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Bacterial chemotaxis: a way forward 
to aromatic compounds biodegradation
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Abstract 

Worldwide industrial development has released hazardous polycyclic aromatic compounds into the environment. 
These pollutants need to be removed to improve the quality of the environment. Chemotaxis mechanism has 
increased the bioavailability of these hydrophobic compounds to microorganisms. The mechanism, however, is poorly 
understood at the ligand and chemoreceptor interface. Literature is unable to furnish a compiled review of already 
published data on up-to-date research on molecular aspects of chemotaxis mechanism, ligand and receptor-binding 
mechanism, and downstream signaling machinery. Moreover, chemotaxis-linked biodegradation of aromatic com-
pounds is required to understand the chemotaxis role in biodegradation better. To fill this knowledge gap, the current 
review is an attempt to cover PAHs occurrence, chemical composition, and potential posed risks to humankind. The 
review will cover the aspects of microbial signaling mechanism, the structural diversity of methyl-accepting chemot-
axis proteins at the molecular level, discuss chemotaxis mechanism role in biodegradation of aromatic compounds in 
model bacterial genera, and finally conclude with the potential of bacterial chemotaxis for aromatics biodegradation.
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Background
Movement is a mandatory phenomenon to sustain life 
for any living organism. In microorganisms, this move-
ment is a controlled mechanism mediated by a delicate 
multiprotein system. This movement mechanism helps 
prokaryotic or eukaryotic microorganisms for tempera-
ture regulation, pH balance, nutrient regulation, evad-
ing from unfavorable environments, and moving towards 
favorable niches. Microorganisms contain specialized 
structures for movement, i.e., cilia and flagella. Microor-
ganisms typically make a biased random walk [1]. Taxis, 
on the other hand, is a directed movement by microor-
ganisms. Whenever this movement is in response to a 
chemical stimulus, it is referred to as chemotaxis [2, 3]. 
This kind of microorganism’s movement could help in the 
degradation of environmental pollutants like polycyclic 
aromatic compounds.

Aromatic compounds (AC) in nature are structurally 
diverse with single or multiple benzene rings. Polycyclic 
aromatic hydrocarbons (PAHs) are persistent organic 
pollutants that are toxic, genotoxic, carcinogenic, and 
mutagenic to organisms. PAHs are found naturally in 
plant cell wall structure and are produced artificially by 
anthropogenic sources. PAHs are aromatic hydrocarbons 
bearing two or more fused benzene rings in linear, angu-
lar, and cluster conformations [4, 5]. PAHs are classified 
as light and heavy PAHs based on the number of rings 
found; four rings refer to the former, while those bearing 
more than four rings refer to the latter category. Heavy 
PAHs are reported as more stable and toxic than the light 
PAHs [6]. Carbon and hydrogen are the constituent ele-
ments of PAHs bound in a simple-to-complex benzene 
ring arrangements. This ring arrangement gives PAHs 
a wide diversity of physical, chemical, and toxicological 
characteristics [7].

With industrial development, PAHs become ubiqui-
tous contaminants in the environment, especially in soil. 
Chemical oxidation, bioaccumulation, volatilization, 
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photo-oxidation, and adsorption to soil particles seem 
to be the possible fate of PAHs released into the envi-
ronment. However, increased awareness about adverse 
effects on humans and the ecosystem has prompted an 
intensive search for effective remediation processes to 
clean up contaminated sites. The principle degradation 
process in the soil is degradation by microbial trans-
formation [8]. Bioremediation techniques represent a 
valuable, environmentally friendly alternative for the 
decontamination of this material.

Several bacteria use these aromatic compounds as car-
bon and energy sources for growth. Therefore, bacterial 
biodegradation pathways for these compounds are an 
interesting topic of research. Moreover, biological treat-
ments also comply with the EU Landfill Directive [9]. 
Microbial degradation and transformation are the lead-
ing processes for PAHs removal. It is reported that after 
a period of acclimation, bacteria can successfully degrade 
low molecular weight (LMW) PAHs. Nevertheless, the 
efficiency is limited for higher molecular weight (HMW) 
PAHs [10].

In addition to PAHs, the lignin component of ligno-
cellulosic biomass is a significant contribution towards 
natural aromatic compounds production. Lignin is a 
three-dimensional polymer of aromatic compounds: 
p-coumaryl, coniferyl, and sinapyl alcohols, with cross-
linking via C–O–C ether bonds and C–C bonds. Lignin 
is the most abundant organic compound next to cellu-
lose. Aromatic compounds make one-quarter of the plant 
biomass [11]. Plant monolignols are synthesized via the 
shikimic acid pathway [12], while microorganisms pro-
duce aromatic compounds via malonic acid pathway [13]. 
Plants, major producers of AC, are unable to degrade 
these compounds due to having no degradation pathway.

On the contrary, microorganisms do possess degrad-
ing pathways. Recently, proteomic analysis of Bacillus 
ligniniphilus L1 indicated that methyl-accepting chemo-
taxis protein (MCP) and MCP sensory transducer were 
up-regulated 5.5- and 10-fold when lignin was the sole 
carbon source during degradation. The study suggested 
the potential involvement of chemotaxis proteins in the 
aromatic compound’s biodegradation [14].

Chemotaxis is believed to increase the bioavailability 
and biodegradation efficiency where PAHs pollutants are 
heterogeneously distributed either in soils or in water. 
[15, 16]. Chemotaxis is a well-established field. A pleth-
ora of research has been published on chemotaxis, indi-
cating the potential of this approach to new insights in 
the chemotaxis process for PAHs bioremediation. How-
ever, the literature regarding biodegradation of PAHs 
and its possible linkage to chemotaxis needs a compre-
hensive review to establish the link between chemotaxis, 
bioavailability, and in turn, biodegradation of aromatic 

compounds. In this review, the authors attempt to pro-
vide a brief overview of PAHs concerning their occur-
rence in the geosphere, production mechanisms, and 
potentially pose risks to the environment and humans. 
Furthermore, much of the focus will be on up-to-date 
research progress in the chemotaxis field, insights on 
molecular mechanisms involved, the chemistry behind 
the binding mechanism of model aromatic compounds, 
and metabolic pathways linked to chemotaxis.

Occurrence, chemical composition, and potential risks 
of PAHs
PAHs are mostly colorless, white, or pale-yellow organic 
solids or vaporous form compounds. These are omni-
present with worldwide recognition as priority pollutants 
in soil sediments, water sources, and atmosphere [17]. 
PAHs are chemically related several hundred individual 
chemical compounds that occur in group form instead of 
single compounds with varied structural configuration 
and toxicity levels. PAHs production is through natural 
and anthropogenic routes. Carbonization process (min-
eral oil and coal formation) and incomplete combustion 
of organic compounds in an insufficient amount of oxy-
gen and high moisture content are the examples for natu-
ral and anthropogenic PAHs production, respectively 
[18, 19]. An increase in PAHs molecular weight results 
in electrochemical stability, an increase in PAHs carci-
nogenic index, persistency, and biodegradation resistiv-
ity. Therefore, understanding the source of PAHs will be 
much helpful in determining the route of PAHs in the 
environment and possible bioremediation strategies.

The most common pathways of PAHs production are 
pyrogenic and petrogenic, while a less known formation 
route is biological [17]. Formation temperature plays the 
differentiation role between the pyrogenic and petro-
genic PAHs. PAHs formed under moderate temperatures 
(100–300  °C) through the slow and long-term process 
associated with fossil fuels are referred to as petrogenic. 
Widespread sources of petrogenic PAHs are oil spills, 
storage tank leaks, and release of gasoline or motor oil 
in transportation. PAHs formed under high-tempera-
ture conditions (> 700  °C) in low-to-zero oxygen condi-
tions are termed pyrogenic, their production process is 
much rapid than the former. This implies that formation 
temperature is in direct relation to PAHs types formed 
and associated complexities [20]. For example, 1  g of 
tobacco yields 44 ng at 400 °C while at 1000 °C, it yields 
183,500  ng of benzo[a]pyrene (BaP) [21]. Readers are 
referred to the work of Lima et al. [20] to understand the 
factors affecting the combustion-derived PAHs and their 
environmental fate. Another way to identify the PAHs 
source is based on the ratio of molecular weight; the ratio 
of LMW/HMW < 1 indicates pyrogenic source while the 
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ratio > 1 specifies petrogenic source [22]. Plants and bac-
teria form some PAHs during the degradation of vegeta-
tive matter, yet the biological route of PAHs formation is 
not well known [17].

The chemical structure of PAHs is simple (naphtha-
lene—two rings) to complex (coronene—seven rings) 
benzene ring arrangement. This arrangement results in 
physical, chemical, and toxicological characteristics [7]. 
Hydrophobicity and bioaccumulation tendency enhance 
with an increase in PAHs molecule size and structure 
angularity. It must be noted that the detrimental effects 
of PAHs also increase with a concomitant increase in 
molecular size. It is found that alkylated PAHs generated 
by diagenetic processes are much toxic than the parent 
compounds, though, alkylated PAHs compounds exist 
mutually with parent compounds. Alkylated PAHs are 
considered environmentally persistent than their parent 
compounds.

PAHs are toxic with pronounced effects on human 
health. In that context, the US Environmental Protec-
tion Agency (US EPA) issued a list of priority PAHs 
to tackle this. Several researchers studied the level of 
PAHs in urban areas and assessed their potential risk 
impact on human health. It is generally accepted that 
urban areas contain higher PAHs concentration owing 
to vehicular emissions, natural gas combustion, and 
petrol emissions [23–25]. Wang et  al. [26] studied the 
critical concentrations of PAHs in urban soils of the 
Nanjing district of China. The authors divided the risk 
into four levels (equivalent values of benzo[a]pyrene 
(BaPeq)): < 70  ng  g−1, 70–700  ng  g−1, 700–7000  ng  g−1, 
and > 7000  ng  g−1. The authors found Nanjing at below 
critical level (level 3) by this standard. Furthermore, 
they reported that population density and black carbon 
content proved to be the leading factors in PAHs level 
increase. In a recent study, Wu et  al. [27] discussed the 
report of cooking-related PAHs emission to personal 
health in three commercial cooking places (western fast 
food restaurant kitchens, Chinese cafeteria kitchens, 
and street food carts) for possible cancer risk. The data 
revealed that fast-food restaurants and Chinese cafeteria 
workers exposed to less PAHs concentration compare to 
street food carts. The study concluded that a less effec-
tive exhaust system results in high aldehyde exposure in 
street food cart workers rendering a higher tendency to 
cancer risk.

PAH degradation in soil by augmentation with spe-
cific isolated bacteria or fungus has been documented in 
various studies. Scopulariopsis brevicaulis PZ-4 isolated 
from an aged PAH-contaminated soil was found to have 
the ability to degrade PAHs. In a PAH-contaminated 
soil, Scopulariopsis brevicaulis PZ-4 removed 77% of 
total PAHs, and the highest removal of PAHs occurred 

for phenanthrene (89%) and benzo(a)pyrene (75%) after 
incubation for 28 days.

The above discussion indicated that PAHs are much 
toxic and have potential risk hazards to human life and 
the surrounding environment. Therefore, they need to 
be mineralized to basic building blocks. However, since 
PAHs are recognized as persistent pollutants, so degra-
dation is very to negligibly slow. Though several bacte-
ria have been isolated to degrade PAHs, the degradation 
rate is much lower than the production of PAHs from 
different sources. The major problem, in this regard, is 
their bioavailability to microorganisms. Microorganism’s 
signaling mechanism could play a vital role. In the next 
section, we will elaborate on the signaling mechanism of 
microorganism and how it could help in the biodegrada-
tion of PAHs.

Signaling transduction mechanisms in bacteria
PAHs are hydrophobic with low water solubility and a 
higher tendency to bind with organic matter present in 
the soil. This adsorption makes their availability lim-
ited to microorganisms for degradation. Yet with these 
properties, several strains have been screened with the 
ability to degrade PAHs, utilizing as carbon and energy 
source [28]. PAHs degrading bacteria adjust themselves 
in the PAHs-rich soils by several genetic modifications 
and increasing their population size [29]. It is believed 
that chemotaxis has played a vital role in the availabil-
ity of the PAHs to microorganisms [30]. In microorgan-
isms, three well-developed sophisticated mechanisms 
are presented, where environmental stimuli are sensed 
by them, and the microorganism’s molecular machinery 
undertakes a reaction. Furthermore, chemotactic bacte-
ria overcome mass-transfer limitations that impede the 
biotransformation process [31]. Here, we will shed light 
on the signal transduction mechanisms exhibited by the 
most prokaryotic organisms and establish their link to 
PAHs biodegradation.

Microorganisms are dynamic and complex cell sys-
tems. Several factors control their population density, 
diversity, and distribution in the environment. How these 
factors impulse a stimulus, what the underlying mecha-
nisms are, and how microorganisms perceive these stim-
uli and respond have long fascinated the researchers. The 
advancement in molecular biology and bioinformatics 
has unfolded that microorganisms bear a complex mech-
anism. This inherent mechanism in microorganisms is 
responsible for sensing and afterward triggering a due 
cellular response to various environmental cues such as 
light, nutrients, temperature, osmolarity, and adherable 
surfaces, etc. [32].

Three kinds of signal transduction mechanisms are 
present in microorganisms, i.e., one-component system, 
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two-component system, and chemotaxis system that is 
a specialized form of a two-component system. PAHs 
are toxic compounds, and their absorption to bacterial 
membrane above a threshold level could result in the 
death of cells [33]. Therefore, a delicate balance between 
PAHs compounds absorption by the cell membrane and 
degradation by microorganisms is inevitable. Chemot-
actic behavior or transcriptional-level regulation plays 
a critical role in maintaining this balance [34]. Genomic 
analysis revealed that the signaling system lies between 
the two-component system and the chemotaxis system 
[35]. Signal transduction pathways are considered to 
play an active role in biodegradation and availability of 
aromatic compounds, ranging from a single-ring to mul-
tiple-ring PAHs, to microorganisms [36]. Therefore, it 
is quite essential to understand the molecular and func-
tional basis of these signal transduction mechanisms to 
degrade aromatic compounds effectively. Furthermore, 
understanding the functional characterization of genes 
involved in triggering these transduction mechanisms 
could help us to link with the degradation pathways 
that will revolutionize the PAHs degradation by genetic 
engineering.

One‑component system
The signal transduction system is not a simple process. 
The one-component system is considered the simplest, 
consisting of only a single cytosolic protein. One-com-
ponent systems are believed to be evolutionarily older 
than two-component systems. The genomic analysis of 
145 prokaryotic genomes suggested that one-component 
systems are distributed among bacteria and archaea [37]. 
Based on genomic analysis, the authors speculated that 
the evolutionary history of two-component systems roots 
to one-component systems based on three observations: 
(a) simpler modular design, (b) domain repertoire diver-
sity, and (c) distribution of one-component systems in 
prokaryotes.

One-component systems typically use two separate 
domains, i.e., sensory (input) and regulatory (output). 
Input domains are constituted by small molecule-bind-
ing motifs, while helix–turn–helix DNA-binding motifs 
are output domains [37]. It was found that signal trans-
duction in most prokaryotes consists of single proteins 
(one-component systems). The single protein lacks 
phosphotransfer domains that are the critical domain 
in two-component systems. A typical example of a one-
component system is a ligand-binding transcriptional 
regulator. The one-component system also shows vari-
ations in terms of domains; only one sensory and regu-
latory domain per protein [38] or multiple sensory and 
regulatory domains in a single protein [39]. Readers are 

further directed to the work of Ulrich et al. [37] for a bet-
ter understanding of one-component systems.

A classic example of the one-component system is the 
transcriptional regulators that control catabolic path-
ways responsible for aromatic compounds degradation. 
Aromatic compounds biodegradation in microbial com-
munities is controlled by 11 different transcriptional reg-
ulators, as explained by Rodriguez et al. [40].

Two‑component system
The term two-component system was coined around 
1986 to describe a novel class of regulatory systems in 
bacteria [41]. It is considered a highly sophisticated sign-
aling mechanism with a highly modular design. It con-
sists of a membrane-bound histidine-kinase (conserved 
kinase core) with extracellular input domain and cyto-
solic response-regulator protein (regulatory domain). 
Environmental stimuli are sensed by HK that modu-
lates activities and transfers the phosphoryl group to 
the receiver domain of response regulator. The response 
regulator contains aspartate residue, a phosphoryl group 
acceptor. This phosphorylation results in downstream 
activities at the effector/output domain that dictates the 
specific response. The regulatory output by the major-
ity of response regulators is mediated at the transcrip-
tional level [42]. Readers are referred to an excellent 
review by Stock et  al. [43] for the detailed comprehen-
sion of phosphorylation chemistry, structure, and func-
tion of histidine kinase and structure and function of 
response regulator and effector domain; while to grasp 
genomic evolution and molecular mechanism of the 
two-component regulatory system, respectively, reviews 
by Capra and Laub [44] and Zschiedrich et  al. [45] are 
recommended.

Chemotaxis system
Chemotaxis, a multiprotein system, is witnessed in most 
prokaryotic species and assumed to be evolved from a 
two-component system that controls prokaryotic tran-
scription. In bacteria, sensory recognition of a chemical 
gradient triggers a molecular signal transduction cascade. 
This results in a modulation of flagellar activity, direct-
ing the movement of the bacteria either towards or away 
from stimulatory molecules depending upon favorable 
and unfavorable conditions [46, 47]. Chemotaxis path-
ways in prokaryotes are known to vary depending upon 
inhabiting conditions. The main components of the 
chemotaxis signal transduction pathways are conserved 
and are made up of the ternary complex between methyl‐
accepting chemotaxis proteins such as the sensor protein, 
and the adaptor protein.

The foundation of microbial chemotactic response 
mechanism is based on E. coli that are extensively studied 
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[48, 49]. The chemotactic repertoire of E. coli is quite 
simple. The signaling cascade is based on five chemo-
receptors. These co-factor proteins are named Tar, Tsr, 
Trg, Tap, and Aer. Tar and Tsr are amino acid recep-
tors, whereas Trg, Tap, and Aer are more specific recep-
tors for sugars, dipeptides, and redox potential [50]. 
Chemoreceptors are subject to vary per microbial spe-
cies depending upon their lifestyle and metabolic diver-
sity. Bacteria with the capability to inhabit in multiple 
and variable environments could contain 5 times more 
chemoreceptors than bacteria that strive in specific envi-
ronmental conditions. In some species even up to 60 
chemoreceptors have been identified [51, 52]. Bacteria 
with chemosensory signaling capability contain, on aver-
age, 14 chemoreceptor genes [51]. The location of chem-
oreceptors is also subject to variations. It could be within 
the cytoplasm or membrane-bound. In E. coli, Tar, Tsr, 
Trg, and Tap are contained in periplasmic 4 helix binding 
ligand-binding domain (LBD) while Aer is present in the 
PAS domain that lies inside cytoplasm [53]. The five co-
factor proteins make a signaling complex bearing three 
components: ligand-binding domain, activity state, and 
methylation state. The biochemical and structural study 
of E. coli is beyond the scope of this review. The readers 
are referred to already published reviews [54–56].

Chemotaxis is also based on sensory limits of the 
receptors, adaptation mechanism, and dynamic range of 
the chemoreceptors. Bacterial receptors sense environ-
mental stimulus, ligands, and retain in their memory for 
temporal comparison to make further decisions about 
chemotaxis. Ligand concentrations limit the sensitivity of 
the receptors. In this regard, the sensing limits of recep-
tors established by Berg & Purcell back in 1977 based on 
diffusion and binding and unbinding of ligands to recep-
tors still hold validity [57]. Ligands concentration and 
receptors saturation play a vital role in the dynamic range 
of the chemoreceptors. In a recent study, Tena-Gari-
taonaindia et al. [58] studied halophilic bacterium Halo-
monas anticariensis FP35T for chemotaxis and reported 
that bacteria showed chemotaxis up to 500 ppm of phe-
nol with optimum degradation while it shows chemo-
repulsion towards higher concentration of 10,000 ppm.

Interestingly, receptors can discriminate between 
ligands concentrations that further could be enhanced 
by adaptation mechanism [59]. Methylation plays a cru-
cial role in the dynamic range of the chemoreceptors. 
Increased methylation favors the receptors binding state 
that ultimately affects the kinase activity and ligand-bind-
ing affinity. Methylation system functions by methylation 
and demethylation of receptors on the specific glutamate 
residues, respectively, by methyltransferase (CheR) and 
methylesterase (CheB) [60]. It is interesting to note that 
the methylation level controls the chemotactic (Che) 

proteins in the signal transduction network. There are 
different Che proteins available, including CheA, CheY, 
CheW, CheZ, CheR, and CheB. Each Che protein has 
a unique and specific role in transferring the external 
stimuli to the biomechanical motor for the movement of 
the cell. The methylation system also gives a short-term 
memory to the bacterial cell that enables them to detect 
concentration changes. The methylation system seems to 
control the transduction network activity by modifying 
the bacterial behavior to swim along or tumble and reori-
ent [2].

Emerging pieces of evidence suggest that homologous 
signal transduction pathways regulate not only chemot-
axis, but also several other cellular functions in various 
bacterial species [61]. The chemotaxis signaling path-
way of E. coli is the best understood and is considered 
independent of metabolism. Membrane-bound recep-
tor clusters in E. coli cells sense external attractants and 
repellents. However, literature furnishes reports that 
chemotaxis could be metabolism dependent and inde-
pendent in other bacteria.

Structural diversity and binding mechanism in MCPs
The structural characterization of MCPs is as crucial as 
understanding the specificity and mode of ligand-bind-
ing mechanisms in chemoreceptors. Binding can be cat-
egorized as specific and non-specific binding. Unbound 
ligand concentration and affinity of the binding site are 
central in this categorization. Since the structure of the 
protein determines its function. Therefore, the structural 
characterization of MCPs seems to have pivotal impor-
tance in signal transduction mechanisms. Figure 1a indi-
cates the structural components of a typical MCP, while 
Fig.  1b depicts the chemotaxis mechanism in response 
to aromatic compounds detection and downstream 
processing. Functional characterization of MCPs could 
reveal about their role in degradation pathways. Ligand 
binding capacity of chemoreceptors is vital for the regu-
lation of biological functions in microorganisms. Here, 
an attempt is made to structurally characterize MCPs 
that have a role in chemotaxis towards aromatic com-
pounds and their biodegradation pathways.

With the interplay of engineering, biophysical, bio-
molecular sciences, and bioinformatics, scientists have 
developed sophisticated tools to visualize transduction 
mechanisms at the molecular level. Chemoreceptors 
are transmembrane proteins; it was found that MCPs 
are of different architecture with different topologies 
and types of sensor domains. Common MCPs are com-
posed of extended helical bundles. The cytosolic domain 
comprises two components: histidine kinase adenylyl 
cyclase (HAMP) domain and methyl-accepting domain 
based on an adaptation and signaling sub-domain [62]. 
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Furthermore, evolutionary genomics and comparative 
genomics analysis of several hundred bacterial species 
testify that MCPs have seven distinct classes of cytoplas-
mic signaling domains [62]. The HAMP domain starts 
from the transmembrane helices and links to the N-ter-
minal helices of the methyl-accepting domain. Ferris and 
his team explained this as a universal signal converter in 
the molecular machinery of the cell. The signal converter 
translates different kinds of signal inputs into conforma-
tional changes via rotating its helices in the downstream 
domains. The authors proposed this mechanism as a 
‘cogwheel model’ [63]. Almost each MCP indeed con-
tains HAMP and an adaptation domain [62].

The three different signal transduction mechanisms 
share sensory domains for signal recognition. Sen-
sor domains are classified based on size: Cluster I 
(about 150 amino acids) and Cluster II (approx. 250 
amino acids). Per–ARNT–Sim (PAS), (cyclases/histi-
dine kinases associated sensory extracellular) CHASE, 
GAF, and TarH sensor domains belong to Cluster I. 
[51]. About 40% of chemoreceptors possess Cluster II 
domains that are mostly un-annotated. Wuichet and fel-
lows [64] suggested that un-annotated domains could 
either be not recognized due to having low sensitivity or 
novel and not present in the database. Ulrich et  al. [65] 
developed and managed a database, namely ‘Microbial 

Signal Transduction (MIST) Database’, which furnishes 
researchers with comprehensive information about 
microbial genomes with predicted signal transduc-
tion properties. The database contains information on 
125,000 + genomes, 13 million contigs, 516 million genes, 
and 100 million unique protein sequences (the website 
was accessed on 30-08-2019).

Chemotaxis occurs based on: (a) direct signal recogni-
tion of chemoeffectors by the chemoreceptors; (b) indi-
rect signal recognition that is exclusively studied in E. 
coli. Central to the chemotaxis system is a two-compo-
nent regulatory system such as histidine kinase (CheA), 
the response regulator (CheY), and several auxiliary 
proteins. Chemoeffectors bind directly or indirectly to 
the sensor domains of periplasmic receptors. When an 
unliganded chemoreceptor (MCP) is bound to a chemo 
effector, CheA becomes activated with autophospho-
rylation. This binding induces a shift in the equilibrium 
between the conformations of the cytoplasmic signaling 
domain. The signaling domain promotes or represses the 
autophosphorylation activity of CheA, thereby control-
ling the autophosphorylation [50]. In the next phase, the 
autophosphorylation of the CheA transfers a phosphoryl 
group to the response regulator (CheY). It forms a CheY-
P complex that diffuses to a flagellar motor and binds to 
FliM protein. This process increases the probability of a 

Fig. 1  a Common topology of a methyl-accepting chemotaxis protein. LBD ligand-binding domain, CM cell membrane, SD signaling domain. 
b Flowsheet diagram of the sensing aromatic compounds and their intermediate metabolites by a methyl-accepting chemotaxis protein with 
downstream signaling cascade (modified after [70])
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clockwise rotation. On the contrary, CheZ is the protein 
responsible for the dephosphorylation of CheA to reverse 
this mechanism. In this way, a balance of the chemotaxis 
process is maintained by the molecular machinery of 
bacteria.

Chemotactic bacteria possess an adaptation mecha-
nism that is important in the chemotactic swimming 
of bacteria towards a chemical gradient. This mecha-
nism allows them to make temporal comparisons of the 
chemical conditions in the environment as they swim to 
respond to chemical gradients [66, 67]. The adaptation 
process is supported by two enzymes, methyltransferase 
CheR and methylesterase CheB. The methylation of the 
chemoreceptors governed by CheR causes the associated 
CheA kinases to become more active. While feedback is 
provided by CheB phosphorylation through CheA that 
increases CheB activity [68], this adaptation mechanism 
is not as simple as explained in E. coli, but adaptation sys-
tems are subject to change depending upon bacterial spe-
cies diversity [69].

Chemotaxis‑linked degradation of aromatic compounds
Microbial chemotaxis towards aromatic compounds 
appears to have been recorded for decades [71, 72]. 
Intensive research on chemotaxis toward aromatic com-
pounds has been conducted with Pseudomonas species 
[71, 73, 74], Burkholderia species [75], and Comamonas 
species [76].

Aromatic compounds are structurally diverse with sin-
gle to multiple benzene rings. Degradation of these aro-
matics to basic building blocks (carbon and hydrogen) is 
usually carried out via a limited number of intermediates 
like benzoate or catechol. The intermediate compounds 
are subsequently channeled to the tricarboxylic acid 
(TCA) cycle [77]. Therefore, it could be assumed that the 
degradation of aromatic compounds is divided into upper 
and lower pathways. The lower pathways have common 
intermediates; thereby, the combination of upper and 
lower pathways has broadened the bacterial potential 
to degrade aromatic compounds [78]. We, hereby, cover 
aspects of mono- and polycyclic aromatic compounds 
biodegradation, pathways involved, and establish the link 
of chemotaxis towards enhanced biodegradation of these 
compounds.

Monocyclic aromatic hydrocarbons
Benzene, toluene, ethylbenzene, and o-, m-, and p-xylene 
(BTEX) are the major monoaromatic compounds found 
in groundwater or soil. The major source is leakage from 
the gasoline and petrochemical industry. BTEX com-
pounds pose a severe threat to all forms of life. Having 
high solubility, monoaromatic compounds are incred-
ibly mobile in soil and water and readily available to 

microbial flora. However, owing to hydrophobicity, these 
compounds are toxic to the cytoplasmic membrane. 
However, microorganisms have evolved to utilize mono-
aromatic compounds as sole carbon and energy sources 
resulting in microbial biodegradation as an energy-effi-
cient, environment-friendly, and low-cost effective strat-
egy to reclaim polluted soils and water. It must be noted 
that no single pure culture can degrade these pollutants 
to CO2 and H2O. Therefore, mixed microbial communi-
ties are necessary for effective degradation. Furthermore, 
acclimatized microbial communities have a higher deg-
radation rate than non-acclimatized ones. Aerobic and 
anaerobic pathways can accompany biodegradation. This 
review is, however, more focused on degradation by aer-
obic pathways linked to chemotaxis as an effective degra-
dation strategy. For detailed comprehension of anaerobic 
degradation of aromatic compounds, readers are referred 
to some excellent review papers [79–82].

In aerobic degradation, BTEX primary transforma-
tion is carried out by multi-component enzymatic sys-
tems such as mono-oxygenases and di-oxygenases. As 
the name indicated, the former uses one oxygen atom 
while the latter uses two oxygen atoms to cleave the aro-
matic ring resulting, respectively, in pyrocatechols and 
2-hydroxy-substituted compounds. Intermediate prod-
ucts are subsequently entered into the TCA cycle via 
different pathways. Five different aerobic degradation 
pathways have been identified for toluene degradation. A 
detailed discussion of the involved biochemical pathways 
is beyond the scope of the current review, however. Read-
ers are referred to [34, 83] for in-depth comprehension.

An array of microorganisms under different genera 
has been studied for BTEX degradation (Table  1). The 
genus Pseudomonas of γ-Proteobacteria is probably the 
most studied one. The members are widespread colo-
nizers with 272 species (http://www.bacte​rio.net/pseud​
omona​s.html). The strains are capable of adapting to 
various environmental conditions. The specific genetic 
makeup of bacterial strains is responsible for degrading 
various organic compounds, including common biogenic 
aromatics and anthropogenic aromatic compounds. The 
versatile degradation capability makes Pseudomonas 
genus ubiquitous in soil, plant surface, animals, and even 
humans [84]. Of various strains, P. putida KT2440 (a var-
iant of P. putida mt-2) is presumably the best laboratory-
characterized pseudomonad.

Chemotaxis towards aromatic compounds by P. putida 
PRS2000 was first reported back in 1984. But, the mecha-
nisms involved in this phenomenon remained ambigu-
ous until complete genome sequencing, bioinformatic 
tool development, and advanced techniques in molecu-
lar biology. A range of aromatic compounds is degraded 
by the Pseudomonads employing 14 different peripheral 

http://www.bacterio.net/pseudomonas.html
http://www.bacterio.net/pseudomonas.html


Page 8 of 18Ahmad et al. Environ Sci Eur           (2020) 32:52 

Table 1  Chemotaxis-linked degradation of environmental pollutants

Pollutant group Bacterial strain Chemoattractant Degradation pathway Chemotaxis References

Simple and/or single-ring 
aromatic hydrocarbons

Pseudomonas putida F1 Benzene, toluene, trichloro-
ethylene

Meta ring-cleavage + [75]

Pseudomonas sp KA Benzene, toluene, xylene TOL and TOD pathway N.C. [103]

Pseudomonas mendocina KR1 Benzene, toluene, m-xylene, 
p-xylene

TOL N.C. [104]

Pseudomonas putida AY-10 Benzene, toluene, ethylben-
zene, xylene

N.D N.C. [105]

Pseudomonas putida mt-2 Succinate, m-xylene TOL N.C. [106]

Pseudomonas putida CCMI 
852

Benzene, toluene, xylene TOL N.C. [107]

Pseudomonas stutzeri OX1 Toluene, o-xylene TOL N.C. [108]

Burkholderia fungorum 
FLU100

Toluene, benzene, mono-
halogen benzene

Ortho-cleavage pathway N.C. [109]

Cupriavidus metallidurans 
CH34

Benzene, toluene, 
o-xylene, p-cymene, 
3-hydroxybenzoate, 
4-hydroxybenzoate, 
3-hydroxyphenylacetate, 
4-hydroxyphenylacetate, 
homogentisate, catechol, 
naphthalene, and 2-ami-
nophenol

Meta-cleavage pathway N.C. [110]

Pseudomonas thivervalensis 
MAH1

Benzene, toluene, ethylben-
zene, and xylene

N.D. N.C. [111]

Pseudomonas putida F1 Vanillate, vanillin, 4‐hydroxy-
benzoate, benzoate, 
protocatechuate, quinate, 
shikimate

β-Ketoadipate + [87]

Pseudomonas putida Fu1 
Pseudomonas sp. strain A3

Furfural, 5-hydroxymethylfur-
fural, furfuryl alcohol, and 
2-furoic acid

Aerobic degradation + [112]

Nitro-substituents Pseudomonas putida PRS2000 Benzoate and 4-hydroxyben-
zoate, 3- and 4-nitroben-
zoate

β-Ketoadipate- + [113]

Pseudomonas. putida TW3
Pseudomonas sp. strain 4NT

4-Nitrotoluene, 4-nitroben-
zoate, aminobenzoate 
isomers

β-Ketoadipate- + [113]

Pseudomonas fluorescens KU-7 2-Nitrobenzoate + [92]

Acidovorax sp. strain JS42 2-Nitrotoluene Dioxygenase ring cleavage + [114]

Ralstonia sp. SJ98 p-Nitrophenol, 4-nitrocat-
echol, o-nitrobenzoic acid, 
and p-nitrobenzoic acid

N.D. + [31]

Pseudomonas sp. strain 
WBC-3

Para-nitrophenol, 4-nitrocat-
echol, and hydroquinone

β-Ketoadipate  + [88]

Chloro-substituent Pseudomonas sp. JHN 4-Chloro-2-nitrophenol N.D. + [115]

Pseudomonas sp. JHN 4-Chloro-3-nitrophenol N.D. + [116]

Burkholderia sp. SJ98 2-Chloro-4-nitrophenol and 
2-chloro-3-nitrophenol

+ [89]

Pseudomonas pseudoalcali-
genes  KF707

Biphenyl, benzoic acid and 
chlorobenzoic acids

+ [117]
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pathways to a few common intermediates, which are fun-
neled to the tricarboxylic acid (TCA) cycle. It is reported 
that P. putida contains 12 out of 14 catabolic pathways 
that corroborate its colonization in almost every environ-
ment. The β-ketoadipate is the most widely distributed 
pathway in the degradation of the aromatic compounds. 
It is beyond the scope of this review to discuss all the 
assimilation pathways; therefore, readers are referred to a 
reference entry by Nogales and Diaz [85].

Pseudomonas putida DOT‐T1E grows on high concen-
trations of toluene. It was found that strong chemotaxis 
towards toluene was due to transmissible plasmid pGRT1 
in the DOT-T1E strain. It was further confirmed by site-
directed mutagenesis of two open read frames encoded 
on pGRT1: ORF72 and ORF97. Quantitative capillary 
assay confirmed that wild strain showed strong chemo-
taxis towards toluene while mutant strains deficient 
in ORF72 and ORF97 barely showed chemotaxis. This 
implicates that plasmid pGRT1 carries the genes respon-
sible for chemotaxis [86]. Luu et al. [87] reported that P. 
putida F1 is chemotactic towards aromatic compounds 
(vanillin, vanillate, 4-hydroxybenzoate) that funnel in the 
β-ketoadipate pathway. The authors further conclude that 
4-hydroxybenzoate permease modulates the chemotactic 
response by up-taking 4-hydroxybenzoate. Chemotactic 
machinery in P. putida seems responsible for the metab-
olism and transport of aromatic compounds across the 
cell.

Pseudomonas sp. strain WBC-3 utilized methyl para-
thion or para-nitrophenol (PNP) as the sole source of 
carbon, nitrogen, and energy. Its chemotactic behav-
iors towards aromatics were investigated. The results 
indicated that strain WBC-3 was attracted to multiple 

aromatic compounds, including metabolizable or trans-
formable substrates PNP, 4-nitrocatechol, and hydroqui-
none. Disruption of PNP catabolic genes did not affect 
its chemotactic behaviors with the same substrates, indi-
cating that the chemotactic response in this strain was 
metabolism-independent. Furthermore, it was shown 
that strain WBC-3 had a constitutive β-ketoadipate 
chemotaxis system responding to a broad range of 
aromatic compounds. It is different from the induc-
ible β-ketoadipate chemotaxis described in other Pseu-
domonas strains [88].

Pseudomonas sp. JHN was found involved in decolori-
zation and biotransformation of 4-chloro-2-nitrophenol 
(4C2NP) up to a concentration of 0.6 mM with 5-chloro-
2-methylbenzoxazole as a major metabolite. The capil-
lary and drop plate assays showed a positive chemotactic 
response towards 4C2NP. The authors further concluded 
that chemotaxis in strain JHN was metabolism depend-
ent as it did not show chemotaxis towards compounds 
that it cannot degrade or metabolize. Another bacte-
rial strain Burkholderia sp. SJ98 is chemotactic towards 
chloro-nitroaromatic compounds: 2-chloro-4-nitrophe-
nol, 2-chloro-3-nitrophenol, 4-chloro-2-nitrophenol, 
2-chloro-4-nitrobenzoate, 4-chloro-2-nitrobenzoate, 
and 5-chloro-2-nitrobenzoate. However, it found to be 
completely inhibited in the presence of nitroaromatic 
compounds. But it is independently inducible from its 
chemotaxis towards succinate [89].

Accelerated degradation of nitrophenols was quanti-
fied by the strain SJ98 in a later study by Min et  al. on 
artificially contaminated soil, proving the role of chem-
otaxis in efficient biodegradation [90]. Members of 
genus Pseudomonas possess the enormous catabolic 

N.D. – not determined, N.C. – not conducted

Table 1  (continued)

Pollutant group Bacterial strain Chemoattractant Degradation pathway Chemotaxis References

Polycyclic aromatic hydro-
carbons

Pseudomonas putida G7
Pseudomonas sp. strain NCIB 

9816-4

Naphthalene Meta-cleavage pathway + [118]

Pseudomonas putida RKJ1 Naphthalene and salicylate N.D. + [119]

Pseudomonas alcaligenes 8A, 
Pseudomonas stutzeri 9A, 
and Pseudomonas putida 
10D

Naphthalene and phenan-
threne

Ortho-cleavage catechol + [120]

Kurthia sp and B. circulans Naphthalene and anthracene N.D. + [121]

Halomonas titanicae strain 
KHS3

Phenanthrene and phthalate N.D. + [122]

Halomonas sp. KHS3 Phenanthrene, fluorene, 
naphthalene, phthalate, 
salicylic acid, Benzoic acid, 
and 4-hydroxybenzoic acid

β-Ketoadipate, homogen-
tisate and gentisate 
pathways

+ [123]
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potential to PAHs with chloro- and nitro-substitutions, 
and strains have shown positive or negative chemotactic 
response [91–93]. Biphenyl-utilizing bacteria P. putida 
P106 and Pseudomonas sp. B4 using the oxidative route 
has shown positive chemotaxis towards biphenyls along 
with metabolization [94–96]. P. putida PR2000 is also 
chemotactic towards 3- and 4-chlorobenzoates (CBAs), 
which are intermediate metabolites of polychlorinated 
biphenyls [74]. CtpL, an inorganic phosphate receptor, 
was found responsible for positive chemotaxis towards 
chloroaniline, anthranilate, 4-aminobenzoate, benzoate, 
4-chloronitrobenzene, catechol, and 4-chlorocatechol in 
Pseudomonas aeruginosa PAO1 [97].

In another study, laboratory model strain Burkholde-
ria xenovorans LB400 was compared with Pseudomonas 
sp. B4 for motility towards biphenyl and degradation. 
Though strain LB400 was able to degrade biphenyl, it 
failed to show mobility. Therefore, chemotactic Pseu-
domonas sp. B4 showed active degradation than strain 
L400. The study implicates that chemotaxis has an 
important phenotypic character for efficient microbial 
degradation of polychlorinated biphenyls [94].

Genus Comamonas is another genus that has been 
extensively studied in recent years for chemotaxis linked 
degradation of aromatic compounds. Species of genus 
Comamonas are Gram-negative, aerobic, flagellated, and 
mostly rod-shaped with non-fermentative metabolism. 
The genus comprises 21 species (http://www.bacte​rio.
net/comam​onas.html) that are mostly isolated from soil, 
mud, and water. Genomic analysis of 34 genomes of 11 
different Comamonas sp. revealed that metabolic path-
ways for energy are well conserved, suggesting their wide 
distribution in natural and engineered environments 
[98]. Comamonas are chemoorganotrophic and reported 
to contribute well in soil bioremediation [99]. Mem-
bers are active degraders of a wide variety of aromatic 
compounds.

MIST database contains the full domain architec-
ture for the whole genome of four Comamonas spe-
cies: Comamonas testosteroni TK102 (18 putative MCP 
genes), Comamonas kerstersii (25 putative MCP genes), 
Comamonas serinivorans (1 putative MCP gene), and 
Comamonas testosteroni CNB-2 (20 putative MCP 
genes). Among them, C. testosteroni are extensively 
studied for chemotaxis towards aromatic compounds 
in recent years [70]. In a recent study, C. testosteroni 
CNB-1 was studied for aromatic compounds. CNB-1 
strain grows on a range of aromatic compounds: vanil-
late, benzoate, gentisate, 3- and 4-hydroxybenzoate, 
etc., Huang et al. [76] demonstrated that chemoreceptor 
MCP2901 of C. testosteroni CNB-1 binds to 9 aromatic 
compounds to initiate downstream signaling process 
and cause chemotaxis motility. The results were further 

consolidated by expressing MCP2901 in chemotaxis-
deficient null mutant strain. In this study, the authors 
further speculated that MCP2901 is responsible for both 
metabolism-dependent and metabolism-independent 
chemotaxis towards aromatic compounds. This specu-
lation was based on quantitative RT-PCR of previously 
characterized MCP2201 and MCP2983 in the presence 
and absence of aromatic compounds.

It is well debated that chemosensory pathways also reg-
ulate and control multiple cellular functions for the sur-
vival of microorganisms. Cellular functions include gene 
regulations and cell cycle progression. C. testosteroni 
CNB-1 were isolated from a wastewater treatment reac-
tor. For enhanced degradation of organic pollutants, bio-
film formation is inevitable that allows better microbial 
cell aggregation and attachment. To better understand 
the biofilm formation process, cross-talk between two 
chemosensory pathways is reported for C. testosteroni 
CNB-1. The strain contains one che gene cluster and one 
flm gene cluster; the study showed that seven chemore-
ceptors contribute to biofilm formation that also medi-
ates chemotaxis [100]. This implicates that chemotaxis 
genes do have a role in cellular functions that contribute 
to the biodegradation of aromatic compounds.

Though 21 species of genus Comamonas have been 
discovered, the literature furnishes chemotaxis and 
biodegradation of aromatics studies mostly on Coma-
monas testosteroni. C. testosteroni might have multiple 
advantages over other species, such as (a) colonization 
and adaptation in various environmental conditions; 
(b) no competition with other carbohydrate-degrading 
microorganisms, and (c) well-elucidated assimilation 
pathways. Biodegradation capacity of C. testosteroni has 
been enhanced by using synthetic biology tools via cre-
ating functional gene circuits to enhance the expression 
of genes using synthetic and wild-type promoters [101]. 
Lignite addition in the soil coupled with C. testosteroni 
CCM 7530 inoculation resulted in efficient biodegrada-
tion; the authors reported that soil ecotoxicity should be 
monitored during microbial biodegradation [102].

Though BTEX and other monoaromatic hydrocarbons 
are extensively studied for biodegradation by several bac-
terial strains under various genera, chemotaxis-linked 
degradation of monoaromatic compounds is relatively 
less studied (Table 1). From the available literature, it can 
safely be presumed that the genus Pseudomonas has been 
extensively studied for chemotaxis. The authors have 
established that chemotaxis plays an essential role in the 
biodegradation of xenobiotics and pollutant aromatic 
compounds. Moreover, the microorganisms with chemo-
tactic ability could be successfully applied for the resto-
ration of pollutant soils. However, it must be mentioned 
that still several aromatic compounds need to be tested 

http://www.bacterio.net/comamonas.html
http://www.bacterio.net/comamonas.html
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in the priority pollutant list that requires the researcher’s 
attention.

Polycyclic aromatic hydrocarbons
PAHs consist of two or more fused benzene rings, i.e., 
from two rings (naphthalene) up to cluster (pyrene) 
arrangement. International Union of Pure and Applied 
Chemistry (IUPAC) reported 35 parent PAHs with 
more than 100 compounds as substituents. Compre-
hensive information on PAHs nomenclature and struc-
tural organization can be found in the cited literature 
[124–126]. Having high toxicity as reported earlier in 
this text, various conventional degradation methods of 
PAHs are cited in the literature, including electro-ultra-
sonic remediation [127], thermal incineration [128], 
landfilling [129], and natural and synthetic surfactants 
[130, 131]. However, biodegradation of PAHs is gain-
ing much attention due to the extravagant cost of the 
aforementioned conventional methods and environmen-
tal concerns. Therefore, literature also furnishes much 
information from original research articles [132, 133] to 
review articles [10, 134] on PAHs biodegradation. Sco-
pus, a well-recognized database for scientific literature 
search, generated 406 entries for keywords “naphthalene 
and biodegradation”, accessed on 15/11/2019. It indicates 
the potential interest of the research community in the 
biodegradation of PAHs.

Bacterial strains degrading PAHs are taxonomically 
diverse, belonging to genera Pseudomonas, Mycobac-
terium, Sphingomonas, Alcaligenes, and Bacillus [135]. 
Therefore, PAHs degradation mechanisms might not be 
the same for complete mineralization employed by dif-
ferent strains. It depends upon several factors, includ-
ing a) PAHs structural configuration, b) isomeric forms, 
c) different substituted forms from parent PAHs, d) 
nutritional competition between microbial species, and 
e) interaction between different microbial communi-
ties. Commonly PAHs degradation is initiated by ring 
hydroxylating dioxygenase [136]. Naphthalene degra-
dation in Pseudomonas putida KD10 follows the meta-
cleavage pathway of catechol [137]. Stenotrophomonas 
maltophilia C6 possesses multiple degradation pathways 
for phenanthrene [138]. A complete metabolic pathway 
for mineralization of chrysene by Pseudoxanthomonas 
sp. PNK-04 is proposed by Nayak et al. [139]. A compre-
hensive discussion of metabolic pathways for light and 
heavy PAHs is not in the scope of this text, however, and 
the readers are referred to a previously published review 
[140].

A relatively lesser rate of PAHs biodegradation in the 
soil is subject to the hydrophobicity of PAHs, leading 
to slow mass transfer of these compounds to degrading 
microorganisms. In this respect, the chemotaxis study 

of microorganisms towards PAHs is invaluable. Though 
high molecular weight PAHs have been extensively stud-
ied (Table 1) for biodegradation, chemotaxis-linked bio-
degradation of PAHs is relatively less studied.

Naphthalene, being a light PAH, is remarkably stud-
ied for chemotaxis-linked biodegradation. Pedit et  al. 
[141] developed a mathematical model to quantify the 
chemotaxis of P. putida G7 towards naphthalene and its 
degradation. Based on experimental data and simula-
tions, authors conclude that in order to have the same 
naphthalene degradation rate, initial cell concentration of 
chemotactic mutant would have to be several orders of 
magnitude than wild chemotactic P. putida that directly 
implicate the role of chemotaxis in naphthalene biodeg-
radation. As nonaqueous-phase liquid poses difficulty in 
the bioremediation of PAHs, therefore, in a later study, 
Law and Atiken [142] observed naphthalene degrada-
tion dissolved in a model nonaqueous-phase liquid by P. 
putida G7 to explore whether chemotaxis has a role in 
nonaqueous phase liquid or not. Wild-type P. putida G7 
increased the desorption and degradation rate relative to 
non-chemotactic mutant, suggesting the widespread role 
of chemotaxis mechanism in PAHs degradation under 
different scenarios.

To further consolidate the concept that chemotaxis 
does increase the biodegradation of PAHs, Marx and Ait-
ken [16] conducted experiments on P. putida G7 to study 
naphthalene biodegradation in an aqueous heterogene-
ous system in a glass capillary tube. The authors reported 
that the wild strain degraded 90% naphthalene in 6 h in 
comparison to a mutant strain (deficient in chemotaxis) 
that causes a similar reduction in about 30  h at similar 
initial microbial concentration. In another study, Han-
zel et  al. [143] studied the extent of chemotaxis of P. 
putida G7 along the vapor phase gradient. Surprisingly, 
vapor-phase naphthalene resulted in repulsion of PpG7, 
although its concentration was 50–100 times lesser 
than the aqueous concentration. The authors conclude 
that gaseous phase naphthalene is possibly toxic to cells 
resulting in negative chemotaxis.

Surprisingly, PAHs degrading bacterial isolates were 
discovered from non-contaminated soil; Bisht and cow-
orkers [121] discovered four isolates, namely Kurthia 
sp., Micrococcus varians, Deinococcus radiodurans, and 
Bacillus circulans from the rhizosphere of Populus del-
toides degrading chrysene, benzene, toluene, xylene, 
naphthalene, and anthracene. Among these isolates, only 
Kurthia sp. and B. circulans showed positive chemotaxis 
towards naphthalene and anthracene.

Microfluidic systems
Microfluidics is the study of a system that processes small 
amounts of fluids (micro- to atto-liter) with a dimension 



Page 12 of 18Ahmad et al. Environ Sci Eur           (2020) 32:52 

of one to hundreds of micrometers [144]. Microfluidics 
development is one of the latest innovations to quantify 
chemotaxis studies. Microfluidics has revolutionized the 
bacterial chemotaxis due to unprecedented control the 
system offers over chemical and physical environments 
at high spatial and temporal resolution. It offers several 
advantages, such as low cost, good reproducibility, multi-
functionality, energy-saving, and physiologically relevant 
conditions. Microfluidic devices present key features 
for studying chemotaxis: (a) precise control over chan-
nel geometries and fluid flow; (b) transparency and size 
of microchannels for measuring concentration gradients 
of the studied chemicals; (c) direct chemotaxis measure-
ment at individual organism scale level with well-defined 
chemoeffector gradients.

Chemotaxis in microfluidics is studied under flow and 
non-flow conditions. Based on these two conditions, var-
ious kinds of microfluidic devices have been developed, 
including a three-inlet parallel-flow device [145], the two-
inlet parallel-flow device [146], porous two-inlet paral-
lel flow device [147], and nutrient plume injector [148]. 
Microfluidic devices for the chemotaxis studies require 
the right selection of materials and accurately designed 
and fabricated channels for the construction of microflu-
idic devices. The materials for microfluidics should have 
the following characteristics: (a) biological and chemical 
compatibility with the sample in question; (b) good heat 
conductor; (c) better optical properties for detection; (d) 
low-cost fabrication of structure for flow generation or 
immobilization of biological molecules [149]. Readers are 
referred to the work of Xiao-Qian [150] for up-to-date 
information on the development of microfluidic devices 
aimed at bacterial chemotaxis.

Pseudomonas aeruginosa PAO1 was studied for bacte-
rial chemotaxis via a microfluidic approach by Jeong et al. 
[151]. The authors maintained a stable linear concentra-
tion gradient by diffusional mixing of laminar flow in a 
three-inlet microfluidic device. Peptone and trichloroeth-
ylene were studied as chemoeffectors. The microfluidic 
device clearly demonstrated that P. aeruginosa showed 
attraction towards peptone while repulsion towards 
trichloroethylene. It was further verified with a chemot-
actic mutant PC4 that showed non-chemotactic behavior. 
The authors concluded that microfluidic device facili-
tated the quantitative chemotaxis with a better under-
standing of the motility mechanism of P. aeruginosa.

In another study, Talaromyces helices were studied for 
benzo[a]pyrene (BaP) bioremediation. The model fungus 
is reported to degrade PAHs, but to better understand 
the transport mechanism and uptake of hydrophobic 
pollutants, a microfluidic system was utilized [152]. The 
authors spiked the microfluidic chamber with BaP to 
mimic the polluted soil environment. The microfluidic 

system was cultured, and mycelium growth was observed 
through time-lapse epifluorescence microscopy. The 
authors confirmed the intracellular storage of BaP in 
vesicles after 24-h incubation. The study confirmed the 
potential application of the microfluidic system in biore-
mediation. In future, the study will help in identifying the 
biostimulation parameters that have improved the BaP 
mobilization in fungus.

Microfluidics has been extensively applied for environ-
mental applications such as graphene-based microbots 
for toxic heavy metal recovery from wastewater streams 
[153], photocatalytic water treatment [154], and utiliza-
tion in mini-metagenomics to identify novel microbial 
lineage in environmental samples [155]. However, litera-
ture is unable to furnish much data regarding the utili-
zation of microfluidic systems for polycyclic aromatic 
compounds degradation by microorganisms.

Bottlenecks and recent developments 
in chemotaxis‑linked PAHs biodegradation
The literature furnishes a plethora of information on 
chemotaxis. But, utilization of this important bacterial 
phenomenon for effective degradation of aromatic com-
pounds is impeded by certain bottlenecks necessitating 
further investigation. Signal molecules recognition is the 
key obstacle in this phenomenon which is supported by 
following observations: (a) same compound/ligand rec-
ognition by different paralogous receptors; (b) mobility 
due to the presence of receptors parallel to chemorecep-
tors, i.e., energy taxis; (c) significant sequence divergence, 
even in sensor domains of the same family. In addition 
to these observations, functions of major bacterial sensor 
proteins are still unknown. Therefore, functional annota-
tion of proteins in signal transduction research requires 
further research.

After the pioneering work of Adler on qualitative and 
quantitative bacterial chemotaxis (Fig.  2), several meth-
ods have been developed to determine chemotaxis, 
including microscope analysis, fluorescent labeling, and 
microfluidic devices due to the potential application of 
chemotaxis in clinical and environmental studies. How-
ever, these methods are laborious and time-consuming. 
In a recent study, Davidov et al. [156] presented a novel 
method to quantify bacterial chemotaxis within minutes 
of using silicon femtoliter-well arrays by optical meas-
urement. In this method, silicon well acts as a diffraction 
grating in PRISM (phase-shift reflectometric interference 
spectroscopic measurements) that enables label-free, 
real-time quantification of bacterial cells in an optical 
readout. The application of this technique will immensely 
reduce the bacterial chemotaxis quantification time.

Since complete mineralization of PAHs is a combined 
effort of different microbial communities, biodegradation 
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of PAHs resulted in several metabolites (intermediate 
products) that might be chemotactic to one commu-
nity but repellent to others. The biosensing of ligands is 
a complex phenomenon. Therefore, in order to simplify 
the identification of chemoeffectors (ligands) by chemo-
receptors, hybrid sensor proteins were constructed by 
fusing sensor domains and signaling domains of P. putida 
and E. coli, respectively [157]. Hybrid sensor proteins 
composed of PcaY, McfR, and NahY, which are receptors 
for aromatic acids, TCA intermediates, and naphthalene, 
have helped in identifying new ligands. Hybrid MCP 
development will revolutionize ligands detection based 
on high sensitivity and analysis simplicity, in addition to 
its application regardless of the MCP source.

Conclusion and future perspectives
Chemotaxis is the survival strategy of the microorgan-
isms in response to environmental cues. This mechanism 
is exploited for the bioremediation of PAHs-contami-
nated soils. We have presented the molecular aspects of 
the chemotaxis mechanism. Complex signal transduction 

mechanisms lie on the foundation of the one-compo-
nent system. The functional characterization of methyl-
accepting chemotaxis proteins is imperative to explore 
the underlying mechanism of ligand uptake and down-
stream signaling machinery. Limited information on the 
precise functional mechanism of chemotaxis is the key 
hindrance to benefitting from this phenomenon to its 
optimum potential. The complete underlying mechanism 
of chemotaxis is inevitable to engineer aromatic com-
pound degrading novel strain.

There is a pressing need to conduct research using 
microfluidic devices for polycyclic aromatic compounds 
biodegradation. Modeling studies focusing on chemo-
taxis would help in identifying active hydrocarbon-
degrading strains. Future research should be focused on 
the potential integration of chemotaxis and degradation 
of priority pollutants. The development of genetically 
modified strains using specified promoters could help in 
identifying novel genes responsible for chemotaxis and 
their potential role in effective biodegradation. Much 
work is needed in developing novel degradation pathways 

Fig. 2  Role of chemotaxis in mono- and PAHs biodegradation, measurement methods, and potential applications
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for aromatic compound bioremediation and their poten-
tial link with microbial chemotaxis from unannotated 
microbial genomic data.
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