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Abstract 

In recent years, more and more countries see irrigation using reclaimed water as an opportunity to secure and 
enhance agricultural production. Despite the benefits of water reuse, the scientific community raised several con-
cerns and challenges for human health and the environment. This includes chemical risks. Effluents from urban 
wastewater treatment plants usually contain a wide range of organic chemicals. Such chemicals remaining in the 
water after the treatment process may cause hazards for human health, contaminate surrounding soil and water 
resources, and even compromise drinking water sources. Once crops on irrigated sites are exposed to chemicals, the 
potential transport to and accumulation in the edible parts of fruits and vegetables need to be controlled to rule out 
their introduction into the food chain. Finally, problems concerning the release of wastewater-borne antibiotics into 
the environment are starting to gain attention. For these reasons, agricultural irrigation should face more stringent 
quality requirements in order to minimize chemical risks. Combinations of measures reducing chemicals at the source, 
technical and natural water treatment processes especially to remove chemicals with persistent, bioaccumulative and 
toxic (PBT), or persistent, mobile and toxic (PMT) properties, good agricultural practices, and supplementary preven-
tive measures (e.g. knowledge transfer to the stakeholders involved) will be necessary to bring about and ensure safe 
irrigation in the future. While internationally many regulations and guidelines for water reuse have successfully been 
implemented, questions remain whether the current knowledge regarding chemical risks is sufficiently considered 
in the regulatory context. The introduction of a new regulation for water reuse, as attempted in the European Union, 
poses a good opportunity to better take chemicals risks into account.
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Background
In 2000, German Chancellor Angela Merkel noted that 
“Globalisation means that we all live in one world. Envi-
ronmental pollution, resource consumption, and popu-
lation growth will affect us all more and more in the 
future”. From today’s perspective, this can be interpreted 
as one of the preludes to the challenges associated with 
global change [1]. One important step toward meeting 
these challenges was the adoption of the Agenda 2030 for 
Sustainable Development by the UN General Assembly 

in September 2015. The Sustainable Development Goals 
(SDG) are intended to fundamentally improve the living 
conditions of all people and guarantee the protection of 
the planet [2]. Water is regarded as one of today’s “cri-
sis resources”, especially in regions with increasing water 
scarcity [3]. Within SDG 6—which is dedicated explic-
itly to water aspects—Subgoal 6.3 focuses on substan-
tially increasing water recycling and safe reuse globally 
by 2030. Water reuse also has many links to other SDGs, 
such as “no poverty”, “zero hunger”, “climate action”, and 
“life on land”. In addition, the 2017 World Water Develop-
ment Report highlighted the relevance of water reuse [4]. 
The Water Strategy of the German Federal Ministry for 
Economic Cooperation and Development [5] described 
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increased reuse of treated wastewater as a goal to reduce 
water scarcity and its harmful impact on humans. In 
2012, the European Union identified the unused potential 
of water reuse as one response to the problems of water 
scarcity and drought [6]. This had led to a regulatory pro-
posal published in 2018 [7].

Water reuse has been a long-established practice in 
several water-scarce countries and regions around the 
world [8]. Experience dates back to park irrigation in 
California, USA, since 1912 [9], potable water reuse in 
Windhoek, Namibia, since 1968 [8], and agricultural 
irrigation in Israel since the 1950s [10]. The practice of 
potable water reuse has evolved in important ways in the 
USA [11]. Israel covers more than 50% of its agricultural 
water demand with reclaimed water [12]. In Singapore, 
“NEWater” meets around 40% of the water demand [13]. 
In the EU, reuse projects are more numerous in Southern 
European countries like Cyprus, France, Greece, Malta, 
Portugal, and Spain. Several reuse projects have been 
also implemented in central and northern countries like 
Belgium, Sweden and UK [14]. Innovative water reuse 
projects around the world have shown that appropri-
ate technologies can be put in place to treat wastewater 
to nearly any needed quality, including highly sensitive 
potable and industrial applications [8]. However, highly 
advanced water treatment comes at a greater cost and 
has higher energy requirements. Thus, treatment levels 
are usually established according to the “fit-to-purpose” 
approach, setting water-quality goals in relation to end 
users’ needs. This approach is reflected in a variety of 
legislation and guidelines for water reuse like the World 
Health Organization’s (WHO) guidelines for wastewater 
use in aquaculture and agriculture [15] and for potable 
reuse [16] as well as the ISO Guidelines 16075 for treated 
wastewater use for irrigation [17].

While the risks resulting from pathogen exposure, as 
well as from potential adverse impacts of nutrients, heavy 
metals, salinity and sodicity have been widely addressed 
in guidance documents and regulations [9, 15, 17, 18], 
chemical risks, in particular hazards from organic micro-
contaminants, appear to be less in the spotlight. The Joint 
Research Center (JRC) of the European Commission sug-
gested minimum quality requirements for water reuse 
in a technical report [19]. These requirements served as 
a basis for the recent EU regulatory proposal for water 
reuse for agriculture  [7]. The report identified current 
major knowledge gaps for organic micro-contaminants, 
such as their role in agricultural systems, their pathways, 
and the effects of long-term exposure, and proposed a 
risk management approach to address these risks. This 
had also been recommended by SCHEER [20].

The present discussion paper attempts to emphasize 
the significance of adequately considering chemical risks 

especially in terms of organic micro-contaminants when 
regulating water reuse for agricultural irrigation. After 
summarizing the opportunities and benefits of water 
reuse, the text moves on to chemical risks to foster a sub-
sequent discussion on emerging issues from chemicals in 
water reuse for agricultural irrigation. Finally, an appro-
priate risk management system for safe water reuse is 
proposed to minimize hazards from chemical pollution.

Opportunities and benefits of water reuse
In water-scarce countries and regions, the recycling of 
wastewater provides one opportunity to substitute lim-
ited freshwater resources with reclaimed water for pur-
poses that do not require drinking water quality. Urban 
wastewater, which is usually continuous throughout the 
year, can provide a reliable water source while freshwa-
ter availability may be characterized by high seasonal 
variations or extreme events. Since these patterns are 
becoming more likely with climate change, interest has 
grown in water reuse opportunities—and not only in arid 
countries.

Potential water reuse applications include agricultural 
and landscape irrigation, industrial reuse, groundwater 
recharge, urban applications for firefighting, and street 
cleaning, as well as recreational and ecological uses [9, 
8]. With a market share of around 30%, agriculture is the 
most common application of reclaimed water [4]. On 
average, agriculture accounts for 70% of global freshwa-
ter withdrawals [21]. Water shortages in agriculture can 
have far-reaching effects on food security, nutrition, live-
lihoods, and other socioeconomic aspects, but a reliable 
water supply can help to alleviate these pressures and 
uncertainties. With population growth, increasing food 
demand, and pressure on water resources, increased 
water productivity in agriculture is also crucial. In Aus-
tralia, the introduction of water reuse has facilitated an 
increase in agricultural production, despite the limited 
availability of freshwater resources [8]. In Tunisia, where 
wastewater reuse is a well-established practice, reclaimed 
water for agricultural purposes consists of about 20% of 
wastewater effluents, promoted by the state in order to 
save freshwater for the drinking water supply and to pro-
tect receiving waters [22, 23].

Irrigation with reclaimed water may also have benefits 
in terms of providing nutrients to crops, thus potentially 
reducing the need for synthetic fertilizers in agriculture 
[18]. However, ensuring a balance between adequate 
wastewater treatment and adapting nutrient loads in 
reclaimed water to specific crop requirements and their 
seasonal variations can be challenging. Otherwise, exces-
sive nutrients may cause plant damage and leach into 
groundwater or surface waters. While water reuse can 
complement or supplement measures for water saving 
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and efficiency, it should not replace them. The European 
Commission has reflected on this by outlining a water 
hierarchy that clarifies that  “additional water supply 
infrastructures should be considered as an option when 
other options [to improve efficiency and save water] have 
been exhausted” [89]. With some estimates stating that 
the current irrigation efficiency in the EU ranges between 
20 and 50% due to evaporation losses and leakages in 
conveyance systems, this indicates significant potential 
for further improvement [24]. With an increasing atten-
tion to potentials of water reuse, there are also ongo-
ing studies on related risks and challenges (e.g., Nereus 
COST ACTION on “New & emerging challenges and 
opportunities in wastewater reuse”).

Risks of water reuse
Chemical risks
The source and composition of wastewater, its treatment, 
storage and distribution, and the type of irrigation tech-
nique and agricultural practice, as well as climate, soil 
and groundwater conditions all significantly contribute 
to the specific chemical risks resulting from water reuse. 

Potential exposure pathways during water reuse for agri-
cultural irrigation need to be considered. The main types 
of these pathways are summarized in Fig. 1.

We all use everyday products such as pharmaceuticals, 
personal care products, cleaning agents, plastics, and 
other lifestyle products during different activities. This 
results in the release of thousands of organic chemicals—
antibiotics, beverage and food additives, preservatives, 
corrosion inhibitors, textile chemicals, and biocides, 
just to name a few—into our wastewater. Some of these 
chemicals have persistent, bioaccumulative, and toxic 
(PBT) properties and were defined as substances of very 
high concern according to the European Chemicals Reg-
ulation REACH [25]. Others are hazardous for the water 
cycle due to persistent, mobile, and toxic (PMT) proper-
ties [26]. Urban wastewater treatment eliminates many 
chemicals only to a limited extent, depending on the 
treatment conditions [27], but also on input loads, mobil-
ity, and resistance to degradation. Nonpolar compounds 
are mainly distributed into sewage sludge during treat-
ment. However, water-soluble polar compounds remain 
in the aqueous phase. Persistent polar compounds, such 
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Fig. 1  Simplified overview of potential exposure pathways during water reuse for agricultural irrigation (focus of this article is in bold)
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as per- and polyfluorinated alkyl substances or stable 
benzotriazoles, as well as polar pseudo-persistent chemi-
cals such as many pharmaceuticals, may end up in waste-
water effluents. The latter are principally degradable by 
biological activity. However, they may pass through con-
ventional wastewater treatment procedures according 
to a continuous delivery with the influent and/or insuf-
ficient retention times in wastewater treatment plants. 
Consequently, a variety of organic micro-contaminants 
appear in urban wastewater effluents in Europe [28–33], 
as well as in middle-income countries such as Tunisia [23, 
34–36]. In addition, known and unknown metabolites are 
produced during wastewater treatment due to the activ-
ity of various microorganisms present in sewage sludge 
[35, 37]. Findings on these contaminants increase due to 
the continuous development of analytical tools, thus also 
referring to them as contaminants of emerging concern 
(CEC).

By using treated wastewater for irrigating arable land, 
organic micro-contaminants are introduced into soils 
and are potentially transferred to the groundwater. For 
example, Grossberger et al. [38] reported that carbamaz-
epine, lamotrigine, caffeine, metoprolol, sulfamethoxa-
zole, and sildenafil were all persistent in soils. A removal 
by soil passage is sustainable only for some compounds 
[38, 39] indicating different persistence and mobility in 
soils. Thus, Williams and McLain [39] found net accumu-
lation in soils for carbamazepine and caffeine, while ibu-
profen was completely removed. Fries et al. [35] targeted 
a broad number of organic compounds in groundwater 
collected from a wastewater irrigated site in Tunisia for 
the first time and detected sulfamethoxazole, carbamaz-
epine, methylparaben, propylparaben, 1H-benzotriazole, 
bisphenol A, and triclosan. In this study, however, the 
quantities and concentrations of micro-contaminants 
in groundwater were much lower compared to those in 
the reclaimed water, indicating that degradation in soil 
takes place, but is incomplete in the case of some com-
pounds. At two sites in Lower Saxony, exceedances of 
health-related indication values for X-ray contrast media 
were detected in groundwater representing an example 
for the impact of decades of wastewater irrigation [40, 
41]. Intrinsic compound parameters play a major role for 
persistence and mobility of chemicals in soils. This was 
demonstrated by studies from the world’s largest waste-
water irrigation system in Mexico City where reservoir 
storage and soil passage were effective in degrading basic 
compounds with positive or neutral charges, while acidic, 
anionic compounds were hardly retained [42].

Potential chemical risks for soil and groundwater 
resources, and consequently for ecosystem and human 
health, are always a combination of exposure and effects. 
In terms of pharmaceuticals and many other organic 

micro-contaminants, the adverse ecological effects in the 
environment are still unknown or only suspected, espe-
cially in the long term. Some detected compounds can 
have negative effects on soils’ microbial communities and 
soil functions [18, 43, 45]. More studies are still needed to 
consider long-term effects in regulations.

Wastewater-borne micro-contaminants can also be 
taken up by plants [46–51] and may reach the food chain. 
Accumulation in the edible parts of fruits and vegetables 
as already described for perfluorinated and polyfluori-
nated alkyl substances [52–54] has to be considered also 
for other micro-contaminants. However, there is still 
a lack of knowledge on the fate and transport for most 
of organic micro-contaminants in arable soil systems, 
on root interactions and plant uptake [55]. Prosser  and 
Sibley [56] reported that the majority of individual phar-
maceuticals and personal care products in the edible 
tissue of plants due to biosolids or manure amendment 
or wastewater irrigation represent a de minimis risk to 
human health. However, the authors also concluded that 
assuming additivity, the mixture of pharmaceuticals, 
and personal care products could potentially present a 
hazard.

Other risks
This article focuses primarily on the chemical risks 
related particularly to organic micro-contaminants, since 
the contamination of urban wastewater with patho-
gens is usually considered already as a high-priority risk 
in water reuse. The latter issue is therefore only briefly 
addressed here. If pathogens are not fully eliminated in 
conventional wastewater treatment plants, they can enter 
natural resources and food chains, with major potential 
effects on the health of humans and animals  (e.g. [18]). 
While conventional wastewater treatment plants reduce 
E. coli, other coliform bacteria, and intestinal enterococci 
by 1 to 4 log units, and viruses by 1 to 2 log units [57], 
other bacteria, viruses, protozoa, and helminths are still 
present in treated wastewater [16, 17, 58]. Depending on 
site-specific conditions, viruses may persist through soil 
passage and reach groundwater. Compared to bacteria, 
viruses can remain infectious for much longer periods 
and may be more mobile in sediment [59, 60].

Wastewater treatment plants are also considered hot 
spots for the dissemination and formation of antibiotic 
resistance [57, 61, 62, 63] that may be spread by water 
reuse. Some chemicals may serve as a selective pres-
sure to increase the abundance of resistance genes in 
soil communities; this has been reported for triclosan 
and sulfamethoxazole [64]. Findings about the poten-
tial uptake of antibiotic-resistant genes and bacteria 
by crops due to irrigation with reclaimed water are still 
largely inconclusive [44, 65]. Relevant studies have been 
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conducted as part of recent Nereus COST ACTION on 
“New & emerging challenges and opportunities in waste-
water reuse.”

Adequate risk management for safe water reuse
The need for systematic risk assessment
Potential risks in water reuse for agricultural irrigation 
differ according to site-specific conditions, the specific 
composition of wastewater influent, treatment, and irri-
gation technology, crop selection as well as climate and 
soil characteristics. To evaluate potential contamination 
by chemicals, a systematic risk assessment including all 
relevant exposure pathways is necessary. This needs to 
be included in a regulation for water reuse or support-
ing guidelines. The regulation on water reuse in prepara-
tion in the EU [7] foresees a risk management approach 
and outlines key steps. However, the draft remains vague 
regarding its implementation and lacks guidance how 
to derive further requirements and measures to prevent 
chemical risks.

Different risk management approaches have been 
introduced with, e.g., the Australian Guidelines for 
Water Recycling [66, 67], the Hazard Analysis and Criti-
cal Control Point (HACCP) approach, or the WHO’s 
Water Safety and Sanitation Safety Planning [68, 69]. The 
WHO safety planning approach facilitates the analysis 
of potential hazards in the system, risk assessment, and 
the creation of measures and monitoring criteria with the 
involvement of the relevant stakeholders. Portugal, in line 
with the recent ISO Guidelines [17], proposes a multi-
barrier approach and a qualitative risk assessment for 
water reuse to assess the risks for human health and the 
environment considering the sensitivity/vulnerability of 
the end-use [70]. This includes the assessment of risk lev-
els of groundwater and surface water in order to define 
contaminants thresholds [17].

Multiple barriers are needed to effectively mitigate 
risks along the water reuse system between wastewa-
ter generation and its use [15, 17]. Initially established 
for public health protection in the water reuse system 
and the food chain, appropriate multiple barriers can 
also contribute to reducing the risks of organic micro-
contaminants. Additionally, when dealing with unknown 
risks and uncertainty about the contamination of water 
sources, we propose to follow the precautionary principle 
to prevent currently unknown long-term impacts [71].

Pollution reduction at the source
A holistic form of risk management requires also ade-
quate efforts to decrease the entry of micro-contami-
nants into the environmental system at the source (here: 
wastewater). This includes for example the raising of 
awareness about the proper disposal of medical products, 

support for a general reduction in the use of pharma-
ceuticals (especially antibiotics) by strengthening health 
prevention and hygiene, and a reduction in the use of 
biocides where possible (as well as fostering the develop-
ment of more sustainable chemicals) [48, 65, 90]. Due to 
their stability during water treatment, special attention 
for measures at the source must be paid to PBT and PMT 
chemicals. Measures at the source resulting in an overall 
reduction in the contaminant load would also have ben-
eficial effects when the treated wastewater is ultimately 
discharged into the environment, e.g., for the ecology of 
the receiving water body, for the marine environment, 
or for a water body’s use for the drinking water supply, 
swimming, or diversions for irrigation (indirect water 
reuse).

Wastewater treatment processes
Due to the presence of wastewater-borne contaminants, 
advanced water treatment is one crucial element for 
safe water reuse in particular to remove PBT and PMT 
chemicals. The treatment level should correspond to the 
intended use (fit-for-purpose), health and environmental 
risks considering economic viability, and public accept-
ance. The efficiency of the treatment processes with 
regard to chemicals should be validated using chemi-
cal analytics and suitable indicators as reported, e.g., by 
Jekel and Dott [72]. Treatment processes for the removal 
of organic micro-contaminants differ in their efficiency 
depending on the wastewater characteristics, the concen-
trations of the micro-contaminants in the influent, their 
physicochemical properties, and the treatment condi-
tions [62, 33, 73, 74]. Oxidation with ozone and adsorp-
tion using activated carbon has been successfully tested 
in large-scale applications for the removal of micro-
contaminants, partly in combination with additional 
post-treatment steps [57]. However, in case of ozonation, 
potential transformation products also need to be con-
sidered. Reverse osmosis and nanofiltration are promis-
ing treatment technologies for highly effective removal 
of organic micro-contaminants, but challenges remain 
due to high costs, high energy demand, and disposal of 
the remaining concentrates and retentates [75, 33, 57]. 
Ultrafiltration and microfiltration as well as membrane 
bioreactors have demonstrated incomplete success in 
the removal of organic micro-contaminants but may be 
suitable in combination with other processes [33, 57]. 
However, ultrafiltration was found to be effective in the 
removal of antibiotic-resistant genes and bacteria [57]. 
Advanced oxidation processes have been shown to effec-
tively degrade and deactivate chemical and microbiologi-
cal contaminants, but there has been limited evidence in 
full-scale implementation [75, 62]. While few treatment 
processes may be effective for the removal of selected 
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organic micro-contaminants and pathogens, generally 
no single treatment technology can achieve all purposes 
(including pathogen removal) by itself. Therefore, a com-
bination of different processes is needed to limit the 
risks, e.g., combining membrane bioreactors with pow-
dered activated carbon, or ozonation with UV radiation 
[9, 75, 57]. Nevertheless, due to their specific properties, 
not all contaminants can be effectively removed. Exam-
ples include certain short-chain perfluorinated and poly-
fluorinated alkyl substances.

Natural processes (‘natural attenuation’) are well 
known as low-cost methods to remove chemicals from 
soil and groundwater in the absence of advanced tech-
nical measures [76]. In terms of irrigation, the effective-
ness of natural attenuation depends on the load and type 
of contamination in reclaimed water [35, 38, 39] and the 
particular soil conditions [77]. Other factors that must be 
considered include aquifer and groundwater conditions, 
climate, irrigation technologies, the irrigation frequency 
and amount of water. Natural attenuation for the safe 
reuse of water in agricultural irrigation requires appro-
priate and continuous evaluation to ensure that there will 
be no adverse impact on humans or the environment. 
These evaluations need to include a knowledge-based 
monitoring concept adapted to individual soil, ground-
water and climate conditions. The site-specific chemical 
and physical properties of the soil, including flow condi-
tions as well as the mass and diversity of microorganisms 
need to be known and monitored as a basis for mod-
eling contaminant transfer. The dynamics of the natural 
attenuation potential of the soil system and its resilience 
have to be studied site-specifically, including attention to 
possible variation of the soil system in an area and over 
time. Due to these complexities, natural attenuation 
might be difficult to instruct in a regulation but could be 
an alternative or complement to commercial treatment 
technologies.

Irrigation practices
Exposure to humans and animals can be reduced by lim-
iting accessibility to fields irrigated with reclaimed water, 
or by preventing direct contact between the edible part 
of the plant and the reclaimed water [18]. Irrigation 
technologies such as drip irrigation and subsurface irri-
gation not only reduce potential exposure to pathogens 
and contaminants  [65], but also promote water use effi-
ciency and reduce the potential of accumulation and 
leaching. Access control measures, including safety dis-
tances between the irrigated fields and publicly acces-
sible areas, reduce potential contact [17]. Additional 
measures would include adequate signage of fields irri-
gated with reclaimed water as well as of pipes transport-
ing reclaimed water [17]. Due to issues concerning the 

quality of reclaimed water, crops for raw consumption or 
particularly sensitive areas (e.g., karst) could be excluded 
from water reuse for irrigation. Piña et  al.  [65] argued 
against the use of reclaimed water for the irrigation of 
leafy vegetables, as these crops were found to show high 
uptake and bioaccumulation of micro-contaminants 
and high translocation potential [48, 65]. In Tunisia for 
example, the use of reclaimed water in the irrigation of 
food crops is prohibited, while Cyprus has banned the 
irrigation of leafy vegetables and bulbs consumed raw 
with reclaimed water [19, 88]. Stakeholders should also 
note when irrigation utilizes groundwater and/or sur-
face water previously affected by wastewater. It should 
be mentioned that measures aiming to reduce potential 
exposure to human and animals often do not mitigate 
wider environmental risks. Therefore, it is also impor-
tant to consider groundwater sensitivity, soil and climatic 
conditions as part of the risk management—regardless of 
crop category and level of accessibility.

Monitoring of organic micro‑contaminants
The findings discussed above regarding the potential 
translocation and accumulation of organic micro-con-
taminants highlight the importance of environmental 
monitoring for the detection of potential adverse effects, 
including the application of wide-scope approaches for 
environmental analysis. Recent efforts at EU level aimed 
to identify chemical and toxicity indicators for the con-
trol and reduction in risks related to micro-contaminants 
for human health and environment (e.g., NORMAN 
network and EU projects such as PROMOTE, or SOLU-
TIONS). For this purpose, and to address mixture effects, 
effect-based methods as suggested by the SOLUTIONS 
project [78] might be considered as a monitoring tool 
to ensure safety irrigation in order to implement the EU 
regulation successfully. Effect-based monitoring may 
also address risks of unknown micro-contaminants that 
pose additional constraints for the development of water 
reuse practices as reported by Lazarova [8]. Since some 
compounds can also have negative effects on soils’ micro-
bial communities and soil functions [18, 43–45], there is 
a need to adapt effect-based methods to soil matrix and 
soil ecosystems.

Another promising approach is the monitoring of spe-
cific compounds as indicator substances. In principle, 
higher concentrations of anions and cations could indi-
cate the influence of wastewater on natural resources. 
One prerequisite for using inorganic compounds, 
however, is that other sources of ions are absent, e.g., 
seawater intrusion into groundwater. The literature sug-
gests various organic micro-contaminants as indicators 
[78–81]. However, to date, there is limited data from 
long-term soil and groundwater monitoring of organic 
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micro-contaminants at water reuse sites. When select-
ing appropriate indicators for this purpose, compounds’ 
particular persistence and transport behaviors should be 
taken into account. Since caffeine is frequently detected 
in treated wastewater, it has been suggested its use as a 
marker for anthropogenic wastewater contamination 
[82]. However, despite the high consumption of caffeine, 
its high degradability in the environment results in very 
low concentrations [83], and its complete removal dur-
ing soil passage [35] makes it less suitable for monitor-
ing groundwater effects at sites irrigated with reclaimed 
water. A study in Lebanon [84] showed that carbamaz-
epine was the only contaminant that showed a break-
through, while caffeine was only intermittently present. 
Carbamazepine, sulphamethoxazole, methylparaben, 
propylparaben, bisphenol A, triclosan, and 1H-benzo-
triazol have also been suggested as promising indica-
tors due their persistence and their mobility in soils [35]. 
Young et al. [85] noted that hydrophobic organic waste-
water compounds, such as triclosan, might outperform 
caffeine as a chemical tracer due to their ability to adhere 
to suspended microorganisms, which can result in a posi-
tive correlation with microbial markers.

A legislation for water reuse should come along with a 
comprehensive framework that assists the establishment 
of a meaningful monitoring system for organic micro-
contaminants that allow validating the performance of 
water treatment processes and monitoring potential 
accumulation in soils, groundwater, and plants relevant 
to ecology and human health. An example for the inclu-
sion of monitoring requirements for micro-contaminants 
in water reuse can be found in California’s Recycled 
Water Policy. Recent recommendations of the Science 
Advisory Panel for constituents of emerging concern [86] 
resulted in an amendment to the Water Quality Control 
Policy for Recycled Water [87] with regard to the moni-
toring of CECs combining a priority list and the use of 
bioanalytical assays. As the knowledge regarding micro-
contaminants as well as the analytical tools are dynami-
cally developing, legislation for water reuse should enable 
regular review and adaptation to new findings.

Conclusions and recommendations
The chemical quality of reclaimed water is a key issue 
in safe agricultural irrigation. Using water contain-
ing  organic micro-contaminants poses a risk to soil, 
groundwater, and human health. One major objective 
should be to prevent chemicals to accumulate in food 
chains and to enter groundwater potentially used for 
drinking purposes. This should be addressed carefully 
in the guidance accompanying regulations on water 
reuse for agricultural irrigation. In case of the proposed 
EU regulation, further guidance for a science-based risk 

assessment and the deriving of the necessary require-
ments and measures is needed. Guidance should 
include sufficient details to promote widely harmonized 
risk management approaches and systematic monitor-
ing. The monitoring of suitable indicator substances 
and quality control should be established for reclaimed 
water, e.g., using effect-based methods as well as for the 
environmental matrices (soil, groundwater) at the irri-
gated sites.

Any evaluation of micro-contaminant removal dur-
ing soil passage should cover a series of aspects, from 
the quality of the reclaimed water to the end uses of 
the groundwater, as well as the compound’s intrinsic 
properties and the particular properties of the soil. To 
minimize the contamination of the soil and the ground-
water at the source, water used for agricultural irriga-
tion should comply with stringent quality requirements, 
including chemical parameters pertaining to organic 
micro-contaminants. Urban wastewaters containing 
influents from hospitals or indirect discharges from cer-
tain industrial processes that use hazardous chemicals 
(such as electroplating, other surface finishing, paint-
ing, or textile processing) are not suitable for water reuse 
without additional targeted treatment. Wastewater reuse 
can also be problematic in areas where appropriate and 
well-maintained urban wastewater treatment is not fea-
sible. This is more likely to be the case in low-income 
and middle-income countries. Wastewater treatment 
techniques should be adapted to remove organic micro-
contaminants from wastewater, in particular PBT and 
PMT chemicals. The selection of adequate wastewater 
treatment techniques should take into account the spe-
cific microbial and chemical composition of the waste-
water. In addition, a combination of active measures at 
the source, good agricultural practices, and additional 
preventive measures (e.g., knowledge transfer and/or the 
education of the stakeholders involved) are necessary to 
bring about and ensure safe water reuse for irrigation.

Finally, in light of increasing conflicts among different 
uses of water (drinking water, ecosystem needs, irriga-
tion, transport of effluents, cooling) and a changing cli-
mate, it is important to more generally consider water 
demand management. Often, potentials remain to bet-
ter adapt the crop selection and farming methods as well 
as to optimizing irrigation techniques and procedures 
to reduce water consumption. Water saving efforts, effi-
ciency enhancements, and reducing water loss should be 
a priority in all sectors.
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