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Abstract 

Background:  The vast occurrence of organic micropollutants in surface waters has raised concerns about drinking 
water safety and public health. The Tai Hu Basin region in China, a typical developing and populous area, is facing 
the challenge of water pollution. To ensure drinking water safety, the knowledge on how treatment techniques and 
raw water quality affect the quality of finished water must be improved. The aim of the current study was to evaluate 
drinking water quality with respect to organic micropollutants and how the purity of the finished water depends on 
source water contamination and drinking water treatment strategies. Five drinking water treatment plants (DWTPs), 
using three different source waters in the Tai Hu River Basin, (i) Yangtze River, (ii) Wetland River Network, and (iii) Lake 
Tai Hu, were studied by analyzing 291 micropollutants in raw and finished water.

Results:  Major differences in concentrations and composition profiles of organic micropollutants were observed 
between the source waters. Among the studied micropollutants, the dominating group was pesticides in the Wetland 
River Network and flame retardants in Yangtze. The total concentration of poly- and perfluoroalkyl substances (PFASs) 
in Tai Hu water was far higher than in the other samples. In total, 51 compounds were detected in the finished water, 
with an overall average total concentration of 730 ± 160 ng L−1. The removal efficiency of the detected compounds 
in the DWTPs averaged 24 ± 150%, which highlights the major challenge for the DWTPs in removing the emerging 
organic micropollutants through current treatment processes.

Conclusions:  Our study showed that if the source water contains high levels of PFASs and organophosphorus flame 
retardants, even advanced treatment procedures are inefficient in removing the micropollutants, and the finished 
drinking water may contain cumulative levels of organic micropollutants in the ​µg L−1 range. On the other hand, if 
pesticides and pharmaceuticals dominate, a high overall treatment efficiencies may be obtained if advanced treat-
ment techniques are used. The DWTPs are advised to use advanced treatment techniques or alternative water sources 
to guarantee the safety of drinking water. As surface water systems are highly impacted by upstream activities, efforts 
should also be made in the water sector for improving the surface water quality.
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Background
Access to clean drinking water is an indispensable 
resource for people’s daily lives and one of the United 
Nations’ sustainable development goals. The presence 
of organic micropollutants in raw and finished drink-
ing water has raised concerns about drinking water 
safety and public health, and there is a need to protect 
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source water from ongoing and future contamination 
[1–4]. China, the most populous country on the globe, is 
extremely scarce in terms of per capita water resources. 
Therefore, how to ensure the safety of drinking water for 
the citizens is a great challenge that needs to be faced.

The Chinese population is unevenly distributed, with 
the main population distributed in the southeastern 
coastal areas. The Yangtze River, China’s most impor-
tant drinking water supply, enters the East China Sea 
6300 km downstream the primary catchment area in the 
west. The river delta is centered on the City of Shanghai 
and comprises in total three provinces (Jiangsu, Zhejiang 
and Anhui) and 26 cities, which together constitutes an 
important population center and development area. The 
Yangtze River Delta occupies an important maritime 
transportation hub, with the Tai Hu River Basin cover-
ing most of the area. Therefore, agriculture, industry and 
trade activities are well developed in this region.

Surface water is the main water source of drinking 
water in Yangtze River Delta and Tai Hu River Basins. 
Since Yangtze River Delta is one of the most urbanized 
areas in China, with a population of 150 million (Tai Hu 
River Basin has 36 million people), this part of China 
exemplifies an area with extraordinarily high anthro-
pogenic impact [5]. A number of studies have reported 
on the presence of organic micropollutants in surface 
waters in this region, e.g., antibiotics [6], phthalate esters 
[7], organochlorine pesticides [8, 9], flame retardants 
[9–11] and poly- and perfluoroalkyl substances (PFASs) 
[12]. The occurrence of organic micropollutants has 
been reviewed in the Yangtze River showing that the 
pollutants were diluted due to an excess of water, which 
reduces the risks but does not entirely eliminate them 
[13]. Furthermore, PFASs [14], flame retardants [15] and 
some drug metabolites [16] have also been detected in 
finished drinking water, posing a health risks for citizens 
in this region.

Treatment of raw water at drinking water treatment 
plants (DWTPs) can reduce levels and complexity of 
the water. The removal efficiency is, however, highly 
dependent on treatment strategies [17], and conventional 
treatment has shown largely inefficient [18]. Although 
previous studies revealed the presence of a number of 
compound groups (e.g., PFASs) and pollution categories 
(e.g., pesticides and flame retardants) in both raw and 
drinking water from this region of China, the relative 
impact of groups of pollutants has not been thoroughly 
investigated.

The aim of the current study was to evaluate drinking 
water quality with respect to organic micropollutants 
and how the purity of finished water depends on source 
water contamination and drinking water treatment strat-
egies. Five DWTPs in the Tai Hu River Basin, using three 

different water sources and various treatment strategies 
were studied. Almost 300 organic micropollutants were 
analyzed in water samples before and after DWTP treat-
ment to evaluate the treatment efficiency for individual 
compounds. The organic micropollutants represented a 
broad variety of usage categories and compound groups, 
such as pharmaceuticals and personal  care  products 
(PCCPs), pesticides, PFASs, flame retardants, industrial 
chemicals, hormones, phthalates, and food additives. 
There was a large variability in pollutant levels and com-
plexity in both raw and finished water, and conclusions 
could be drawn about the suitability of treatment options 
for different source water qualities.

Methods and materials
Reference standards and chemicals
In total, 291 organic micropollutants were targeted 
including pharmaceuticals (n = 108), pesticides (n = 99), 
PFASs (n = 18), flame retardants (n = 14), industrial 
chemicals (n = 14), hormones (n = 8), food additives 
(n = 6), phthalates (n = 5), personal care products (n = 4), 
surfactants (n = 4), fatty acids (n = 4), siloxanes (n = 2), 
stimulants (n = 2), isoflavones (n = 2), and contrast media 
(n = 1) (Table S1 in Additional file 1). Additionally, 21 iso-
tope-labeled internal standards (ISs) were used (Table S2 
in Additional file 1). The pesticide standards (native and 
isotope-labeled) were purchased from Teknolab Sorb-
ent (Kungsbacka, Sweden) as accredited mixtures. Wel-
lington Laboratories (Guelph, Canada) was the provider 
of the all PFAS standards. The remaining standards were 
bought from Sigma-Aldrich (Buchs, Switzerland) as solu-
tions or crystalline of individual compounds, at analytical 
purity or higher, and were made into stock solutions in 
methanol or acetonitrile at a concentration of 1 mg mL−1.

Ultrapure water (Milli-Q) for solid-phase extrac-
tion (SPE) and mobile phases in the UPLC-system were 
generated in-house by a water purification system (Mil-
lipore; Bedford, USA). The buffers, acids and bases used 
for mobile phases were of LC–MS grade and purchased 
from Sigma-Aldrich (Buchs, Switzerland). The metha-
nol and acetonitrile (LC–MS grade) were from Merck 
(Darmstadt, Germany) and the ethanol (AnalaR quality) 
was purchased from VWR International (Fontenay-sous-
Bois, France).

Sampling sites and sample collection
Grab samples (4  L) of raw water (n = 1) and finished 
water (n = 1, named ‘Drinking water’ in the figures) were 
collected in September 2018 from five different drinking 
water treatment plants (N1(s), N2(s), N3, N4, and N5) 
located around Lake Tai Hu in the southeast of China 
and near the delta of the Yangtze River (Fig.  1). Addi-
tionally, two of the DWTPs were sampled a second time 
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3 months later (December 2018; N1(w) and N2(w); dupli-
cate samples at each site; n = 2 + 2; 4 L per sample). In 
the following, all N1 and N2 samples (September (n = 1) 
and December (n = 2); in total n = 3 × 2 (raw and fin-
ished) × 2 (sites) = 12 samples) are named as the Su Tai 
samples, and the N3, N4 and N5 samples are named the 
Wu Tai (n = 1 × 2 (raw and finished) = 2), the Yangtze 

(n = 1 × 2 = 2) and river network (n = 1 × 2 = 2) sam-
ples, respectively. The selected DWTPs provide drink-
ing water to two cities in the Jiangsu Province and one 
city in the Zhejiang Province for a total of about 8 million 
people. Detailed information on the five DWTPs, includ-
ing their source water and treatment strategies, are given 
in Table  1 and Fig.  1b. Note that the Yangtze DWTP 

Fig. 1  a Map showing the sampling locations at the Tai Hu Basin within the Yangtze River Delta (N1 − N5). b DWTP treatment strategies and raw 
water sampling point. N1 − N5: 5 different DWTP. PAC powdered activated carbon, BACF biological activated carbon filter, OZONE ozone contactor, 
SED flocculation/sedimentation, SAND sand filter, COAG aluminum coagulation, BP biological pretreatment, FLO flocculant, KMnO4/Cl2/alum 
chemical additive, SP sampling point of raw water
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receives its raw water from another DWTP, i.e., finished 
water, but transported approximately 36  km through a 
pipeline.

All samples were collected directly from tap in 4-L 
pre-cleaned glass containers. The pH was immediately 
adjusted to 3 using hydrochloric acid solution. The sam-
ples were transported to the laboratory at Tongji Uni-
versity, China, within 8 h and stored at 4 °C until sample 
preparation. One field blank sample was prepared using 
Milli-Q water in the same type of glass container.

Sample preparation
The water samples were filtered through 0.7-μm glass 
fiber filters (Grade GF/F circles, 47 mm, Whatman, UK) 
including the field blank (Milli-Q water) control sam-
ple. Each sample was divided into four 1-L samples and 
extracted using SPE cartridges in series: Oasis® HLB 6cc 
Vac Cartridge (500  mg Sorbent per cartridge, Waters, 
USA) and Supelclean™ Coconut Charcoal SPE Tube (2 g, 
6  mL, Sigma-Aldrich, USA). After loading and drying, 
the SPE cartridges were stored at − 40 °C. One randomly 
selected pair of SPE cartridges (out of the four pairs; con-
sisting of one HLB and one Cocoa Charcoal cartridge), 
i.e., in total 18 × 2 = 36 cartridges plus the field blank, 
were shipped to the Department of Aquatic Sciences and 
Assessment, Swedish University of Agricultural Sciences 
(SLU, Uppsala, Sweden) and stored at 4  °C until SPE 
elution. Before elution of the SPE cartridges, the 21 ISs 
were added (50 ng per IS) after dilution in Milli-Q water 
(approx. 40 mL).

The two cartridges (HLB and Cocoa Charcoal) were 
eluted separately, first with 10 mL of a mixture of acetone 
and hexane (Vacetone:Vhexane = 1:1) and then 10  mL of 
methanol [19] (Figure S1 in the Additional file  1). Each 
eluate was collected in a separate glass tube. The HLB 
and Cocoa Charcoal eluates were combined separately 
and evaporated under a gentle stream of nitrogen until 
approximately 4 mL. The HLB and Cocoa Charcoal elu-
ates were then combined and reduced to below 0.5  mL 

and transferred to an LC–MS vial. After each trans-
fer step, the previous container was washed twice with 
methanol, which was also transferred to the next vial. The 
final extract was evaporated to less than 500 μL in the vial 
and diluted to 1  mL with methanol (Figure S1 in Addi-
tional file 1).

Instrumental analysis
The instrumental analysis was performed as described 
previously by Tröger et al. [17]. In brief, a time-of-flight 
mass spectrometer (ToF) (Xevo G2-S, Waters, Micro-
mass; Manchester, UK) coupled to a ultra-performance 
liquid chromatography (UPLC) system (Acquity H-Class 
with FTN injector; Waters, Milford, MA, USA) equipped 
with either an Acquity UPLC HSS T3-C18 column 
(positive ionization mode) or UPLC BEH-C18 column 
(negative mode) was used. The mobile phase was a gra-
dient containing Milli-Q water and acetonitrile, and the 
injection volume was 10  µL. All data were collected in 
MSE-mode, with a resolution of ~ 30,000 at 556.28  m/z 
using leucine enkephalin for the lock spray and UNIFI 
v1.8.2 as the software for data collection and evaluation. 
Details of the targeted compounds and the analytical 
procedure (including IS used for each analyte) are given 
in Table S3 in Additional file 1.

Quality assurance and method performance
Calibration curves were run for each target compound 
with a concentration range of 0.1–120 ng L−1. The con-
centrations in the samples were mostly within this range, 
except a few data for tris(2-chloroethyl) phosphate 
(TCEP), triethyl phosphate (TEP), and butyl  dihydro-
gen  phosphate and a high fraction of the laurilsulfate 
data, which reached higher levels (Table S4 in Additional 
file  1). Data reported outside the calibration curve are 
marked in the table and should be interpreted with care.

The lowest level detected in the calibration curve was 
used as the method detect limit (MDL; Table S3 in Addi-
tional file  1). The results of the four duplicate samples 

Table 1  Detailed information of the sampling locations

a  The treatment processes at the five DWTPs and the sampling points for raw and finished water in the DWTPs are shown in Fig. 1b

Sample name Sampling site Sampling date Source water Description of raw water

N1(s) Su Tai 2018-09-30 Tai Hu Water from Lake Tai Hu with pre-oxidation

N2(s) Su Tai 2018-09-30 Tai Hu Water from Lake Tai Hu

N3 Wu Tai 2018-09-30 Tai Hu Water from Lake Tai Hu with prechlorination

N4 Yangtze 2018-09-30 Yangtze River Already treated at another DWTP, trans-
ported via pipeline (~ 36 km)

N5 River network 2018-09-30 River River draining a wetland

N1(w) Su Tai 2018-12-01 Same as N1(s) Same as N1(s)

N2(w) Su Tai 2018-12-01 Same as N2(s) Same as N2(s)
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(raw and drinking water for N1(w) and N2(w), respec-
tively) were tested for similarity using two-sided Stu-
dent’s paired t test and the data for compounds detected 
above the MDL. There was no significant difference 
between the duplicates at a p-level of < 0.05 for any of the 
duplicates. The average relative standard deviation of the 
concentration data for the duplicate samples (n = 4 and 
68 detected compounds) were within the range 16–30%.

The apparent recovery of the ISs, calculated from the 
relative responses of each IS in all samples, was on aver-
age 39% (± 20%) (Table S2 in Additional file 1). The levels 
in the field blank were generally low (on average < 1% of 
levels in samples), except for six compounds (laurilsul-
fate, lidocaine, cresyl diphenyl phosphate (CDP), triph-
enyl phosphate (TPHP), tris(2-butoxyethyl) phosphate 
(TBEP), laureth-5), for which occasionally higher levels 
were detected (35–75%) (Table  S4 in Additional file  1). 
The sample concentrations were corrected by subtracting 
the blank levels.

Results and discussion
Raw water quality
In total, 68 (23%) of the 291 targeted compounds were 
detected above the MDL in at least one raw water sample, 
and the number of detected compounds per sampling 
site ranged from 49 to 64. The detected micropollutants 
represented a wide variety of compounds including pes-
ticides (n = 27), pharmaceuticals (n = 15), PFASs (n = 10), 
organophosphorus flame retardants (n = 7), food addi-
tives (n = 2), industrial  chemicals (n = 2), surfactants 
(n = 3), and a fatty  acid (n = 1), stimulant (n = 1). The 
detected compounds and their concentrations at each 
sampling point are given in Table  S4 in the Additional 
file 1.

The number of detected micropollutants on a category 
basis was rather similar between the five DWTPs (Fig. 2; 
raw water). This indicates a rather even distribution of 
emission sources in the Tai Hu Lake and the Yangtze 
River Delta area, with the exception of pesticides, which 
showed a higher number of detected compounds at the 
river network site. Overall, pesticides were the most 
detected pollutant category with on average 35% ± 2% 
of all compounds detected (including all samples and 
sampling sites; n = 18), followed by pharmaceuticals 
(19% ± 2%), PFASs (17% ± 2%), ‘Others’ (16% ± 2%: food 
additives, industrial chemicals, surfactants, stimulant and 
fatty acid), and flame retardants (13% ± 1%).

The total concentrations of the micropollutants in the 
raw water (Fig.  3) showed that the wetland river net-
work was the most polluted site with respect to organic 
micropollutants (4 000  ng  L−1), followed by the Tai Hu 
Lake (1600  ng L−1 for Su Tai and Wu Tai, respectively; 
using the same source water). As expected, Yangtze, 

with its raw water already treated through serval steps 
at another DWTP (Fig. 1b), showed the lowest total level 
(1000 ng L−1).

Overall, the most prevalent micropollutant was sucra-
lose (food additive), which contributed to about one-
quarter of the total concentration in the water from Su 
Tai and Wu Tai (Fig. 3), and even more in the water from 
the Yangtze River (48%; Fig.  3). In contrast, sucralose 
made up only 5% of the total concentration in the river 
network. Sucralose is frequently detected in rivers and 
lakes all over the world, with a reported concentration 
range of 0.08–1.0 μg L−1 in Europe [20], 18–175 ng L−1 in 
River Rhine [21], and 200–400 ng L−1 in northern China 
[22].

There were also other clear differences in the com-
position of the three source waters: Yangtze, the river 
network, and Tai Hu (Su Tai/Wu Tai). In the river net-
work, the fraction made up by pesticides was 71% of the 
cumulative concentration, which was significantly higher 
than at the other three sites (8-23%; Fig.  3). The cumu-
lative concentration was 2 800  ng  L−1 in the river net-
work, which is almost 10 times higher than the average 
concentrations at Tai Hu (340 ± 100 ng L−1) and 30 times 
higher than the Yangtze River raw water (97 ng L−1). The 
reason for the high dominance of pesticides in the river 
network can be attributed to the land use in the river 
catchment, which has a high proportion of agricultural 
areas. Moreover, although both Su Tai and Wu Tai are 
using Lake Tai Hu raw water, the Su Tai samples showed 
higher levels (370 ± 47 ng L−1; 23% of total) than that at 
Wu Tai (130  ng  L−1; 8%). The pesticides with the high-
est concentrations at river network were carbendazim, 
imidacloprid, bentazon and azoxystrobin, which were 
detected at levels in the range 420–670  ng  L−1. Overall 
(all sites), other common pesticides included bentazon 
(85 ± 47 ng L−1), carbendazim (60 ± 40 ng L−1), N,N-die-
thyl-m-toluamide (DEET) (38 ± 32 ng L−1), and atrazine 
(32 ± 11 ng L−1), which showed high detection frequency 
in source waters. These concentrations are correspond-
ing or higher to those reported from Europe, where, e.g., 
DEET averaged 4.0 ng L−1 and atrazine averaged 2.2 ng 
L−1 in rivers in southeast Spain [23], and the reported 
concentration ranges in River Rhine were 1–16 ng L−1 for 
bentazone, 7–105 ng L−1 carbendazim, 6–120 ng L−1 for 
DEET, and 1–6 ng L−1 for atrazine [21].

The number of detected PFASs differed between the 
sampling sites, with the lowest number at the Yang-
tze River site (n = 7; 14% of total number of detected 
compounds), whereas for other raw waters, the num-
ber of detected PFASs ranged from 9 to 10 (18–18%), 
indicating upstream point sources of PFASs. The aver-
age concentration of ∑PFASs in the Tai Hu raw water 
(168 ± 22  ng L−1) was significantly higher (two-sided 
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Student’s t-test) than in the Yangtze River water (20 ng 
L−1), and the water from the wetland river network 
(56 ng L−1) (p = 0.0003). Perfluorohexane sulfonic acid 
(PFHxS) was dominant in the Tai Hu water (60% of 
the ∑PFASs), whereas perfluorooctanoic  acid (PFOA) 
was dominant in the water from wetland river net-
work (63%). On the other hand, PFHxS, PFOA and 
perfluorobutanoic  acid (PFBA) were equally dominant 
in the Yangtze River water (22%, 23% and 27%, respec-
tively). The PFAS concentrations were generally com-
parable to other river water concentrations in China 
[24] and in the River Rhine watershed in Europe [25], 
but lower than other parts of the world such as Sweden 
[26], or India [27].

Organophosphorus flame retardants were the major 
group of compounds in the Yangtze and Wu Tai water, 
with cumulative concentrations of 290 ng L−1 and 405 ng 
L−1 (28% and 26%), respectively. These levels are similar 
to Su Tai levels (266 ± 48 ng L−1, but there the fraction of 
flame retardants was lower (16%). Previous research has 
also reported frequent detection of organophosphorus 
flame retardants, e.g., in Yangtze River water [9] and river 
water in Sweden [28]. Since the use of brominated flame 
retardants is decreasing because of environmental and 
human health risks, organophosphorus flame retardants 
has become widely produced and used since the 1970s 
[10]. Phosphorus flame retardants have been detected 
in abiotic compartments as well as in living organisms 

Fig. 2  a Total number of compounds detected above MDL in raw and drinking (finished) water at the different sites. Su Tai shows the average 
(and error bars) of samples from N1 and N2 (n = 6: 2 sites, 2 sampling occasions and 1 duplicate sample), while other bars show the result from 
n = 1. b The fraction of the number of detected compounds (in relation to total) is shown on a compound category basis for each site. Compounds 
detected above MDL and their concentrations are given in Table S4 in Additional file 1. RN river network
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Fig. 3  Total concentrations of detected micropollutants and percentage composition of sucralose and main compound categories in raw and 
drinking (finished) water for each site, with the most northern on top (N4), then going south (N3, N1 + N2, and N5). Detected compounds above 
MDL and their concentrations are shown in Table S4 in Additional file 1. PES pesticide, PHAR pharmaceutical, FLA flame retardant, PFAS poly- and 
perfluoroalkyl substances, OTH Others (food additive, fatty acid, surfactant, industrial chemical), ALL all detected compounds in each DWTP
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including humans [29, 30], indicating potential risk for 
environmental and human hazards.

The concentrations of the compound category ‘Oth-
ers’, such as industrial chemicals (Table S4 in Additional 
file 1), were in the range 250–400 ng L−1. The most domi-
nating compound was butyl dihydrogen phosphate, a sur-
face-active agent used as, e.g., additive in lubricants and 
paints, with an overall (all sites) average concentration of 
140 ± 48 ng L−1.

An overall observation was that there was a composi-
tion profile change from north to south, i.e., going from 
Yangtze (N4), towards Wu Tai (N3), Su Tai (N1 + N2) and 
river network (N5), with an increasing proportion of pes-
ticides and a decreasing proportion of flame retardants 
in the samples. This tendency shows that local emission 
sources and land use play a large role for the overall pol-
lution. It also suggests that the Yangtze River in the north 
and the river network in the south may influence differ-
ent parts of Lake Tai Hu.

Drinking water quality
The number of micropollutants detected above MDL 
decreased with on average 22% through the drinking 
water treatment process (Fig. 2a). In total, 51 compounds 
were detected in at least one sample including pesticides 
(n = 17), pharmaceuticals (n = 9), PFASs (n = 10), organ-
ophosphorus flame retardants (n = 7), food additives 
(n = 2), industrial  chemicals (n = 2), surfactants (n = 3), 
and a fatty acid (n = 1). Similar to the raw water, the pes-
ticide group was the most prevalent pollution category 
with on average 13 compounds per sample, followed by 
PFASs (n = 10), flame retardants (n = 7), pharmaceuticals 
(n = 6), and food additives (n = 1).

The total concentrations of the micropollutants mostly 
decreased, but also increased through the drinking water 
treatment process (Fig. 3, bar charts). The overall (n = 9) 
average total concentration was 730 ± 160 ng L−1, and the 
concentration range was 720-2 700 ng L−1. As in the raw 
water, sucralose dominated the concentration in every 
sample with a top concentration of 1 900 ng L−1 (N1(s); 
71% of total) and an overall average concentration of 
630 ± 520 ng L−1, which corresponds to a proportion of 
30% or more in most of the samples. The average concen-
tration is far higher than levels found in drinking water 
from northern China (110–160  ng L−1) [31], and also 
higher than waste water treatment plant (WWTP) influ-
ents in some American cities (78–120 ng L−1) [32].

The cumulative concentrations of other detected 
micropollutants (without sucralose) were in the range 
of 540–1100 ng L−1 including all sites. The lowest value 
was 550  ng L−1 (river network), which is approximately 
10 times higher than the micropollutant concentra-
tion in drinking water from northern Europe (Sweden) 

[18], where a similar set of compounds were targeted 
(134 compounds and an overlap of 43% with the current 
study). Because of the relatively high removal rates of 
pesticides and pharmaceuticals, the PFASs, flame retard-
ants and the category ‘Others’ were the dominant micro-
pollutants in the drinking water (Fig. 3).

The concentration of ∑PFASs ranged from 110 to 
200 ng L−1 at N1 − N3 (Tai Hu Basin water; Su Tai/Wu 
Tai), and was 27 ng L−1 in the sample from N4 (Yangtze 
River water). The PFHxS was the dominant PFAS in Tai 
Hu (60–120 ng L−1, N1 − N3), while PFBA was the high-
est PFAS in Yangtze River (11 ng L−1) and PFOA was the 
highest in the river network water (54 ng L−1). The PFAS 
concentrations in drinking water were generally higher 
than those in drinking water from USA, Brazil, Spain, 
and France [33–35].

Flame retardants was the main micropollutant cat-
egory in drinking water from the Yangtze River (370 ng 
L−1; 42% of total) and generally contributed to more than 
20% of the total concentration of all compounds in the 
drinking water at all sites, except for N1(s). Overall (all 
sites), the compounds with the highest concentrations 
were TEP (average 120 ng L−1) and TCEP (average 96 ng 
L−1). These two organophosphorus flame retardants 
were at almost the same concentration as levels reported 
from the Netherlands (48–100  ng L−1) [16]. Another 
compound with high concentration was butyl  dihydro-
gen phosphate (average 130 ng L−1), an industrial chemi-
cal, rarely (if ever) reported as present in drinking water 
before. The occurrence of micropollutants in drinking 
water is dependent on the quality of water source (Fig. 3), 
as well as on the treatment efficiency at the DWTP. In 
the next section, the impact of the treatment process is 
examined.

Removal efficiency
The removal efficiencies for all compounds at all DWTPs 
are given in Table  S5 in Additional file  1 and are illus-
trated in Fig.  4. The overall average removal efficiency 
of all compounds averaged 24 ± 149% (N1 − N5, n = 9, 
including the two extra samples and the duplicates at 
N1 + N2). The removal of pesticides averaged 65 ± 50% 
and the pharmaceuticals 74 ± 49%, while the removal 
of other compound categories was significantly lower 
(p < 10−8, two-sided Student’s t-test), with average effi-
ciencies of 3 ± 99% for ‘Others’ (food additives, sur-
factant, industrial chemicals, fatty acid), − 1 ± 13% for 
flame retardants, and − 140 ± 329% for PFASs. Thus, 
the flame retardants showed negative treatment efficien-
cies, which means they boosted through the treatment 
process. Similarly, the removal of PFASs was often inef-
ficient or even negative at the investigated DWTPs. Pre-
vious studies have shown that conventional treatment 
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techniques are inefficient in removing PFASs [36]. 
Negative removal efficiency may be explained by time-
dependent concentrations and the lag time between 
sampling raw and finished water, degradation of PFAS 
precursors to persistent PFASs [37] and desorption/
breakthrough of PFASs from granular activated carbon 
(GAC) or other filter types within the DWTP [38]. GAC 
and anion exchange filters are currently used for removal 
of PFASs in DWTPs; however, development of new 

treatment options is needed, in particular for the shorter 
chain PFASs [38–40].

There were no significant differences in the removal 
efficiencies of all detected compounds among the 
five DWTP (p > 0.06, two-sided Student’s t-test), 
although the DWTPs used different treatment strat-
egies (Figs.  1b, 4a). It should be noted that three of 
the DWTPs use ozonation, i.e., advanced treatment 
technology; yet removal efficiencies are moderate to 

Fig. 4  Treatment efficiency for a each compound category for DTWPs with similar treatment strategy and b DWTPs with similar treatment strategy 
per compound category. PES pesticide, PHAR pharmaceutical, FLA flame retardant, PFAS poly- and perfluoroalkyl substances, OTH Others (food 
additive, fatty acid, surfactant, industrial chemical), ALL all detected compounds in each DWTP
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low. This demonstrates the major challenge in remov-
ing organic micropollutants through modern drinking 
water treatment technologies.

The removal efficiencies among different treatment 
strategies are shown in Fig. 4b. N1, N2 and N5 have ozone 
treatment and biological activated carbon filter (BACF) 
in contrast to N3 and N4. Additionally, N5 has an extra 
biological pretreatment step as compared to N1 − N4. 
The removal efficiencies of the pesticides and the phar-
maceuticals at N3 + N4 were significantly lower than at 
N1 + N2 and N5 (p < 0.05, two-sided Student’s t test), 
which shows that the conventional treatment (sedimen-
tation, filtration and disinfection) cannot remove pes-
ticides and pharmaceuticals in water effectively. On the 
other hand, N1 + N2 and N5 with their more advanced 
treatment process (including ozonation) were successful 
with these two substance groups. This is also illustrated 
for N5 in Fig. 3, with a fivefold drop in total concentra-
tion from raw to drinking water (from 3990 to 720  ng 
L−1, going from 76% ‘pesticides + pharmaceuticals’ of 
total to 17%). The removal efficiency of flame retardants 
in N5 was also rather efficient, with significantly higher 
efficiency than N1 + N2 and N3 + N4 (p < 0.02, two-sided 
Student’s t-test). This suggests that the biological treat-
ment has the ability to remove flame retardants in water.

Potential human health risks of sucralose
The artificial sweetener sucralose was the dominant 
micropollutant in both raw and drinking water and this 
may cause human health concern. Sucralose is widely 
used in the food industry since the 1970s, because of its 
sweet taste and stability. Sucralose has been shown to be 
a persistent, ubiquitously occurring environmental pol-
lutant [20, 41] and is commonly detected in wastewater, 
surface water, groundwater and drinking water [20, 22, 
42]. It has been tested for toxicity, and there are some 
reports on that exposure may led to negative effects, 
e.g., on locomotion and physiological behavior of crus-
taceans [43]. However, there is a lack of studies focusing 
on chronical and low-dose effects [44, 45]. Rahn et  al. 
[46] found that sucralose can degrade and produce chlo-
ropropanols (3-monochloropropanediol and 1,2- and 
1,3-dichloropropanols) under thermal decomposition. 
These metabolites are known as a potentially toxic class 
of compounds that may cause cancer [47]. Another study 
indicated that ingestion of sucralose may affect the glu-
cose metabolism of obese people who rarely use non-
nutritive sweeteners [48]. More studies on the toxicity of 
sucralose are needed, and it is also important to consider 
the potential toxicity of its metabolites, which, e.g., are 
formed during cooking under high temperature [49], a 
common practice in China.

Conclusions
Our study has shown that finished (drinking) water qual-
ity is dependent both on source water quality and treat-
ment strategies. If the source water contains high levels of 
PFASs, flame retardants and other pollutants (e.g., sucra-
lose and butyl  dihydrogen  phosphate), even advanced 
treatment procedures, including, e.g., ozonation, are inef-
ficient and the finished water may contain cumulative 
micropollutant levels in the µg L−1 range. On the other 
hand, if the dominating pollution categories are pesti-
cides and pharmaceuticals, high overall treatment effi-
ciencies can be obtained if advanced treatment steps are 
used, while DWTPs using conventional treatment likely 
have poor removal of organic micropollutants. DWTPs 
have the challenging task of purifying “reused” water, i.e., 
water that was contaminated by organic micropollutants 
originating from upstream effluents, such as WWTP 
and industrial effluents. For improved overall drinking 
water quality, it is imperative that water quality comes 
into focus in the water sector as a whole. DWTPs should 
pay attention to the characteristics of their source water 
and make efforts in using efficient treatment processes, 
enhancing the quality of finished water. In our study, 
organic micropollutants were found in drinking water at 
cumulative levels from 0.7 µg L−1 up to 2.7 µg L−1, clearly 
demonstrating the challenge with organic micropoll-
utants in the water from source to tap. Thus, advanced 
drinking water treatment techniques or alternative drink-
ing water source areas are needed to guarantee safety of 
drinking water. Overall, more data on human health risks 
associated with a continuous intake of potentially haz-
ardous organic micropollutants and their mixtures (cock-
tails) are needed to support risk assessment activities for 
drinking water.
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