group were exhibited in a volcano 
plot, which is given in Additional file  5. Several DEGs 
related to metabolism, heat shock responses (heat shock 
protein), and immune response were identified. Seven 
genes involved in encoding CYP450, including CYP 1A1, 
CYP3A4, CYP3C, CYP5A, CYP3A and CYP9, which 
were significantly up-regulated.

KEGG pathway enrichment analyses were conducted 
for biological elucidation of DEGs. Total 263 anno-
tated DEGs for TPT treatment group were functionally 
assigned to 20 KEGG pathways (Fig.  5). Among these 
KEGG pathways, the Ribosome pathway (ko03010) was 
the most enriched pathway, and followed by Protein pro-
cessing in endoplasmic reticulum pathway (ko04141), 
Antigen processing and presentation pathway (ko04612). 
Above three pathways were inhibited with the down-
regulation of differentially expressed genes induced by 
sediment-associated TPT exposure in the B. aeruginosa. 
Fifty-one genes were down-regulated in the pathway of 
Ribosome. Genes down-regulated in the Protein process-
ing in endoplasmic reticulum (Additional file 6: Table S1 
and Fig. S1) include protein disulfide-isomerase (PDIs, 
EC:5.3.4.1), translocon-associated protein subunit alpha 
(TRAP), heat shock 70  kDa (HSPA1s), molecular chap-
erone HtpG (Hsp 90A), crystallin (sHSF) and transitional 
endoplasmic reticulum ATPase (p97). Genes down-
regulated in the Antigen processing and presentation 

(Additional file  6: Table  S2 and Fig. S2) include heat 
shock 70  kDa protein (HSPA1s), molecular chaperone 
HtpG (Hsp 90A), protein disulfide-isomerase (BRp57, 
EC:5.3.4.1) and cathepsin B (CTSB, EC:3.4.22.1).

Discussion
Effects of tributyltin and triphenyltin on detoxification 
metabolism
The cytochrome P450 system plays an essential role in 
the metabolism and excretion of pollutants and medi-
ates the transformation of certain xenobiotics to reac-
tive intermediates [43]. The cytochrome P450 activity 
can be induced or inhibited by many sorts of pollutants 
and is frequently measured in experimental organisms 
as a biological endpoint of exposure to environmental 
contaminants [44]. The debutylation of TBT in gastro-
pods is mediated by cytochrome P450 enzymes [45]. 
In this study, EROD activities increased significantly 
after exposure to environmentally relevant concentra-
tions of sediment-associated TBT or TPT for 7, 14 and 
28 days. Padrós et al. [46] found that repeated exposure 
to 0.3 mg/kg TBT significantly induced hepatic P4501A 
activity in Salvelinus alpinus after 32 days. Similar results 
have been demonstrated with Sebastiscus marmoratus 
exposed to 1, 10 and 100 ng/L TBT [47]. It might be dem-
onstrated that organotin compounds at dose do have the 
ability to induce hepatic P4501A activity. In this study, 
the relative EROD activity increased before day 14 and 
decreased at day 14 and 28 under the two lower treat-
ments (100 and 500 ng/g TBT), while the relative EROD 
activity increased within all the exposure time at the two 

Fig. 5  Significant enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for differentially expressed genes (p < 0.05) 
compared 2000 ng/g sediment-associated triphenyltin exposure group with control group from Bellamya aeruginosa. a Bubble chart of pathway 
enrichment analysis of DEGs. b Enrichment analysis of up-regulated and down-regulated DEGs. The red bar represents the number of up-regulated 
genes in a pathway, and the blue bar represents the number of down-regulated genes in a pathway
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higher treatment doses (1000 and 2000  ng/g TBT). The 
cytochrome P450 activity might be induced within all 
the exposure time because of the high concentrations of 
TBT. After exposure to the lowest treatment (100  ng/g 
TPT), the relative EROD activity increased before day 14 
and decreased at day 14 and 28. The relative EROD activ-
ity increased within all the exposure times at the higher 
treatment dose (1000 ng/g TPT), while the relative EROD 
activity increased before day 14 and decreased at day 
14 and 28 under the highest treatment dose (2000  ng/g 
TPT). The highest concentration of TPT might have 
inhibited the cytochrome P450 activity with the increas-
ing exposure time after day 14.

In the present study, EROD activities in snails exposed 
to 2000  ng/g TBT or TPT for 28  days were stimulated. 
The significant increase in EROD activity after a longer 
exposure to xenobiotic pollutants could be related to 
the promotion in the expression of CYP1A system. 
Mortensen and Arukwe [48] found that the expression 
of CYP1A1 was inhibited and the expression of CYP3A 
was induced at the transcriptional levels after exposure 
to increasing concentrations of TBT in juvenile salmon, 
which was confirmed by the immunochemical analysis of 
CYP3A and CYP1A1 protein levels. Cubero-Leon et  al. 
[49] isolated two CYP3A-like genes from mussel (Mytilus 
edulis) and the expression of CYP3A-like isoform1 was 
significantly down-regulated after exposure to 100  ng/L 
TBT. In this study, exposure to TBT and TPT for 90 days 
both significantly up-regulate the expression of CYP1A1 
and CYP3A4 genes in B. aeruginosa. These results sug-
gested that inducible EROD activity and CYP genes are 
responsive to TBT and TPT contamination at the relative 
low concentrations. Therefore, EROD activity and the 
expression of CYP genes at the transcriptional level are 
sensitive biomarkers for the toxicity assessment of TBT 
and TPT in sediments.

Toxicity of tributyltin and triphenyltin on hepatic 
antioxidant defense system
SOD and CAT play critical roles in the antioxidant pro-
tection of invertebrates and induction of SOD and CAT 
activities indicates the formation of superoxide anions in 
the process of TBT or TPT metabolism. SOD is capable 
of catalyzing the dismutation reaction of O2

− to form 
H2O2 and CAT converts H2O2 to H2O and O2. Asagba 
et  al. [50] deemed that the decrease of SOD activity 
would be accompanied by the decrease of CAT activity as 
these two enzymes are linked functionally. In this study, 
both activities of SOD and CAT showed the most signifi-
cant induction under 1000 ng/g TBT treatment group at 
day 14. After exposure to the highest treatment group 
(2000 ng/g TBT or 2000 ng/g TPT), SOD and CAT activ-
ities decreased from day 7 to day 28, which was probably 

due to the poisonous effect of excess superoxide anion 
radical [51] and the destruction of native enzyme protein 
[52].

Oxidative stress is considered as a disturbance in the 
antioxidant system, which fails to adequately scavenge 
free radicals. As a major effect of free radicals, lipid per-
oxidation is a process by which oxygen combines with 
lipids to produce lipid hydroperoxides. Carbonyl can be 
formed in proteins which are attacked by free radicals 
and this process would cause a conformational change 
of proteins [53]. Protein carbonylation would result in 
breakdown of proteins by proteases due to the increased 
susceptibility to protease action [54]. In this study, sig-
nificant increases of relative LPO levels indicated that the 
subchronic exposure of sediment-associated TBT or TPT 
at higher doses would result in lipid peroxidation. The 
significant increases of relative PCC levels suggested that 
exposure to TBT or TPT at concentrations higher than 
500 ng/g led to oxidative damage in the hepatopancreas 
of B. aeruginosa.

Comparative toxicity pathways of tributyltin 
and triphenyltin on B. aeruginosa
In this study, high-throughput transcriptomic approach 
was implemented to explore the toxicity mechanisms of 
sediment-associated organotins at the environmentally 
relevant concentration on B. aeruginosa. A total of 392 
and 1430 DEGs were identified for 2000  ng/g TBT and 
TPT exposure group, respectively. 169 genes that were 
differentially regulated in TBT compared to control were 
also differentially regulated in TPT (shown in Additional 
files 7 and 8). DEGs were significantly enriched in differ-
ent pathways after exposure to 2000 ng/g TBT and TPT.

Toxicity pathways of tributyltin
The pathway of steroid hormone biosynthesis in B. aer-
uginosa was perturbed by sediment-bound TBT. Sex 
steroids are involved in regulating reproduction and 
sex differentiation in some invertebrates, and the criti-
cal steps of steroidogenesis producing androgens and 
estrogens have been demonstrated in mollusc and echi-
noderm species [55]. It is possible for certain chemicals 
to disturb endocrine homeostasis by which chemicals 
interfere with the synthesis or metabolism of sex steroids 
and affect steroid levels [56]. These endocrine-disrupt-
ing chemicals would target on key enzymes which are 
participated in the synthesis and metabolism of steroid 
hormone. Steroidogenic enzymes are composed of sev-
eral specific cytochrome P450 enzymes (CYPs), hydrox-
ysteroid dehydrogenases (HSDs) and steroid reductases, 
which regulate the conversion process from cholesterol 
to steroid hormones (e.g., progestins, androgens and 
estrogens) [57, 58]. The enzyme aromatase (CYP19) plays 
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an essential role in the final and rate-limiting step for 
converting androgens to estrogens. TBT is recognized 
as an endocrine-disrupting chemical by inhibiting aro-
matase (CYP19) activity. The androgen contents would 
be increased and the imposex would be caused in mol-
luscs. Steroid hormone homeostasis is also affected by 
enzymes which regulate the metabolism of steroid hor-
mones. Altered steroid metabolism is an essential mech-
anism of endocrine disruption caused by contaminants. 
Estrogens are synthesized in several different organs and 
metabolized throughout the whole body of B. aeruginosa 
[59, 60]. 17β-Hydroxysteroid dehydrogenase (17β-HSD) 
dominates the final step in the formation of all andro-
gens and all estrogens [61]. The weak estrogen estrone 
is converted to estradiol under the control of 17β-HSD, 
and the balanced production of these estrogens depends 
on the activity of 17β-HSD. Circulating estrogens, such 
as estrone and 17β-estradiol, are metabolized by direct 
conjugation to sulfate or by sulfate conjugation subse-
quent to hydroxylation by cytochrome P450 enzymes. 
CYP enzymes can hydroxylate estrogens at various posi-
tions to form 2,3- and 3,4-catechol estrogens, and estriol 
(16α-hydroxyestradiol) or 16α-hydroxyestrone. In this 
study, TBT might affect the estrogen metabolism in 
B. aeruginosa by inducing the expression of 17β-HSD, 
CYP1A1, CYP3A and CYP3A4 genes. Alterations in ster-
oid hormone metabolism often have connections with 
effects on steroid hormone-dependent processes includ-
ing growth and reproduction [62]. Thus, the biological 
reactions of 17β-HSD and CYP enzymes are involved in 
the mechanism of the pollutant tributyltin on hormonal 
disruption, which would cause subsequent reproductive 
and developmental toxicities [63–65].

The exposure of TBT pollution might disturb the reti-
noic acid degradation in B. aeruginosa. All-trans retinoic 
acid is a major active cellular metabolite of retinoid, and 
the synthesis of all-trans retinoic acid from all-trans reti-
nol embodies in two steps, including the oxidation of 
retinol to retinal and the oxidation of retinal to retinoic 
acid [66]. The catabolism of all-trans retinoic acid is a 
vital mechanism for controlling the levels of retinoic acid. 
CYP1A1 and CYP3A are responsible for degrading reti-
noic acid into non-active molecules including 4-oxo reti-
noic acid and 18-OH retinoic acid [67]. In this study, the 
expression of CYP 1A1, CYP3A4 and CYP3A5 were all 
promoted which would increase the degradation of reti-
noic acid in B. aeruginosa after exposure to TBT. Zhang 
et  al. [35] also found that the hepatic retinoic acid syn-
thesis was decreased in rare minnow (Gobiocypris rarus) 
exposed to TBT. The retinoic acid homeostasis might be 
impaired which could cause abnormalities in many bio-
logical processes [68]. All-trans retinoic acid was demon-
strated to inhibit the process of adipocyte differentiation 

and decrease adipogenesis early in the differentiation 
process [69]. Therefore, the adipogenesis might be pro-
moted because of the decrease of retinoic acid. Dimas-
trogiovanni et al. [70] demonstrated that TBT, TPT and 
other endocrine disruptors could alter the gene expres-
sions related to lipid metabolism. It has also been identi-
fied that both TBT and TPT are obesogenic compounds, 
promoting adipogenesis in 3T3-L1 cells [71] and improv-
ing fat deposition in neonate mice and frogs (Xenopus 
laevis) [72]. Therefore, in this study, TBT exposure might 
also disturb the regulation of adipogenesis in B. aerugi-
nosa. Retinoic acid also exhibits great influence on repro-
duction. The inhibition of retinoic acid was demonstrated 
to disrupt spermatogenesis and fecundity [73], and 
decrease ovarian vitellogenesis in zebrafish [74]. There-
fore, the disruption on the pathway of retinol metabo-
lism in B. aeruginosa might also be involved in the toxic 
mechanisms of TBT on adipogenesis and reproduction.

Toxicity pathways of triphenyltin
More than 80% of intracellular proteins are degraded 
through the ubiquitin/proteasome-dependent pathway 
in eukaryotes [75, 76]. In the protein processing in endo-
plasmic reticulum pathway, genes related to the protein 
degradation were down-regulated in this study, which 
might impair the ubiquitin proteasome system. Protein 
would accumulate in the endoplasmic reticulum, which 
might induce apoptosis. Shi et  al. [77] found that TPT 
could inhibit the proteasome in the ubiquitin proteasome 
system, which contributed to the cellular toxicity. Thus, 
the ubiquitin proteasome system in Bellamya aeruginosa 
might be one of the molecular targets of triphenyltin.

Antigen processing and presentation are recognized 
as core elements of adaptive immunity. Antigens are 
processed and presented by accessories or antigen-pre-
senting cells to specific lymphocytes through binding to 
major histocompatibility complex (MHC) I and II [78]. 
HSP70, HSP 90 and BRp57 genes play vital roles in MHC 
class I antigen processing and presentation. The BRp57 
gene participates in the formation of the MHC class I. 
The peptide antigen is translocated across the endoplas-
mic reticulum (ER) membrane by the transporters TAP2 
associated with antigen processing (TAP) and they will be 
loaded into the peptide-binding groove of MHC I in the 
lumen of the endoplasmic reticulum. Moreover, HSP70 
and HSP90 are cytoplasmic proteins involved in the reg-
ulation of the antigen processing and presentation path-
way. Cathepsin B (CTSB) makes contribution to antigen 
processing for presentation on MHC class II complex. 
T-cells become activated when the foreign antigen is pre-
sented by MHC molecules. In this study, TPT exposure 
down-regulated HSP70, HSP 90, BRp57 and CTSB genes, 
which would cause the inhibition of antigen processing 
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and presentation. As a consequence, the immune system 
of B. aeruginosa may be impaired.

Based on the responses of B. aeruginosa to sediment-
associated TBT and TPT exposure from biochemical and 
genetic levels, underlying toxicity mechanisms of TBT 
and TPT at the same concentration were not the same. 
The expression of C-type lectins was significantly up-reg-
ulated and the pathway of phagosome was significantly 
enriched after exposure to TBT, which both implied 
the increase of immunity function [79]. Therefore, TBT 
altered the steroid hormone metabolism and disrupted 
the retinol metabolism, subsequently, induced immu-
nity and oxidative stress. TPT disturbed the ribosome 
pathway, inhibited the ubiquitin proteasome system and 
impaired the immune system. In addition, DEGs identi-
fied for TPT were also enriched in pathways of steroid 
hormone biosynthesis (p = 0.12) and retinol metabolism 
(p = 0.13), which implied the potential of acting as an 
endocrine disruptor. Therefore, the toxicity of sediment-
associated TPT to snails B. aeruginosa was higher than 
TBT at the concentration of 2000 ng/g after 90-day expo-
sure. Zhang et  al. [80, 81] also demonstrated that the 
lethality of Sebastiscus marmoratus exposed to 100 ng/L 
TPT was above 80% while that was 6.7% in the 100 ng/L 
TBT group. The reason for the difference might be the 
benzene ring in TPT or the higher bioconcentration fac-
tors of TPT in the aquatic organism [82].

Conclusion
In conclusion, a transcriptomic profile of B. aeruginosa 
exposed to tributyltin (TBT) and triphenyltin (TPT) 
was investigated for the first time. A total of 392 and 
1430 differentially expressed unigenes were identified 
in snails after exposure to TBT and TPT, respectively. 
Subchronic exposure (28  days) of environmentally rel-
evant concentrations of TBT or TPT could result in 
induction of antioxidant defense system and oxida-
tive damage in the hepatopancreas of B. aeruginosa. 
CYP genes and EROD activity were sensible and reli-
able biomarkers for toxicity assessment of TBT or TPT 
in sediments. Comparative pathway analysis revealed 
the alteration of steroid hormone biosynthesis and reti-
nol metabolism in B. aeruginosa after chronic exposure 
(90  days) to sediment-associated TBT at the environ-
mentally relevant concentration (2000  ng/g dw), which 
might affect both reproduction and lipogenesis func-
tions. The ubiquitin proteasome system and immune 
system might be the toxicity target in B. aeruginosa after 
chronic exposure (90 days) to sediment-associated TPT. 
The results offered new mechanisms underlying the tox-
icity of sediment-associated TBT and TPT. The potential 
mechanisms provided by transcriptomics are deserved 
to be further validated by traditional biochemical assays. 

Dose-dependent omics profiles can be explored to iden-
tify early responses at low dose range and the omics-
based biological pathway strategy will be a powerful tool 
for identifying potential toxicity of sediment-associated 
chemicals.
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