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Abstract 

Background:  Taste and odor problem in drinking water is one major concern for consumers and water sup-
ply. Exploring the odor characteristics and the major odor causing compounds in the source water is the base for 
odor control in drinking water treatment plant (WTP). In this study, focusing on a newly constructed reservoir with 
Huangpu River as the source water, the occurrence of typical odorants and their variations were first identified. Cor-
respondingly, the removal behavior in an ozone/GAC advanced treatment process was investigated.

Results:  The results indicated that 2-methylisoborneol (2-MIB), geosmin (GSM), and bis (2-chloroisopropyl) ether 
(BCIE) have major contribution to the musty/earthy and chemical/septic odors in the source water, respectively. 
Pre-ozonation alone (1 mg L−1) showed limited removal for 2-MIB and BCIE, at less than 30% and 20%, respectively, 
while combining with coagulation, sedimentation, and sand filtration, the removals were improved to higher than 
50%. After post-ozonation, the desired removal was achieved at a 1.5 mg L−1 dosage with all the odorants decreased 
below the corresponding odor threshold concentrations (OTCs) in the effluents. Furthermore, at a 1 mg L−1 post-
ozone addition, by combining with subsequent GAC process, the odor problem was solved as well.

Conclusion:  To resolve the odor problem in the drinking water, the concentrations of the odorants at less than their 
OTCs need to be achieved. As 2-MIB and BCIE have low reactivity towards direct ozonation, a subsequent GAC is 
needed with a moderate dosage of post-ozonation (1 mg L−1). Thus, for the odor problem in the source water, the 
suggested operation is: 1 mg L−1 of pre-ozonation in combination with coagulation, sedimentation, and sand filtra-
tion, followed by a 1 mg L−1 dosage of post-ozonation and finished by a GAC process.
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Background
Ensuring the esthetic satisfaction in drinking water is one 
major objective for water utilities. Usually, the occur-
rence of most odor issues was reported to associate with 
source water problems. For example, the bloom of algae 

resulting from the excess of nutrients is one of the inter-
nal causes that leads to the production of the odorous 
metabolites [51]. Additionally, contaminant inputs such 
as tributaries, upstream industrial discharges, and oil 
spills from gas station lead to the external causes for the 
odor problem in the surface water [21, 25, 32]. Odor and 
taste compounds although have been reported to be non-
toxic towards humans with the concentrations observed 
in the environment, their effects on public trust on drink-
ing water safety is significant. In China, odor issue has 
become one growing concern for water safety, especially 
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after the water crisis in Wuxi in 2007 [67], where serious 
complex odorants occurred in Lake Taihu water source. 
However, due to the limited information on odor char-
acteristics and specific odor causing compounds, water 
treatment plants (WTPs) were usually not able to adopt 
applicable measures while encountering taste and odor 
problems.

Musty/earthy odor caused by the presence of 2-meth-
ylisoborneol (2-MIB) and geosmin (GSM) is the most 
encountered problem in drinking water, which is usually 
related with cyanobacteria proliferation [26, 33, 47], espe-
cially some benthic cyanobacteria such as Oscillatoria 
and Phormidium [56]. Huangpu River, the major source 
water in Shanghai, China, was reported to face musty/
earthy odor problems seasonably, which was mainly cor-
related to 2-MIB produced by Phormidium [46]. Besides 
Oscillatoria and Phormidium, Pseudanabaena species 
have been reported to be a potential GSM producer [23].

Compared to musty/earthy odor compounds, the com-
pounds that cause the chemical/swampy/septic smells 
are more complicated. A large number of compounds 
may result in an unpleasant odor in the surface water. 
Some sulfur-based odor may result from anaerobic bacte-
ria [6, 9, 41]. For example, thiols (e.g., methanethiol) and 
thioether are the primary swampy/septic odor sources 
[16, 64], while thioether includes not only mono-sulfide 
thioether (e.g., dimethyl sulfide, diethyl sulfide, and 
dipropyl sulfide), but also multi-sulfide thioether (e.g., 
dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), 
and diethyl disulfide). Other odorous compounds (e.g., 
benzenes, phenols, esters, and heterocyclic compounds 
containing oxygen), arising from industrial activities 
such as meat rendering, rubber proofing, resin and plas-
tic synthesis, and dye manufacturing, may cause odor 
problem at a very low concentration (ng L−1) [11, 12, 42, 
43]. For example, bis(2-chloroisopropyl) ether (BCIE) is 
a chemical that is primarily used in industry as a solvent 
for fats, waxes and greases, as an extractant in paint and 
varnish removers, in spotting and cleaning solutions, 
and in textile processing [14]. Chemical/septic smell-
ing compounds resulting from the industrial discharge 
and surface runoff [62], together with the natural odor-
ous compounds (e.g., MIB and GMS) form the complex 
odor in the surface water. Complex odorants have been 
reported to be present in Huangpu River [17], causing a 
seasonal odor issue.

Conventional treatment processes showed a limited 
odorant removal. Pre-treatment, advanced treatment, or 
a combination of these techniques have been reported to 
improve the removal efficiency [39]. Compared to chlo-
rination and potassium permanganate (KMnO4), ozo-
nation revealed a greater removal efficiency [29, 30, 48]. 
Oxidation is effective to treat thiols and thioethers as well 

as the musty/earthy and chemical odorous compounds 
[53]. However, the byproducts from ozonation such as 
bromide ions, precursor of aldehydes, ketones, and car-
boxylic acids cannot be neglected. Generally, granular 
activated carbon (GAC) is applied in combination with 
ozonation to remove the byproducts and the odorant 
residuals [28]. Studies have indicated that GAC was effec-
tive in removing musty/earthy compounds 2-MIB and 
GSM [13, 63]. A decreasing effectiveness was observed 
for the typical septic odorous compounds including thi-
ols and thioethers through GAC [2]. By applying post-
ozonation in combination with GAC, the odorants may 
be eliminated through oxidation and physiochemical 
adsorption. Adding pre-ozonation prior to post-ozona-
tion and GAC improved the removal efficiency of recal-
citrant compounds (e.g., emerging contaminants) [45, 
65]. Such combination of treatment processes may apply 
to complex odor elimination when there is a significant 
input of the odorous compounds in the source water. 
Currently, the combined processes that are commonly 
involved include: (1) post-ozonation followed by GAC; 
and, (2) pre-ozonation, followed by post-ozonation, and 
GAC [17, 31].

A number of studies have focused on the odorant 
removal in water treatment processes. Ozonation and 
GAC were the most investigated unit processes [4, 8, 
13, 20, 38, 40] as well as the O3/GAC combined process 
[1, 39]. For the most part of these studies, great efforts 
have been made on the effectiveness of an individual 
process, while the addictive and synergistic effects of a 
full treatment train have obtained less consideration. A 
few studies have investigated the effectiveness of a com-
plete treatment train; however, the experiments were 
conducted in well controlled pilot systems. For exam-
ple, Chen et al. [10] examined the removal of 2-MIB and 
GSM in a pilot-scale treatment train (including coagu-
lation, sand filtration, ozonation, and GAC) where the 
odorants were spiked with pre-determined concentra-
tions and the influent water quality was relatively stable. 
Moreover, the complex odor control has received less 
attention as well. For the above reasons, current study 
investigated and optimized an existing WTP treatment 
train reflecting real water conditions to achieve a simul-
taneous removal of a group of complex odorants.

Jinze Reservoir is a newly constructed reservoir, which 
is located at the upstream of Huangpu River, in Shanghai, 
China. The potential complex odor problem, especially 
during the startup period, needs to be evaluated; more 
importantly, an effective and practical control method 
needs to be developed. This study characterized the vari-
ous odorants being present in the reservoir. The primary 
odor contributors were identified as well. The operation 
of the existing ozonation/GAC processes applied in one 
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downstream WTP was evaluated and optimized based 
on the practicable operational conditions. The applica-
tion of the optimized treatment train was evaluated for 
6 months to further verify its efficiency on complex odor 
control. This study provides a feasible odor elimination 
solution for the full-scale WTPs facing a potential com-
plex odor issue.

Materials and methods
Chemicals and reagents
Odorant standards were ordered from Sigma-Aldrich 
(USA) with purity greater than 95%. A stock solu-
tion was prepared in methanol at a concentration of 
10  mg  L−1 for each reference compound (Table  1). 
Analytical grade of sodium chloride (NaCl) and anhy-
drous sodium sulfate (Na2SO4) were purchased from 

Beijing Chemicals Ltd., China. Both chemicals (NaCl 
and Na2SO4) were pre-baked in a furnace at a tem-
perature of 450 °C for 2 h to removal possible organics 
and moisture. A Milli-Q purification system was used 
to provide ultrapure water (18.2 MΩ cm) for chemical 
preparations.

Sampling site and collection
Jinze Reservoir is an upstream water source on Huangpu 
River with a total volume of 9.1 million m3 and a water 
supply capacity of 3.51 million m3  day−1, serving 6.7 
million residents from five districts in the southwest 
part of Shanghai, China. The reservoir started its opera-
tion in late 2016. The raw water had a chemical oxygen 
demand at 3.01 to 4.48  mg  L−1. Serving as the source 
water of the downstream WTP, the occurrence of odor-
ous compounds in the reservoir effluents were monitored 
monthly from January 2017 to December 2018 to iden-
tify their potential threats. In total, 13 compounds were 
selected for evaluation (Table 1), which was identified as 
the potential odorants in a previous study [18].

Xin Che Dun (XCD) WTP is a newly built WTP 
operating from March 2018. Taking Jinze Reservoir 
as its source water, XCD has a treatment capacity of 
160,000  m3  day−1. Detailed operating parameters are 
listed in Table 2. From April 2018 to July 2018, samples 
were collected weekly from the plant influents and the 
effluents after each unit process (pre-ozonation, sedi-
mentation, filtration, post-ozonation, GAC, and clean 
water basin) to evaluate the removal efficiency.

All water samples were collected in 500  mL amber 
glass bottles that were pre-washed using nonphosphate 
laboratory-grade detergent solution (Liquinox™) and 
thoroughly rinsed with deionized (DI) water to remove 
detergent residue [3, 52]. 200 mL of the sample was used 
for flavor profile analysis (FPA), and 10 mL was prepared 
for determining the odorant concentrations. All analyses 
were completed within 24 h after sample collection.

Table 1  Information of 13 investigated odorants

a  [18]
b  [55]
c  Based on yearly monitoring of the odorant concentrations in Jinze Reservoir 
(January 2018 to December 2018)

Odorants Odor description OTC (μg L−1)a,b Observed 
range 
(μg L−1)c

DMDS Swampy, septic 0.03 0.67–82.70

DMTS Swampy, septic 0.01 0.23–1.59

Hexanal Herbal/flavor/almond 4.5 0.43–30.99

EB Plastic/oily/chemical 150 0.05–56.60

BA Herbal flavor 4.5 3.26–251.62

1,4-DCB Almond/sweet 4.5 0.19–19.26

BCIE Chemical/swampy/
septic

0.10 6.93–900.29

2-MP Medicinal odor 14.73 2.76–4.81

3-MP Medicinal odor 12.89 3.82–20.94

2-MIB Musty 0.005 0.14–35.48

2,4-Decadienal Fishy/oily 0.029 2.76–21.04

Indole Stink 0.10 6.88–30.24

GSM Earthy 0.004 0.25–15.43

Table 2  Operating parameters in the water treatment plant

a  Coagulant concentration and ozone dosage may vary according to the actual influent qualities

Process Designed contact 
time (min)

Coagulant (aluminum sulfate) 
concentration (mg L−1)a

Ozone dosage 
(mg L−1)a

Actual contact 
time (min)

Backwash frequency

Pre-ozonation 3 – 0–1.0 3.4 –

Flocculation 20 20–30 – 23 –

Sedimentation 120 – – 137 –

Sand filtration 30 – – 34 24–48 h

Post-ozonation 12 – 0–1.5 14 –

GAC​ 12 – – 14 5–10 days
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Sensory evaluation of odor
Flavor profile analysis (FPA) was adopted for odor char-
acterization [61]. A panel with five panelists identified 
each odor attribute and its intensity based on a seven-
point intensity scale (1: odor threshold; 2 and 4: very 
weak to weak odor; 6 and 8: moderate odor; 10 and 
12: strong odor). Flasks (500  mL) containing 200  mL 
of water sample were heated to 45  °C in a water bath 
prior to the analysis. During the evaluation, each pan-
elist held the bottom of the flask with one hand, opened 
the glass stopper with the other hand, smelled the sam-
ples; and recorded the description and intensity of each 
sample. The result of each sample was finalized after a 
consensus had been reached in the panel.

Quantification of odorants
Analyses of samples were accomplished with solid 
phase microextraction (SPME) followed by gas chro-
matography tandem mass spectrometry (GC–MS/MS) 
with a triple quadrupole instrument (Shimadzu GCMS-
TQ8050 NX) [27]. In total, 13 odorants were analyzed 
including the earthy/musty odor substances 2-MIB 
and GSM as well as the chemical and septic odorants 
(sulfides, BCIE, and other aromatics and aldehydes) 
(Table 1). Water sample (10 mL) was added to a 20 mL 
CTC vial that was preloaded with 2.5  g of NaCl. The 
SPME fiber was inserted to the vial for extraction. The 
extracted substances were injected to the GC column 
(Agilent VF-624MS; 0.32  mm × 1.80 μm × 60  m) in 
splitless mode for separation with a 1 mL min−1 carrier 
gas flow. The inlet temperature was set to be 250  °C. 
With an initial temperature of 40  °C, the column tem-
perature was ramped 8  °C  min−1 to 260  °C with a 
10  min hold. The temperatures of the quadrupole and 
the ion source were 150 °C and 230 °C, respectively. The 
selective ion monitoring (SIM) mode was employed in 
the quantitative analyses [66]. The qualification of the 
targeted odorant was based on its retention time, ion 
fragmentation, and the corresponding abundance [15, 
54]. The concentration of the odorant was calculated 
using the calibration curve generated by the worksta-
tion with a range of external standards and their cor-
responding peak areas.

Odor activity value (OAV)
OAV was used to evaluate the contribution of the odor 
from each odorant. The value of OAV was calculated by 
dividing the measured concentration by its correspond-
ing OTC. Odorants with OAVs at equal to or greater than 
one contribute greatly to the odor profile, while a value at 
less than one indicates a limited contribution [17].

Results and discussion
Odor characterization and odorant identification in source 
water
Table  1 shows the results of the 13 targeted odorants 
in the WTP source water. As indicated, the concentra-
tion of 2-MIB increased in summer and autumn when 
algal blooms occurred relatively often. In this study, 
2-MIB in Jinze Reservoir was approximately 100 ng L−1 
in August 2017 (Fig.  1), which is 20 times greater than 
its OTC (Table 1). GSM was detected in over 80% of the 
samples with approximately 40% exceeding the OTC 
(4 ng L−1). As an industrial chemical, BCIE was detected 
in all samples with relative high concentrations. Other 
odorants that were detected in more than 50% of the 
samples included thioethers (i.e., DMDS), aldehydes (i.e., 
hexanal and benzaldehyde (BA)), and benzenes (i.e., eth-
ylbenzene (EB) and 1,4-dichloro-benzene (1,4-DCB)). 
Similarly to BCIE, the occurrence of these compounds 
may be related to industrial activities and discharges. 
For example, DMDS is a widely used soil fumigant [49] 
and can be produced in industrial process such as the 
wood-pulp industry and oil refineries [22]. DMDS was 
observed in swine facilities [35] as well. BA is related to 
the production of food preservatives, pharmaceuticals, 
and cosmetics [50]. EB is mostly used in producing sty-
rene [5]. The presence of the various odorants in Jinze 
Reservoir is not surprising, as Huangpu River has long 
been reported to have issues regarding complex odor-
ants [18, 46, 60]. Guo et  al. [18] indicated that DMDS 
and BCIE were observed to be the primary contribu-
tors for chemical/septic smell, while 2-MIB and GSM 
contribute the most for musty/earthy odor. The com-
plex odor issue in Huangpu River was also observed by 
Yang et al. [60] and Guo et al. [19], where nine odorous 
compounds belonging to benzenes, ethers, pyrazines, 
thioethers, and heterocyclic compounds were detected.

All targeted odorants were detected in the reservoir 
to some extent (0.05 to 900.29 ng L−1) (Table 1); their 
corresponding OAVs were calculated to further iden-
tify the compounds that contributed the most to the 
odor profile (Fig. 2). GSM and 2-MIB were observed to 
be the major earthy/musty odor contributor in Jinze, 
while BCIE and sulfide compounds such as DMDS 
were responsible for the chemical/septic odor. BCIE 
obtained an average OAV at as high as 2.97, which 
may result from its greater concentration (averaged 
at 297.18  ng  L−1) compared to other odorous com-
pounds. With an OTC at 5 ng L−1, 2-MIB, on the other 
hand, still showed an OAV at greater than one despite 
a relative low concentration (approximately averaged 
at 6 ng L−1). Compounds with low OTCs, though may 
have low detected concentration, cannot be neglected 
from odor concern. Moreover, seasonal effect needs 
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to be taken into account as well. For example, greater 
2-MIB concentrations in summer (Fig.  1) reflected a 
potential off-flavor event. Other odorous compounds 

including DMDS and DMTS, 2,4-decadienal, indole, 
and BA, contributed to septic, fishy, stinky, and herbal 
flavor odors, respectively (Table  1 and Fig.  2); these 
compounds together formed a very complex odor in 
the source water.

Removal of odorous compounds in XCD WTP
Preliminary evaluation of odor elimination
FPA was conducted to preliminarily evaluate the com-
plex odor control efficiency in the WTP (Fig. 3). Source 
water showed an average odor intensity of eight indi-
cating a moderate odor and the need for odor control. 
Compared to no pre-oxidation condition, application 
of pre-ozonation improved the odor reduction. Specifi-
cally, with a dosage of 0.5 mg O3 L−1, FPA intensity of the 
source water was reduced to seven. Further increasing 
the dosage to 1 mg O3 L−1, the intensity decreased to six. 
By combining subsequent coagulation and sedimentation 
process, the FPA intensity decreased to four, indicating 
a weak odor (Fig. 3). Greater performance was achieved 
after sand filtration with the intensity reduced to the 
threshold value (i.e., 1). Although pre-ozonation alone 
revealed some reduction in odor intensity, to reduce the 
intensity to an odor-free level, a combined process that 
involves additional advanced treatment such as post-
ozonation and GAC needs to be considered. As 2-MIB 
and BCIE were the two major odor contributors, their 
removal efficiencies were investigated through the WTP 
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Fig. 1  Concentration of 2-MIB in Jinze Reservoir from January 2017 to December 2018. A spike in 2-MIB concentration in August 2017 may relate to 
an algal bloom event

Fig. 2  Odor activity values (OAVs) of targeted odorants in the 
reservoir arranging in a descending order. BCIE and 2-MIB were the 
two odorants with an average OAV at great than one indicating 
their strong contribution to the septic and the earthy/musty odor, 
respectively
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to evaluate the odor reduction and optimize the applica-
ble operational conditions in the existing water treatment 
facilities (Figs. 4 and 5).

Evaluation of pre‑ozonation for odor removal
Removal of 2-MIB was less than 5% without the pre-ozo-
nation (Fig.  4a). With subsequent treatment processes 
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(i.e., coagulation, sedimentation, and sand filtration), the 
overall removal was still less than 10%, indicating the 
need to apply pre-ozonation. Pre-ozonation was investi-
gated with dosages of 0.5  mg  L−1 and 1  mg  L−1, which 
are the typical dosages applied in XCD WTP. Generally, 
increasing the dosage of pre-ozonation demonstrated 
a greater removal. Specifically, removal increased to 
19% with a 0.5  mg  L−1 pre-ozonation dosage, and fur-
ther improved to 26% with a dosage of 1  mg  L−1. Lim-
ited removals were also observed in a pilot plant study 
conducted by Yang et al. [60], where 2-MIB removal was 
approximately 20% and 30% with a pre-ozonation dosage 
of 0.5 mg L−1 and 1 mg L−1, respectively. Natural organic 
matters (NOMs) in water consumed the ozone and OH· 
and inhibited the oxidation of the odorants [59]. Pre-ozo-
nation targeted mostly on the NOMs and revealed a com-
peting effect on 2-MIB removal during degradation [65]. 
Xie et al. [59] observed a significant effect on the odor-
ant reduction when NOM exceeded 1  mg  L−1. With an 
influent total organic carbon (TOC) ranging from 3.03 to 
4.00 mg L−1 and an average turbidity at 19.35 ± 4.20 NTU 
in current study, 2-MIB was not effectively removed.

Coagulation and sedimentation have been reported 
to be ineffective in removing odorants [44]. However, 
adding a pre-oxidation and a subsequent filtration may 
improve the overall removals [10]. In this study, pre-ozo-
nation in combination with coagulation, sedimentation, 
and sand filtration achieved an average reduction of 41% 
with a pre-ozonation dosage of 0.5 mg L−1 and an average 

removal at 52% with a dosage of 1 mg L−1 (Fig. 4a). Pre-
ozonation broke down the large organic molecules (e.g., 
odorants such as 2-MIB) which may enhance their elec-
trostatic interactions with coagulant flocs [36]. Though 
the combined treatment revealed an improvement, the 
removal was still insufficient as the effluent concentration 
of 2-MIB from the sand filtration was 5.60 ± 2.09 ng L−1, 
which is greater than its OTC.

Similar trends were observed in BCIE removals. Con-
sistent with other studies [60], even though an improved 
reduction of BCIE was observed with an increasing 
pre-ozonation dosage, the removal was still limited 
(Fig.  4b). Specifically, removal increased from 3 to 6% 
with a 0.5 mg L−1 dosage, and further improved to 15% 
with a dosage of 1  mg  L−1. BCIE was relatively resist-
ant to pre-ozonation as the removal was less than 20% 
with the greatest dosage; again the presence of NOM 
in the source water decreased the potential of ozona-
tion to target on the odorants. Similarly, the combined 
treatment, i.e., ozonation followed by coagulation, sedi-
mentation, and sand filtration, showed limited improve-
ment. Greatest removal (i.e., 55%) was observed at the 
highest ozone dosage. However, with an effluent con-
centration of 152.40  ng  L−1 in the sand filtration, BCIE 
still exceeded the OTC after a series of treatment units. 
As both concentrations of 2-MIB and BCIE remained 
above their olfactory perception thresholds, the optimal 
dosage of pre-ozonation was set to be 1 mg L−1 (i.e., the 
greatest dosage in the applicable range of the WTP) and 
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the optimization of the post-ozonation dosage was per-
formed based on this dosage.

Evaluation of post‑ozonation for odor removal
The dosages of post-ozonation again were selected based 
on the typical operational range in XCD (i.e., 0.8 mg L−1 
to 1.5 mg L−1) used in the full-scale WTP. 2-MIB concen-
tration was reduced to below the OTC with a post-ozo-
nation dosage of 1.5 mg L−1 (Fig. 5a).

Compared to 1.5 mg L−1, a dosage of 1 mg L−1 did not 
show an acceptable effluent concentration (> 5  ng  L−1), 
because the 2-MIB in the influent was two times greater 
(up to approximately 30  ng  L−1) on the day of sam-
pling. Influent concentration affected the treatment effi-
ciency significantly (Fig.  5a) [24, 39]. With a dosage of 
1 mg O3 L−1, Park et al. [39] observed a removal of less 
than 80%, when the influent 2-MIB concentration was 
50  ng  L−1; this removal increased to greater than 95% 
when a 1.5 mg L−1 of ozonation was applied. 2-MIB is an 
aliphatic alcohol with a bicyclic structure. The hydroxyl 
group (−OH) attaching on the alkyl ring acts as an elec-
tron-withdrawing group. As compounds with no aro-
matic moieties but containing electron-withdrawing 
functional group are resistant to direct ozonation [58], 
2-MIB was observed to be recalcitrant. The low reactivity 
was indicated by the low ozone rate constant ( kO3

 = 0.35 
to 10 M−1 s−1) as well [40, 57]. Ozone is a selective oxi-
dant with rate constant ranging from 10−1 to 106 M−1 s−1 
[65, 68] while hydroxyl radical (OH·) is less selective 
with rate constant (kOH) differing by less than one order 
of magnitude [58]. An indirect reaction with OH· may 
dominate over the ozone during 2-MIB oxidation. West-
erhoff et  al. [57] reported the kOH ranging from 1 × 109 
to 6 × 109 M−1 s−1 for 2-MIB in bulk water samples that 
were collected from five different surface water locations; 
similar results were observed by Ma et  al. [34] as well. 
OH· acted as the most significant reactive species during 
the degradation of the odorants in the ozonation process. 
OH· is generated from the decay of ozone in water. As 
a result, when the influent concentration of 2-MIB was 
high, a moderate dosage of post-ozonation (1  mg  L−1) 
did not produce an adequate amount of OH· to oxidize 
the recalcitrant compound. In such case, a greater dosage 
(i.e., 1.5 mg L−1) or a subsequent advanced process (i.e., 
GAC) is needed, as the concentration of OH· increases 
with a greater ozone dosage [57].

Similarly, the greatest BCIE removal efficiency was 
obtained with a 1.5  mg  L−1 dosage. After adding the 
post-ozonation, the effluent concentration was reduced 
to 26.74 ng L−1, below the OTC (Fig. 5b). Compared to 
the results without post-ozonation, adding 1  mg  L−1 
ozone though revealed a greater reduction in BCIE, the 
142.21 ng L−1 effluent concentration was still above the 

OTC (100 ng L−1). Again, when the upstream has a sud-
den spike in odorant concentration, the moderate post-
ozonation dosage in the WTP would not satisfy the 
odor requirement. BCIE is an aliphatic compound with 
two chlorine functional groups; these two polar groups 
are electron-withdrawing and leads to a low reactivity 
towards ozone [7]. With the source water concentration 
at up to approximately 500 ng L−1, a 1.5 mg L−1 dosage of 
post-ozonation is recommended for treating BCIE. Oth-
erwise, with a moderate post-ozonation dosage, a subse-
quent process for the removal of the remaining BCIE is 
necessary.

Suggestions for complex odor control
To remove the complex odors simultaneously, all the 
odorants need to be removed below their OTCs. As dis-
cussed above, a post-ozonation dosage of 1  mg  L−1 is 
insufficient to remove the complex odorants when a peak 
influent concentration is observed. The effectiveness of 
ozonation was significantly affected by the influent con-
ditions. However, after GAC process (size: 8 × 30 Mesh; 
empty bed contact time (EBCT): 14  min; filter velocity: 
10 m h−1), all the odorant compounds were removed to 
below the OTCs regardless of the source water condi-
tions (Fig.  5). Consistent with other studies [17, 39, 60, 
63], GAC was applicable for removing odorants with a 
wide range of influent concentration (100 to 102 ng L−1). 
But breakthrough of the GAC needs to be considered. 
Post-ozonation prior to GAC was observed to improve 
the breakthrough time as well as increase the removal 
efficiency in GAC [37]. Therefore, using GAC as the 
final polishing step, a post-ozonation (1 mg O3 L−1) was 
selected for the optimal treatment train to save the cost 
and minimize the ozonation byproducts (i.e., pre-ozona-
tion (1 mg O3 L−1) + coagulation + sedimentation + sand 
filtration + post-ozonation (1 mg O3 L−1) + GAC (EBCT: 
14 min)), while at the same time a desirable performance 
of complex odor control was also achieved.

Continuous operation for verification
The optimal treatment train was operated continuously 
for 6  months to verify the performance of the complex 
odor control in XCD (Fig.  6). The results indicated that 
the natural odorants (2-MIB and GSM) were removed at 
greater than 99% and 98%, respectively, both below their 
odor thresholds (Fig.  6a). The optimal treatment train 
demonstrated a good removal for BCIE (ether), the major 
chemical/septic odor contributor as well. A removal of 
23% and 72% was achieved in pre- and post-ozonation, 
respectively, the GAC further ensured a 92% reduction, 
achieving a desirable effluent concentration for BCIE 
(Fig.  6b). After the treatment, indole was not detected 
in the effluent (Fig.  6b). Aldehydes (2,4-decadienal and 
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BA) were removed at greater than 99% and 75%, respec-
tively, with the effluent concentrations at below their 
corresponding OTCs (Fig.  6c). Benzene (1,4-DCB) was 
removed at 67%, however, the effluent concentration was 
4.68 ng L−1, which is significantly less than its threshold 
value (4500 ng L−1) (Fig. 6d). Pre-ozonation in combina-
tion with coagulation showed an excellent removal effi-
ciency for 3-MP (phenol). A greater than 99% reduction 
was observed with 3-MP removed to below the detection 
limit (Fig. 6e). Removal of DMDS and DMTS (thioethers) 
was approximately 60% after pre-ozonation while after 
post-ozonation this removal increased to greater than 
85% and further improved to greater than 95% after 
GAC (Fig. 6f ); their concentrations in the effluents were 
0.25 ng L−1 and below detection limit, respectively. The 
investigated odorants were effectively removed to below 
their OTCs in the effluents. Overall, the treatment train 
after optimization is a great solution for complex odor 
control.

Conclusions
This study investigated the fate of the odorants in an 
existing WTP. The effectiveness of the current treatment 
units was evaluated and the optimal strategy to resolve 
the complex odor issue was explored. 2-MIB and BCIE 
were observed to be the major contributors of the musty/
earthy and chemical/septic odors, respectively. The appli-
cation of post-ozonation was the key for improving the 
odorant removals. With a 1.5  mg  L−1 dosage of post-
ozonation, all odorants were removed below the OTCs. 
When applying a 1  mg  L−1 post-ozonation dosage, by 
combining GAC, the complex odor issue was well con-
trolled regardless of the odorant concentrations in the 
influents. The optimal and cost-effective treatment train 
for a promising complex odor control involved a 1  mg 
O3  L−1 pre-ozonation in combination with coagulation, 
sedimentation, and sand filtration, followed by a post-
ozonation with a dosage of 1  mg O3  L−1, and a GAC 
process (EBCT: 14 min); this solution was verified in an 
extended 6-month study where all the odorants were 
removed simultaneously.
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