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Mercury distribution in the surface soil 
of China is potentially driven by precipitation, 
vegetation cover and organic matter
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Abstract 

Background:  Understanding the mechanism of Hg accumulation in soil, which is a net Hg sink, at a national scale is 
important for protecting the environment and improving food safety. The mercury (Hg) distribution in surface soil in 
China is quite uneven, with relatively high concentrations in southeastern China and low concentrations in north‑
western China. The reason for this distribution is inconclusive, especially at the continental scale. In this study, the 
relative contributions of the key impact factors, including dry and wet deposition, soil organic matter (SOM) and solar 
radiation to soil Hg, were evaluated.

Results:  Wet and dry deposition associated with precipitation and vegetation cover and emissions influenced by 
SOM are key factors controlling Hg distribution in surface soil. In southeastern China, high levels of wet deposition 
associated with the South Asia monsoon and dry deposition, enhanced by vegetation canopies, together with low 
levels of emissions caused by highly vegetated surfaces and solar radiation, are responsible for the high Hg levels in 
soil (> 0.08 mg/kg). In northeastern China, moderate levels of wet Hg deposition, high levels of dry deposition via 
throughfall and litterfall, low emissions due to weak solar radiation and high levels of SOM are responsible for high 
Hg accumulation in soil. In northwestern China, low levels of wet deposition, together with high emissions levels, low 
vegetation cover (bare soil) and SOM and strong solar radiation, contributed to the low Hg level in the surface soil 
(< 0.03 mg/kg).

Conclusions:  We suggest that wet deposition derived from the Asian monsoon, dry deposition linked to vegetated 
surfaces and Hg emissions associated with vegetation cover, SOM and solar radiation play key roles in the soil Hg level 
in China. In other terrestrial environments worldwide, especially in regions with significantly high levels of wet deposi‑
tion and high amounts of vegetation cover and soil SOM, high Hg concentrations may exist in the surface soil.

Keywords:  Soil mercury distribution, Wet and dry deposition, Vegetation cover, Emissions, Soil organic matter, Solar 
radiation
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Background
Mercury (Hg) is an extremely toxic element to humans 
[1, 2] and ecological receptors [3], with an aver-
age crustal abundance of ~ 0.05  mg/kg [4]. Soils and 

terrestrial sediments have been documented as acting 
as net Hg sinks [5] because atmospheric Hg species 
(e.g., elemental Hg) produced by anthropogenic activi-
ties can be subjected to long-distance transport to 
remote regions and ultimately find their way (wet and 
dry deposition) into terrestrial or aquatic systems [6]. 
It has been reported that soil Hg generally accounts 
for > 90% of the Hg stored in terrestrial ecosystems, 
and most Hg in soil (> 80%) is from atmospheric inputs 
[7]. A recent study showed that upland food such as 
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rice is a significant dietary source of Hg in addition to 
fish consumption [8]. Understanding the mechanism 
of Hg accumulation in soil at a national scale is impor-
tant to protect the environment and improve food 
safety.

It has been reported that the flux of Hg deposi-
tion and emissions from soil are controlled by vari-
ous environmental factors, such as solar radiation, 
temperature, Hg speciation and content, soil poros-
ity, soil moisture, pH, SOM content, ambient Hg con-
centration, vegetation cover, and precipitation [9–14]. 
It is generally accepted that at a small scale (local or 
regional scale), mining activities or combustion of Hg-
bearing coal are among the most important factors 
affecting Hg distribution in soils [15]. However, at con-
tinental and subcontinental scales, such as in China, 
the relevant main drivers of the spatial distribution 
of soil Hg in the terrestrial environment are poorly 
understood [16]. It is still unclear at present what fac-
tors in addition to lithology play essential roles in the 
spatial variability in soil Hg distribution at such a large 
scale and their contribution to soil Hg (Fig. 1).

China is one of the world’s largest sources of Hg in 
the air [18–20]. The Hg distribution in surface soil is 
mainly from atmospheric Hg deposition [17]. The first 
soil Hg map in China was obtained from the National 
Soil Background Survey, which was initiated in the late 
1980s and issued in 1994 (Fig.  1a) [21]. Considering 
the possible influence of rapid industrialization and 
dramatic urbanization that occurred in China in past 
decades on Hg emissions and its distribution in sur-
face soil, the soil Hg map (Fig.  1b) was updated by a 
new geochemical mapping project the National Multi-
Purpose Regional Geochemical Survey (NMPRGS) 
of China, which was initiated in 1999 and completed 
in 2014 [2, 21]. Comparing the old and new soil Hg 
maps at the national scale, the spatial distributions of 
soil Hg were consistent, regardless of the difference in 
Hg concentration in the same region, although local-
scale contamination of soil Hg due to gold produc-
tion or fossil fuel combustion was observed because of 
unprecedented economic growth in China during the 
past two decades [22]. Hg distribution in the surface 
soil in China was uneven before the Chinese economic 
boom (Fig.  1a), with relatively high concentrations in 
southeastern and northeastern China and much lower 
concentrations in northwestern China (Fig.  1). The 
primary driving factors for Hg distribution in surface 
soil at a large scale are elusive. The purpose of this 
study is to elucidate the major factors affecting the 
distribution of soil Hg and the relative contribution of 
these factors.

Materials and methods
The 1994 map of Chinese soil mercury distribution 
(Fig.  1a) was obtained from the atlas titled “The atlas 
of soil environmental background value in the People’s 
Republic of China” 1994, page 10–11, China Environmen-
tal Science Press, and the 2014 map (Fig. 1b) from a new 
survey of geochemical mapping project [21] was cited 
from published literature [2]. The mean annual precipi-
tation dataset was provided by the China Meteorological 
Data Sharing Service System (Fig.  2a). The Normalized 
Difference Vegetation Index (NDVI) dataset (Fig. 2b) [23] 

Fig. 1  The spatial distribution of soil Hg in China (mg/kg) surveyed at 
different periods: a map surveyed in the late 1980s from a book titled 
“The atlas of soil environmental background value in the People’s 
Republic of China” 1994, page 50–51, China Environmental Science 
Press (modified using ArcGIS Geographic Information Systems 
software version 10.2, Environmental Systems Research Institute Inc, 
Redlands, Calif ) and b updated map surveyed in the 2000s [2]. More 
details are presented in Ref. [17]. The similar colors in map a and b 
refer to distinctive Hg concentration
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was downloaded from MODIS (Moderate Resolution 
Imaging Spectroradiometer). Data sets have a resolution 
of 0.05° by 0.05°. NDVI data sets were extracted from per 
16-day maximum value composites using a time-series 
analysis approach [24]. The dataset of SOM (Fig. 2c) were 
from the National Earth System Science Data Center, 
National Science and Technology Infrastructure of China 
(http://www.geoda​ta.cn). The solar radiation distribution 
dataset (Fig. 4a) was downloaded from SOLARGIS (https​
://solar​gis.com/maps-and-gis-data/downl​oad/China​).

The 1994 map of Chinese soil mercury distribution 
was digitized with ArcGIS 10.2 (Environmental Systems 
Research Institute Inc., Redlands, California, USA). We 
converted the digitized maps of soil mercury distribu-
tion, mean annual precipitation, NDVI, SOM, and solar 
radiation into raster format. The “create random points” 
tool in ArcGIS 10.2 was used to create sampling points 
in the maps with a distance of 10 km between every two 
points. For the Hg values of all obtained points, each 
point was randomly assigned a value within its particular 
concentration range to obtain continuous output [24]. All 
other corresponding values of the obtained points in the 
different datasets (precipitation, NDVI, SOM, and solar 
radiation) were extracted by the “extract multi values to 
points” tool in ArcGIS 10.2. The points with null values 
were filtered out by the “dplyr” package in the statistical 
software program “R” (R-Core-Team), and finally, a total 
of 2827 points were obtained.

Data subsampling to construct sampling bins was uti-
lized to eliminate possible biases caused by uneven data 
density for different intervals of subsets. The same esti-
mated number of data points was included in each sam-
pling bin. The precipitation dataset was separated into 19 
subsets (sampling bins) for every 100  mm/year interval 
in R, and the last subset contained all points with pre-
cipitation amounts higher than 1800  mm/year (Fig.  2d, 
e). One hundred sample points were randomly selected 
from each subset of precipitation, and the average value 
of those points was taken as the representative of this 
subset (Fig.  2d). The NDVI dataset was divided into 9 
subsets based on NDVI values from 0 to 0.9 at intervals 
of 0.1; 200 sample points were randomly obtained from 
each sampling bin, and the average value of these 200 
sample points represents this subset (Fig. 2f, g). The data-
set of SOM was split into 10 subsets at intervals of 1% 
from 0, and the last subset contained all values > 10%. The 

average of the 200 randomly sampled points represents 
this subset (Fig. 2h, i). The dataset of solar radiation was 
split into 8 subsets. The first subset included the points 
with solar radiation values less than 1000 kWh/m2, and 
the last subset included all points with values higher than 
1800 kWh/m2.

Results and discussion
Mercury input from wet precipitation
A significant linear relationship (R2 = 0.91) between the 
soil Hg level and precipitation was observed (Fig.  2d). 
Obviously, a high level of wet deposition was one of the 
main contributors to high surface soil Hg. The high mean 
Hg concentration in southeastern China, such as the 
Yangtze River Delta region, was mainly caused by occa-
sional long-distance transport from domestic source 
regions and regional anthropogenic emissions due to 
rapid economic development, which relied heavily on 
coal combustion for electricity generation [25, 26]. Pre-
cipitation derived from the East Asian monsoon is one 
of the important factors controlling soil Hg distribution 
in China [27]. In central China, the surface soil Hg con-
centration was relatively lower than that in southeast-
ern China because the wet deposition in this region was 
relatively low (400–800  mm). In northwestern China, 
wet deposition was much less (annual precipitation less 
than 200  mm), and in some regions, annual precipita-
tion is even less than 100  mm, such as the sand in the 
Gobi Desert, with no influence from the East Asian sum-
mer monsoon. Low Hg concentrations in surface soils 
(< 0.03 mg/kg) were observed (Fig. 1). This trend is also 
observed in European study results (Additional file 1: Fig-
ure S1A). Soil Hg in Europe markedly linearly increased 
(R2 = 0.92) accompanied by precipitation (< 800  mm/
year). However, higher precipitation (> 800 mm/year) did 
not enhance soil Hg accumulation, and soil Hg accumu-
lation remained constant at high levels (if the last point 
was omitted due to the geological high Hg background) 
(Additional file 1: Figure S1A).

A relatively high level of particulate-bound Hg (0.13–
0.18  ng/m3) was readily removed through wet deposi-
tion [26]. Eastern Chinese soil was largely influenced by 
anthropogenic Hg emissions from surrounding areas 
due to its close proximity to the largest anthropogenic 
Hg emissions. Elevated Hg pollution in the southeastern 
atmosphere can be expected to have higher deposition 

(See figure on next page.)
Fig. 2  The maps of factors and relationships of Hg levels in surface soil with these factors. Spatial distribution of a wet deposition in China; b 
NDVI and c soil organic matter (created using ArcGIS Geographic Information Systems software version 10.2, Environmental Systems Research 
Institute Inc, Redlands, Calif ). Significant relationships between soil Hg level and d precipitation, f NDVI and h SOM. All data including soil Hg level, 
precipitation, NDVI and SOM were corrected for variation in sampling intensity by subsampling. Median, range, upper quartile, and lower quartile of 
soil Hg for each interval of e precipitation, g NDVI and i SOM

http://www.geodata.cn
https://solargis.com/maps-and-gis-data/download/China
https://solargis.com/maps-and-gis-data/download/China
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in the local soil through precipitation. Most Hg deposi-
tion occurred during the monsoon season, with 83% of 
the oxidized and particulate-bound Hg [28]. Higher Hg 
concentrations were observed in the sediment samples 
collected in the Indian estuarine regions during the post-
monsoon period than in the pre-monsoon period of the 
Indian summer monsoon [29], confirming that wet dep-
osition derived from monsoons is one of the major Hg 
contributors.

The Asian monsoon system controls wet deposi-
tion over mainland Asia, including China. During sum-
mer monsoons, a strong land–sea pressure gradient is 
produced by high insolation over continental regions, 
forcing oceanic winds to converge over southeastern 
China, bringing oceanic moisture and causing abundant 
rainfall in this region [30]. The mean annual precipita-
tion decreases gradually from 2000  mm on the south-
eastern coast to 400–800 mm in central China and then 
decreases to less than 200 mm in most of northwestern 
China (Fig. 2a).

The total wet deposition of Hg in the regions of south-
eastern China was simulated by the global/regional 
atmospheric heavy metal model (GRAHM) and was con-
sistent with high amounts of precipitation [31]. Mon-
soons have increased total Hg levels in some regions of 
the Tibetan Plateau by carrying Hg-enriched air from 
South Asia [32]. In comparison to nonconvective rain-
fall events, thunderstorms, which are deep convective 
rainstorms, are particularly effective at scavenging gase-
ous oxidized Hg from the boundary layer into the cloud 
base and result in a nearly 50% increase in Hg deposition 
[33]. The thunderstorm frequency also greatly contrib-
utes to Hg wet deposition. The average annual days of 
thunderstorms were high (> 80 days) in the southern and 
southwestern regions of China [34], indicating that more 
Hg wet deposition occurred in these regions, which is 
consistent with high soil Hg levels (Fig. 1). Excessive Hg 
input to soil occurred in the monsoon season compared 

to that in other seasons [28, 35]. Wet deposition typi-
cally accounts for 50–90% of the atmospheric Hg enter-
ing the environment in some regions [36, 37]. The East 
Asian summer monsoon generates wind patterns in sum-
mer that sweep atmospheric Hg derived from the South 
China Sea and transport it through the atmosphere and 
deposit it in terrestrial ecosystems in southeastern China 
(Fig. 2a).

Mercury input from dry precipitation
In addition to wet deposition, Hg in air also enters ter-
restrial ecosystems through dry deposition, such as grav-
ity deposition, atmospheric diffusion and other processes 
[38–40]. Precipitation in central China, such as north-
eastern China, is moderate (400–800 mm). However, soil 
Hg levels were relatively high (0.04–0.20 mg/kg, Fig. 1a). 
This result confirms that dry deposition is also an impor-
tant contributor to soil Hg accumulation. The significant 
linear relationship (R2 = 0.94) between the soil Hg level 
and NDVI at the national scale indicated that vegetation 
cover has significant effects on Hg accumulation in soil 
(Fig. 2b, f, g). Typical dry deposition fluxes for elemental 
Hg over vegetated surfaces were substantially higher than 
those over non-vegetated surfaces (Fig. 2b, Table 1) [39]. 
Vegetation is known to contribute to atmospheric Hg as 
a sink through direct uptake of Hg from the air through 
stomata on the leaf surface [10, 41]. Upland forest soil 
acts as a strong sink for Hg, and dry deposition of Hg 
through litterfall (71.2  µg/m2/year) was the major path-
way for Hg loading to the forest catchment in southwest-
ern China [42, 43]. In temperate forested regions such as 
northeastern China, dry Hg deposition is widely accepted 
to be approximately two times the amount of wet Hg 
deposition [44, 45], and uptake of Hg by forest canopies 
plays a predominant role in soil Hg accumulation [46]. 
Approximately 72–90% of the total Hg deposition in the 
forest areas of China was due to dry deposition [27].

Table 1  Summarized Hg wet deposition, dry deposition, emission and  net input (deposition minus  emission) in  soil 
from different regions, China

Precipitation (mm/year, i.e. L/m2/year) < 400 400–800 > 800

Regions Northwest Northeast Southwest Southeast

Ecosystem Bare soil or grassland Forest and shrub Forest and shrub Forest, shrub or vegetation

Hg wet precipitation
(µg/m2/year)

1.08–4.63 8.40 0.74–15.9 26.1–39.0

Hg dry precipitation
(µg/m2/year)

– 16.5–20.2 63.3 51.0–66.4

Hg emission (µg/m2/year) 9.37 − 1.05 9.60 51.5–57.8

Net Hg input − 8.29 ~ − 4.74 26.0 ~ 29.7 54.4 ~ 69.6 25.6 ~ 47.6

References [47, 59, 60] [11, 60, 61] [16, 40, 47, 62] [59, 61, 63–67]
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In China, soil Hg concentrations are quite differ-
ent among land cover types and occur in the following 
order: forested upland (0.055 mg/kg) > planted/cultivated 
(0.050 mg/kg) > herbaceous upland/shrubland (0.036 mg/
kg) > barren soils (0.015 mg/kg), with an average soil Hg 
concentration that is 3.6 times higher in forests than in 
barren locations (Fig. 3a). The percentages of Hg contents 
in surface soil with different land vegetation were differ-
ent as well (Fig. 3b). Atmospheric Hg deposition fluxes in 
western China, such as those on the Tibetan Plateau and 
in Xinjiang Province, ranged from 0.74 to 7.89  µg/m2/
year and were at least one order of magnitude (71.2 µg/
m2/year) lower than that in East Asia (forest cover) [47]. 

The results of this study showed that different vegetation 
covers matched the soil Hg distribution in China. In gen-
eral, Hg concentrations in forest and crop-covered soil 
(Additional file  1: Figure S2A) were higher than those 
in grasslands (Additional file  1: Figure S2A). For terres-
trial ecosystems, the dry deposition of Hg mainly occurs 
through the leaves of vegetation absorbing atmospheric 
Hg from the atmosphere through stomata, and then, Hg 
enters the forest ecosystem as litterfall [48]. The desert 
region in northwestern China exhibited the lowest Hg 
concentrations in soil because of the barren soils. In the 
western United States, the soil Hg distribution is strongly 
linked to vegetation greenness with the same order of Hg 
levels in land cover as that in China, and forested land 
had more than 2.5 times higher soil Hg levels than that in 
barren soils [7].

The presence of any soil cover has been found to 
decrease atmospheric Hg emission fluxes in compari-
son with bare soils, and even leads to a shift from a net 
atmospheric emission to a net deposition from the 
atmosphere [41, 49]. For example, studies were carried 
out within various types of forest systems across a vast 
region from the south (South Carolina) to the north 
(Maine) in United States during the same season. Mer-
cury emission associated with the litter covered forest 
floor was extremely low [49], fluctuating around 0  ng/
m2/h, with many deposition rather than emission occur-
ring at both daytime and nighttime, irrespective of the 
forest type, soil type, and variations in weather condi-
tions [10, 49]. Canopy covers in forests and grasslands/
shrublands are partially expected to reduce Hg emissions 
by limiting soil warming and solar loads via shading the 
forest floor [31, 50].

Mercury sequestration by soil organic matter
SOM contributes to the accumulation of Hg in soil. Soil 
Hg concentrations are positively related to soil organic 
carbon [51, 52], and Hg emissions is inversely corre-
lated with organic content in soils because organic car-
bon has a high affinity to Hg in soil through functional 
groups, particularly thiols [7, 53]. In general, with an 
increase in SOM in soil, the Hg concentration in soil 
substantially increased (Fig.  2c, h, i). A similar relation-
ship between SOM and Hg concentration was observed 
in Europe as well (Additional file 1: Figure S1B). In aque-
ous systems, Hg(II) is reduced to volatile elemental Hg by 
organic acids, and these reactions appear to be strongly 
induced by sunlight [54]. These processes do not occur 
in soils because sunlight cannot easily radiate soil, espe-
cially with vegetation cover. Binding of Hg with organic 
matter inhibits the reduction of Hg(II) to elemental Hg 
and subsequent emissions from soil. A strong correla-
tion between soil Hg concentrations and organic carbon 

Fig. 3  Median, range, upper quartile, and lower quartile of soil 
Hg concentrations in different vegetation cover types (a). The 
percentages of Hg in Chinese surface soil with different land cover 
type (b)
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has been observed in the western United States [7]. In 
northeastern and southwestern China, the distribution 
of Hg in these regions was geographically coincident with 
the contents of SOM, especially in northeastern China 
(Figs.  1 and 2h) [55]. High Hg levels were observed in 
the northeastern regions, although wet deposition was 
relatively low (400–800 mm). Soils covered by forests and 
enrichment in organic matter enhanced Hg deposition 
by litterfall and throughfall, simultaneously depleting Hg 
emissions. In highly organic regions (peat bog ecosys-
tems), it is estimated that dry deposition of gaseous ele-
mental mercury is dominant (~ 80%) over wet deposition 
(~ 20%) [56].

Mercury emissions from soils
The solar radiation intensity in China declined from the 
northwest to the southeast (Fig. 4a), and a strong nega-
tive correlation (R2 = 0.89) was observed between the soil 
Hg level and solar radiation (Fig.  4b), which indicated 
that increasing solar radiation would accelerate the emis-
sions of Hg from the soil to the atmosphere. It is com-
monly accepted that gaseous elemental Hg emissions 
from soil are one of the most important processes of Hg 
losses in terrestrial environments [16, 57]. Solar radia-
tion, which induces photoreduction, is the most common 

and pronounced factor for gaseous elemental Hg emis-
sions. Many studies have identified a positive relation-
ship that is attributed to a photochemically mediated 
reduction that coverts soil Hg(II) to volatile element Hg 
[50], although other biotic (microorganisms) and abiotic 
(organic matter) factors reduced Hg as well [58]. In com-
parison to direct radiation on bare soil, indirect radiation 
due to vegetation cover could decrease the role of solar 
radiation in Hg emissions [31]. Desertified lands (sand 
desert and Gobi Desert) in northwestern China have bare 
soils. Direct solar radiation due to poor vegetation cover 
in northwestern China was one of the contributors to low 
soil Hg levels.

In addition, the positive association between soil clay 
content and Hg concentration [51] suggested that atmos-
pheric Hg was hardly sequestrated into deserted and 
sandy soils with low clay content in northwest China, 
which has arid and semi-arid climate [55].

Factors controlling soil Hg distribution in China
We hypothesize that the spatial variability in soil Hg lev-
els in China is potentially caused by the balance between 
wet depositions associated with the East Asian sum-
mer monsoon, dry deposition associated with forest/

Fig. 4  The maps of solar radiation in China and relationship of Hg levels in surface soil with solar radiation. Spatial distribution of a solar radiation 
in China; significant relationships between soil Hg level and solar radiation (b); median, range, upper quartile, and lower quartile of soil Hg for each 
interval of solar radiation (c)
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vegetation cover and inhibited emissions associated with 
SOM and solar radiation.

The model of the distribution of soil Hg was established 
by multiple linear regression as follows:

where Hg is the soil Hg level (mg/kg) in the 0–20  cm 
surface soil, P is the average annual precipitation (mm), 
SOM is the SOM (%), NDVI is the Normalized Differ-
ence Vegetation Index, and SR is solar radiation (kWh/
m2). Both simple regression analysis of soil Hg with the 
first three variables and multiple linear regression anal-
ysis showed positive relationships, and solar radiation 
showed a negative relationship between the soil Hg level 
and those variables. Statistical analysis showed that the 
relative contributions of the four variables were ranked 
as follows: precipitation (49.4%) > NDVI (23.4%) > solar 
radiation (17.9%) > SOM (9.3%).

Conclusions
We suggest that wet deposition associated with the sum-
mer Asian monsoon, dry deposition associated with veg-
etation cover and inhibited emissions linked with SOM 
and photoreduction due to solar radiation are the key 
factors controlling Hg redistribution in terrestrial envi-
ronments in China. Vegetation cover, SOM and solar 
radiation are key factors controlling Hg air/soil exchange, 
such as Hg emissions. Statistical analysis showed that of 
the factors affecting the soil surface Hg concentration, 
precipitation was the most important factor (49.4%), fol-
lowed by vegetation cover (23.4%). The contributions of 
monsoons and vegetation cover to surface soil Hg would 
be helpful to understand the potential ecosystem and 
human health risks from Hg and to predict the trend in 
soil Hg in the future.
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Additional file 1: Figure S1. The relationships of soil Hg concentrations 
in Europe with (A) European precipitations and (B) soil organic carbon 
(SOC). The soil Hg data, precipitation and soil organic carbon used in this 
study are from the Geochemical Mapping of Agricultural Soils (GEMAS) 
project, which was carried out by the EuroGeoSurveys (EGS) Geochemis‑
try Expert Group. The precipitation dataset Europe was separated into 19 
subsets (sampling bin) with every 100 mm/year interval in R, and the last 
subset contains all points with precipitation greater than 2200 mm/year. 
One hundred sample points were randomly selected from each subset 

log
(

Hg
)

= −2.809+ 9.398× 10−4
× (P)

+ 1.1774 × 10−1
× (NDVI)

+ 8.879× 10−2
× log(SOM)

− 9.897× 10−5
× (SR),

P < 0.01,R2
= 0.51,

and the average value of those points was taken as the representative 
of this subset. The soil organic carbon (SOC) dataset was divided into 
13 subsets at interval of 1 g/kg from 0 to 10 g/kg, 10–13 g/kg, 13–26 g/
kg and last subset contains all points with SOC more than 26 g/kg. The 
average of the 200 randomly sampling points obtained for each sampling 
bin represents this subset. Figure S2. (A) vegetation cover (created using 
ArcGIS Geographic Information Systems software version 10.2, Environ‑
mental Systems Research Institute Inc, Redlands, Calif ); (B) soil Hg map 
surveyed in 1994.
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