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Abstract 

Background:  Examining the effects of pesticides is difficult in regions such as Western Europe because of the 
relatively ubiquitous use of agrochemicals and the lack of unaffected areas. To study a wide gradient of agrochemi-
cal stress, we conducted a study in Central Romania, where traditional agriculture, which is assumed to use less 
agrochemicals, exists adjacent to intensive agriculture. We investigated potential effects of land use related stressors 
including pesticides on aquatic–terrestrial predator–prey relationships using stable isotope analysis. Therefore, we 
sampled spiders, as well as their aquatic and terrestrial prey along streams with a pesticide pollution gradient and 
determined spider and prey stable carbon and nitrogen signals.

Results:  Aquatic prey contributed 40.8–55.4% to the diet of the orb web weaving spider Tetragnatha sp. and 34.0–
53.0% to the diet of the ground-hunting Pardosa sp. The biomass of potential aquatic prey increased along a gradient 
of increasing riparian habitat conditions and water quality and decreasing agriculture (e.g. arable land) in the catch-
ment. The proportion of aquatic prey in the orb web weavers diet responded positively to the biomass of potential 
aquatic prey and negatively to this gradient. Increasing potential prey biomass resulted in an increasing proportion 
of aquatic prey for the orb web weaver. The proportion of aquatic prey in the ground hunters diet increased with in-
stream pesticide toxicity and along a gradient of increasing pastoralism in the catchment as well as increasing riparian 
habitat and water quality.

Conclusion:  The diet of two riparian predators responded to complex gradients of catchment land use, stream and 
riparian habitat quality as well as to in-stream pesticide toxicity. The responses to the different environmental vari-
ables can be attributed to direct (e.g. change in spider community) and indirect (e.g. changes in aquatic prey and 
terrestrial prey) effects. Future manipulative field studies or experiments on aquatic–terrestrial food webs are required 
to examine the causality of our findings and should also consider the quality of prey organisms to foster mechanistic 
understanding of cross-ecosystem effects.
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Background
Emerging aquatic insects are an important prey source 
for riparian predators, subsidising the terrestrial eco-
system with energy and essential nutrients [1–3] and 

constitute a major part of the diet of riparian spiders, 
which in turn are a prey resource for terrestrial organ-
isms such as birds [4].

The magnitude of aquatic emergence depends not only 
on factors such as climate [5, 6], geomorphology of the 
catchment [7, 8], cover of riparian vegetation [9] and 
water flow [10] ], but also on stressors related to agri-
cultural land use, such as excessive nutrient, sediment 
and pesticide inputs [11–13]. Altered aquatic insect 

Open Access

*Correspondence:  graf‑nadin@uni‑landau.de; schaefer‑ralf@uni‑landau.de
1 iES Landau, Institute for Environmental Sciences, University Koblenz-
Landau, Fortstraße 7, 76829 Landau, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-3086-6529
https://orcid.org/0000-0003-3510-1701
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12302-019-0282-1&domain=pdf


Page 2 of 12Graf et al. Environ Sci Eur            (2020) 32:1 

emergence through changes in land use may subse-
quently affect the diet of terrestrial predators and in turn 
components of the terrestrial food web. Several studies 
showed that environmental conditions including stress-
ors alter insect emergence from streams and in turn the 
diet of riparian predators (e.g. birds) consuming aquatic 
prey [4, 11, 14]. Hence, land use related stressors can 
affect the aquatic–terrestrial coupling with effects propa-
gating into terrestrial food webs.

Riparian spiders represent a group of predators that 
often relies on terrestrial and aquatic and aquatic eco-
systems and to detect potential cross-ecosystem effects. 
Higher aquatic prey availability increases the aquatic 
prey contribution to spider diet [15, 16] and can lead 
to a higher spider density in riparian areas [2, 16, 17]. 
Conversely, a lower aquatic prey availability by stressors 
can lead to a reduction of riparian spiders. For example, 
metal pollution reduced aquatic prey availability and in 
turn density, composition and abundance of riparian spi-
ders [16, 18].

Pesticides have been recognised as an important 
stressor for aquatic and terrestrial ecosystems in agri-
cultural landscapes. However, studies on the effects of 
pesticides have largely been limited to either aquatic 
[19] or terrestrial [20, 21] ecosystems in the agricultural 
landscape ignoring potential consequences for cross-
ecosystem food webs [22]. Previous studies that con-
sidered cross-ecosystem effects have mainly focused on 
agricultural land use as a general stressor [11, 12, 14]; 
whereas, to our knowledge, studies of the specific effects 
of pesticides are lacking. Such studies would improve our 
understanding of aquatic terrestrial linkages in general 
and of the direct and indirect effects and aquatic eco-
systems and to detect potential cross-ecosystem effects. 
With respect to riparian spiders, a study by Graf et  al. 
[23] found a reduced abundance and species richness, 
as well as changed community composition in response 
to in-stream pesticide toxicity. It remained uncertain to 
which extent this response was a direct effect of pesticide 
toxicity in the terrestrial habitat and an indirect effect 
through altered terrestrial and aquatic prey emergence, 
the latter constituting a cross-ecosystem effect. An analy-
sis of the diet of riparian spiders would provide insights 
into potential mechanisms of the response of spiders to 
in-stream pesticide toxicity.

We conducted an explorative field study on how the 
biomass of potential aquatic prey and the diet of riparian 
spiders respond to agricultural stressors with a particular 
emphasis on pesticide toxicity. The study was conducted 
in Central Romania because this region is characterised 
by traditional, low-intensity agriculture that persists next 
to areas with high-intensity agriculture [24, 25], poten-
tially allowing to capture a wider gradient of in-stream 

pesticide toxicity than in landscapes predominantly char-
acterised by high-intensity agriculture, as for example in 
Western Europe [19]. In a previous study, we found that 
changes in riparian spider communities correlated with 
in-stream pesticide toxicity [23]. Here, we focus on the 
response of the diet of two riparian spiders, with dif-
ferent foraging strategies (a web weaver and a ground 
hunter), to in-stream pesticide toxicity and other stream 
variables, to identify potential changes in the linkage 
between aquatic and terrestrial food webs. We expected 
that the diet responds to pesticide toxicity because it is 
well known that pesticides change the composition of 
aquatic invertebrate communities and consequently the 
composition of potential prey biomass [26]. Given that 
several agricultural stressors often co-occur (e.g. exces-
sive nutrients, pesticides), with potentially different effect 
directions on the potential prey biomass (e.g. a recent 
meta-analysis attributed the increase of the aquatic pro-
portion in the spider diet with agricultural land use nutri-
ents can increase biomass to nutrients increasing the 
available aquatic biomass [27], pesticides can decrease 
the biomass of sensitive organisms but increase the bio-
mass of tolerant organisms with unknown total effect), 
we did not formulate a specific hypothesis on the direc-
tion of the response of the spider diet. However, we 
expected a higher proportion of aquatic prey in the diet 
of the web weaving spider due to its stronger reliance on 
streams.

Materials and methods
Study area and sample site selection
The study was conducted in Central Romania around 
Cluj-Napoca. The region was selected because tra-
ditional agricultural land use prevails in this part of 
Romania besides industrialised agriculture. Traditional 
agriculture was characterised by fields subdivided into 
many small parcels and by reliance on human and ani-
mal labour and regarded as low-intensity agriculture, 
in contrast to industrialised agriculture with large field 
sizes and reliance on heavy machinery. The landscape in 
which low-intensity agriculture is conducted has been 
reported as a mosaic of arable fields (15% cover, low-
intensity agriculture), settlements and other minor land 
uses (15% cover), deciduous forests (30% cover) and pas-
tures (40% cover, low-intensity grazing and mowing) [24]. 
In total we selected 19 sites where we sampled spiders 
and their potential prey, in-stream pesticides and moni-
tored several other environmental parameters (Fig. 1, see 
Additional file  1: Table  S1). The fields in the upstream 
catchments of the streams comprised high and low-
intensity agricultural fields that were expected to be asso-
ciated with high and low pesticide use, respectively. They 
were selected to cover a gradient of high-intensity to 
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low-intensity agriculture in the catchments and, hence, 
were expected to provide associated gradients in hydro-
morphological quality, physico-chemical water quality 
and in-stream pesticide toxicity (Fig. 1).

Sampling of riparian spiders and their potential prey
Sampling took place in May and June 2016. At each site, 
transects of 20 m along the streams were defined for bio-
logical sampling. Tetragnatha  sp. and Pardosa sp. were 
selected (see Additional file  1: Tables S2, S3) after sam-
pling of aquatic and terrestrial prey. The web weaving 
spider Tetragnatha sp. and the ground-hunting spider 
Pardosa sp. were selected as they are common ripar-
ian spiders with different foraging strategies, which was 
expected to lead to different responses to changes in 
aquatic prey availability. Tetragnatha sp. builds webs 
on debris and vegetation next to the water to primarily 

capture flying prey [29]. In contrast, Pardosa sp. hunts a 
broad spectrum of terrestrial invertebrates in the ripar-
ian zone and aquatic prey directly from the water surface 
[30–32]. To reduce variability, where feasible, only adult 
female spiders were analysed, because adult male spiders 
may abandon food intake (see details about specimens 
in Additional file 1: Tables S2, S3). All spiders were hand 
collected and kept individually in small containers.

We sampled the aquatic invertebrates using aquatic 
emergence traps [33] with a basal area of 0.25 m2, which 
were emptied at least once a week. Two traps were placed 
per stream, each with a bottle trap that was filled with 
an aqueous solution of 1% (vol.) Tween® 80, a non-ionic 
detergent, and saturated with sodium chloride (for pres-
ervation purposes). As spider tissue needs 1–3 weeks 
to enrich stable isotope signals from their contributed 
prey [2, 34], we sampled aquatic prey over 3 weeks until 

Fig. 1  Stream network of sampling area. Sampling sites labelled from A to T in Central Romania, around Cluj-Napoca [28]
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1 week before spider sampling. Of the species collected 
in the traps, we selected those for stable isotope analysis 
that occurred in sufficient numbers and that are known 
to be prey for the studied spiders [32, 35] (Table 1). Ter-
restrial prey organisms were sampled once, 3 weeks 
before the sampling of the spiders. Terrestrial prey was 
collected with a modified leaf blower (modified STIHL 
SH86 blower; Stihl). Vegetation and ground were vacu-
umed within a distance of 0–1.5 m to the stream 50 times 
each for 5 s, resulting in a sampled area of approximately 
5  m2. The vacuumer gauze bags were transferred to a 
plastic bag to avoid organisms from escaping. All sam-
ples, including the plastic bags, were transported at ~5 °C 
and later kept frozen (~− 18 °C) until sorting, identifica-
tion and analysis. Spiders were kept up to 12 h in vessels 
before freezing to allow for excretion of the gut content.

Preparation of spider and prey samples for stable isotope 
analysis
Spiders were identified to species level following Roberts 
[29]. Where feasible, aquatic and terrestrial prey were 
identified to genus, family and order and family level, 
respectively.

For isotope analysis, samples were dried at 60  °C for 
at least 24  h. Where size allowed, single organisms 
were used in the isotope analysis, otherwise multiple 
individuals of one taxon were pooled to ensure a suf-
ficient amount of material for the analysis. Samples 
were homogenised and weighted into tin cups (approxi-
mately 0.5–1  mg). Three to five replicates per site and 
organism group were analysed using a Flash 2000 HT 
elemental analyser coupled via a ConFlo IV interface 
to a Delta V Advantage isotope ratio mass spectrom-
eter (Thermo Fisher Scientific). Stable isotope ratios 
of carbon and nitrogen are presented in conventional δ 

notation (‰) relative to their respective international 
standards (Vienna Pee Dee Belemnite) and atmospheric 
N2. Repeated analyses of an internal standard (i.e. casein) 
typically resulted in an accuracy (in terms of ± standard 
deviation (SD) of 0.047‰ and 0.044‰ for carbon and 
nitrogen, respectively. Prey groups were combined after 
checking for overlapping of prey samples for mixing 
models based on stable isotope analysis (SIA) according 
to taxon and in cases were stable isotope signatures of 
different insect groups overlapped before the final analy-
sis [36].

Characterisation of environmental parameters 
and pesticide analysis
To determine the potential response of aquatic prey to 
stressors and in turn the propagation of effects to ripar-
ian spiders, we recorded the hydromorphological struc-
ture and physico-chemical variables at each stream site 
(Table 2).

The distances to adjacent fields on both sides of the 
stream were recorded and aggregated into a single value 
called field distance index (fdi) for each sampling site the 
fdi as follows:

where xL and xR is the distance to the agricultural field on 
the left (L) and right (R) side of the stream, respectively. 
For further details and rationale see [23].

To determine the ratio of land use in the upstream 
catchment of each sampling site, we overlaid the 
upstream catchment areas calculated by the ATRIC algo-
rithm [37] with a CORINE land cover vector layer [28]. 
We used CORINE land cover to distinguish agriculture 
characterised by arable land, defined as catchment land 
use type 1 in data analysis, from agriculture with consid-
erable areas of natural vegetation and pastures, defined 
as catchment land use type 2 in data analysis. These two 
land use types may loosely be connected to what we 
qualitatively observed as traditional and industrialised 
agriculture.

Pesticide sampling was done using passive samplers in 
the streams adjacent to each sampling site with polydi-
methylsiloxane (PDSM) sheets and styrene–divinylb-
enzene (SDB) disks (for details see [23]). The in-stream 
toxicity of the 53 detected pesticides was assessed using 
the logarithmic sum of the toxic unit (referred to as 
sumTU, [38]. The sumTU is based on the EC50 value of 
the most sensitive freshwater invertebrate species for 
each pesticide (i.e. the minimum EC50 value), which was 

(1)

fdi =

((

1−
XL

100

)

+

(

1−
XR

100

))

2
;

with xL = 99 if xL > 99 and xR = 99 if xR > 99

Table 1  Origin of  the  prey organisms, prey groups used 
in  the  mixing model and  prey groups used in  the  stable 
isotope analysis (SIA)

Prey origin (aquatic/
terrestrial)

Prey groups 
in mixing model

Prey groups used in SIA

Aquatic Diptera Empididae

Chironomidae

Simuliidae

Ephemeroptera Ephemeroptera

Trichoptera Hydropsyche

Hydroptilidae

Trichoptera other

Terrestrial Collembola Collembola

Hemiptera Auchenorrhyncha

Sternorrhyncha
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compiled from the Pesticide Property Data Base [39], 
reported toxicity values in [40] and data from the US 
EPA ECOTOX data base [40, 41]. A previous compara-
tive analysis of different proxies for exposure showed, 
that the sumTU was among the indices that yielded the 
highest relationship with ecological responses [42]. In 
the analysis, we used the maximum sumTU across four 
pesticide sampling time points as a proxy for the maxi-
mum pesticide pollution, which may influence the export 
of aquatic prey to the spiders’ habitats, in the sampling 
period. Hereafter, we will refer to the maximum sumTU 
as toxicity.

Estimation of potential aquatic prey biomass
The dry biomass (W) of the emerged aquatic insects was 
used as a proxy for the potential aquatic prey available to 
spiders. We calculated the potential aquatic prey biomass 
W using length–mass relationships [43] as:

where L is length (mm) and a and b are fitted parameters 
describing the allometric relationship between the dry 
mass and length. The length L of the aquatic prey and the 

(2)W = a ∗ L
b
,

parameters a and b were taken or estimated from the lit-
erature (see Additional file 1: Table S4; [44, 45]).

Finally, the biomass m of aquatic prey per day was cal-
culated as:

where t is the sum of the number of days per emergence 
trap per stream during which aquatic prey taxon i was 
sampled.

Data analyses and statistics
To identify variables that may explain the potential 
aquatic prey biomass available at each site, we conducted 
variable selection using a linear model, given that the 
response exhibited normal distribution. We conducted 
stepwise backward model selection and used the Akaike 
information criterion (AIC) as a model goodness of fit 
measure [46], corrected for small sample sizes, i.e. cor-
rected AIC (AICc). Similarly, variables that may explain 
the aquatic contribution to the diet of spiders were iden-
tified with a stepwise backward model selection using a 
linear model for the ground-hunting spider, given that 
the response exhibited normal distribution, and a gen-
eralised linear model (GLM) with binomial distribution, 

(3)m =

∑

Wi

t
,

Table 2  Environmental variables used in data analysis with units and explanation

SD standard deviation
a  Compact-photometer PF-12, Macherey-Nagel was used for measurement
b  Multiparameter pH/ORP/EC/TDS/salinity/DO/pressure/temperature waterproof meter—HI98194, Hanna Instruments was used for measurement
c  CORINE codes from catchment land use 1: non-irrigated arable land 211, vineyards 221, fruit trees and berry plantations 222; CORINE codes from catchment land 
use 2: pastures 231, complex cultivation patterns 242, land occupied by agriculture with significant areas of natural vegetation and pastures in the catchment area 243 
[28]

Variable Unit and explanation Loading on SPCA axes Value

Mean SD

Toxicity Maximum of log sum toxic unit for the most sensitive freshwater invertebrate Excluded from SPCA − 0.56 0.52

pHb First axis; 0.33 8.19 0.18

Oxygenb [%] dissolved oxygen in the stream First axis; 0.45 75.99 8.95

Field distance index Weighted distance of streams to agriculturally used fields for right and left site 
of the stream, at sampling site

First axis; − 0.13 0.64 0.25

Corridor land use meadows [%] land cover with meadows within a 200 m distance to the stream First axis; − 0.14 52.5 25.78

Catchment size [km2] size of catchment area First axis; 0.30 76.03 67.16

Catchment land use type 1 [%] land cover with arable land and permanent crops in the catchmentc First axis; − 0.31 30.34 13.92

Maximal width stream [m] widest part of the stream at sampling site First axis; 0.39 3.57 1.35

Minimal width stream [m] narrowest part of the stream at sampling site First axis; 0.42 2.28 1.23

Riffles [%] First axis; 0.36 41.92 28.03

Sulphatea [mg/L] Second axis; 0.36 64.54 33.38

Riparian cover shrubs [%] riparian land covered with shrubs within 5 m to stream along a 20 m 
transect

Second axis; 0.62 16.15 15.93

Riparian cover meadows [%] riparian land covered with meadows within 5 m to stream along a 20 m 
transect

Second axis; − 0.59 25.38 25.02

Catchment land use type 2 [%] pastures and heterogenous agricultural areas in the catchmentc Second axis; − 0.37 39.07 7.54
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as the normal distribution assumption was not met, for 
the web weaving spider with the AICc as model good-
ness of fit measure. The aquatic contribution to the spi-
der diet was calculated with the R package MixSIAR [47] 
(version 3.1.7, run chain length 3,000,000). MixSIAR is 
based on Bayesian inference and estimates the most likely 
sources contributing to the spiders’ assimilated diets [48]. 
We used the trophic enrichment factors for terrestrial 
(0.4 ± 0.17‰ for δ13C; 2.3 ± 0.28‰ for δ15N) and aquatic 
prey (0.5 ± 0.19‰ for δ13C; 2.3 ± 0.24‰ for δ15N) [49]. 
To ensure the correct prey organisms were sampled for 
the spiders, only stable isotope data for the sites where 
at least 60% of spiders were inside the mixing polygon 
were used following [50] (for details see Additional file 1: 
Tables S3–S6).

Due to loss of emergence traps (three sites for both 
spiders), absence of web weaving spiders in one site and 
more than 40% of spiders’ isotopic values in a site lying 
outside of the mixing polygon (two sites for web weaver, 
six sites for ground hunter), only 10 sites for ground-
hunter and 13 sites for web weaving spiders were avail-
able for the final analysis.

Toxicity was included as an individual variable in the 
data analysis, given our focus on the potential relation-
ships of pesticides with spider diets. The intensity of the 
agricultural land use in the area surrounding each sam-
pling site was not measured directly (see above), but is 
likely reflected by several measured environmental vari-
ables and loosely connected to the different catchment 
land use types (Table 2). The low ratio of sample size (i.e. 
number of sites) to the number of explanatory variables 
prohibited the inclusion of all explanatory variables in 
the statistical models. To capture most of the information 
from the variables, we used a sparse principal compo-
nent analysis (SPCA) to reduce the number of variables 
in the models and generate orthogonal, i.e. independent, 
explanatory variables. SPCA improves interpretability 
through reducing the number of variables that load on 
an axis at the cost (typically minor) of capturing less of 
the total variance of all variables [51]. The scores of each 
sampling site on the two sparse principal component 
axes were used in the subsequent regression analysis 
(principal component regression).

The statistical software R [52], with the package effects 
[53] for graphics, was used for statistical analyses. SPCA 
was done in R using the package pcaPP [54]. We provide 
all computer code and data under https​://githu​b.com/
rbsla​ndau/graf_spide​rdiet​.

Results
Thirteen variables were captured by the two SPCA axes, 
which explained 23.9% and 12.3%, respectively, of the 
total variance of these environmental data. The first axis 

was primarily (loading > 0.3) composed of stream con-
ditions such as pH, oxygen concentrations, % of riffles, 
stream width and upstream catchment size (Table 2). In 
addition, it represented the cover with arable and per-
manent crops in the catchment, indicating high-inten-
sity agricultural land use (Table  2). The field distance 
index and the cover of meadows within a 200-m corri-
dor of the stream loaded only weakly on the first SPCA 
axis and will not be considered in interpretation. High 
values on the first SPCA axis represent a higher pH, 
higher oxygen, greater width and a higher proportion of 
riffles in the stream reach as well as a larger catchment. 
Low values represent a higher amount of catchment 
land use type  1, indicating high-intensity agricultural 
use. To enhance readability, we hereafter refer to the 
first SPCA axis as agricultural intensity and stream 
habitat quality gradient. The second SPCA axis was 
composed of sulphate concentrations in water and the 
riparian cover close to the streams and land use type 
2, representing pastures and heterogeneous agricultural 
areas in the catchment, indicating low-intensity land 
use. Chloride, nitrite and phosphate concentrations 
in the streams as well as conductivity, the agricultural 
land use within 200 m of the stream and shading were 
not captured by the SPCA axes and consequently omit-
ted from analysis (Table 2 and Additional file 1).

Dry biomass of potential aquatic prey emerging at the 
study sites ranged from 48.9 to 588.2  mg per trap per 
day. Diptera made up 1–40%, Ephemeroptera 5–94% and 
Trichoptera 2–90% of the total aquatic prey biomass. 
Aquatic prey contributed 40.8–55.4% (mean = 48%, 
standard deviation = 3.8%) to the diet of web weav-
ing spider and 34.0–53.0% (mean = 42%, standard 
deviation = 6.2%) to the diet of ground-hunting spiders 
(details Additional file  1: Table  S7). The proportions of 
aquatic prey in the diets of both spiders were not corre-
lated (Pearson’s correlation coefficient r = 0.05).

The best-fit model for emerged biomass of potential 
aquatic prey only contained the first SPCA axis, i.e. the 
agricultural intensity and stream habitat quality gradi-
ent, which exhibited a positive relation (AICc = 185.7, 
R2 = 0.31, n = 14). The aquatic proportion in the diet of 
the web weaver increased with the potential aquatic prey 
biomass (Fig.  2a) and decreased with the agricultural 
intensity and stream habitat quality gradient (Fig. 2b), the 
variables selected in the best-fit model (AICc = − 41.36, 
D2 = 0.2, n = 13). The aquatic diet of the ground hunting 
spider Pardosa sp. was positively related to the in-stream 
toxicity gradient (Fig.  2c) and negatively related to the 
second SPCA axis (Fig.  2d), the explanatory variables 
which were selected for the best-fit model (AICc = − 24.8, 
R2 = 0.57, n = 10). The AICc of all models in stepwise 
selection can be found in the Additional file 1: Table S8.

https://github.com/rbslandau/graf_spiderdiet
https://github.com/rbslandau/graf_spiderdiet
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Discussion
Changes in potential aquatic prey biomass in relation 
to environmental variables
The biomass of potential aquatic prey was related with 
a gradient (SPCA axis 1) that primarily represented 

stream characteristics such as water quality (pH, oxy-
gen), in-stream hydromorphological conditions (% rif-
fles) and stream size as well as high-intensity agricultural 
catchment land use. Hence, the gradient ranged from 
sites influenced by high-intensity agriculture with lower 

A C

B D

Fig. 2  Predictor-effect plots [55] for the aquatic contribution to the diet of the web weaver with a aquatic prey dry biomass per trap day, b the first 
SPCA axis and the diet of the ground-hunter with c in-stream pesticide toxicity in terms of logarithmic sum of the toxic unit [max sumTU] and d the 
second SPCA axis based on the final models. See Table 2 for loadings of variables composing the SPCA axis, indicating their relevance for the axis. 
Grey areas indicate 95% confidence bands for the explanatory variable. Dashes, so-called rugs, show the marginal distribution of an explanatory 
variable. Note that the plot only displays fitted values for the response based on the partial effect of a predictor with the other predictor held at a 
typical value. The original values of the response depend on multiple predictors and therefore would be misleading when included in the plot. For 
details see [56]
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stream oxygen concentrations, and slower flow to sites 
less influenced by high-intensity agriculture with higher 
oxygen concentrations, pH and fast flow sections in 
terms of riffles. This gradient resembles an agricultural 
gradient that is known to influence stream macroinver-
tebrate communities [57, 58]. Moreover, oxygen and fast 
flow, as present in riffles, are important variables deter-
mining habitat quality and consequently invertebrate 
community composition in stream ecosystems [59]. The 
finding of higher potential aquatic prey biomass in sites 
less influenced by high-intensity agricultural land use 
combined with generally higher habitat quality is in line 
with previous studies. Agricultural land use in the catch-
ment resulted, relative to forested land use, in smaller 
and weaker flying aquatic prey (e.g. Diptera) [60]. In ter-
restrial ecosystems, agriculture has also been related to 
the loss of flying insect biomass [61]. Riffles correlated 
positively with the abundance of flying aquatic prey in a 
study on nine Swedish streams [60].

However, the drivers of changes in the potential aquatic 
prey biomass are not necessarily the drivers of the diet 
of riparian predators as shown in a meta-analysis where 
the aquatic diet contribution of spiders increased with 
agricultural land use [27]. This is because predators likely 
exhibit differential feeding preferences and therefore not 
only the amount but also the composition of the potential 
aquatic prey is relevant. Furthermore, the contribution of 
aquatic prey to the diet also depends on the availability 
of terrestrial prey organisms. The drivers of changes in 
the potential aquatic prey biomass may also influence the 
biomass and composition of terrestrial prey organisms. 
Hence, predicting the diet of riparian predators would 
require knowledge of the composition and biomass of 
both aquatic and terrestrial prey as well as of predator 
feeding preferences. More detailed studies with a longer 
duration would be required to produce such knowledge. 
Though we lacked most of this knowledge, we were able 
to identify drivers of the spider diet based on direct anal-
yses, which we discuss below.

Contribution of aquatic prey to the diet of spiders 
with different foraging strategies
The maximum and mean contribution of aquatic prey 
taxa to the diet of the web weaving spider was higher 
and the variability and range were narrower compared to 
the ground-hunter, which matches our expectation. The 
higher contribution of aquatic prey to web weaving spi-
ders is likely due to the greater reliance of these types of 
spiders on stream habitats [11]. Most spiders are gener-
alist and opportunist predators and consequently flexible 
concerning their prey, which is especially pronounced for 
wolf spiders, such as ground-hunting P.  amentata [62]. 
Although hunting spiders such as P. amentata can obtain 

a substantial amount of resources from aquatic prey, they 
are less dependent on aquatic prey and less strictly asso-
ciated with riparian habitats than web weaving spiders 
[17, 63, 64]. The lower dependence of the ground hunter 
on riparian habitats was reflected in a lower mean and 
maximum dietary contribution, most likely as reduc-
tions in aquatic biomass can be compensated by contri-
bution of terrestrial prey. The ground-hunter P. amentata 
is more mobile, and therefore the collected individu-
als might have fed further away from the stream (less 
aquatic), whereas web weaving spiders are less mobile 
during spring time, i.e. the season our study was con-
ducted in [65]. Moreover, we found a wider range and 
higher variability of aquatic diet contribution for ground-
hunters reflecting their stronger flexibility in the dietary 
contribution. This stronger flexibility translates to the 
expectation that, for ground-hunting spiders, the con-
tribution of aquatic prey to diet responds more strongly 
to land use than for web weaving spiders, which have a 
lower capacity to compensate potential losses. However, 
in our study, we found that both spiders responded to 
gradients, in terms of SPCA axes, that among other vari-
ables represented land use (further discussed below).

The contribution of aquatic prey to the diet differed for 
both web weaving and ground-hunting spiders between 
different land uses. Overall, land use likely exhibits mul-
tiple direct and indirect effects on riparian predators 
such as spiders and manipulative field experiments would 
be more suitable to rigorously test the hypothesis that 
ground hunters respond stronger to land use than web 
weavers.

Changes in aquatic prey consumption in relation 
to environmental variables
The drivers of the contribution of aquatic prey to the diet 
of the two spiders differed and only the ground hunter 
responded to toxicity. The contribution of aquatic prey to 
the web weavers’ diet was positively related with potential 
aquatic prey biomass (Fig. 2a). This is in line with other 
studies showing that aquatic prey contribution increases 
when more aquatic prey is available [16] and reiterates 
the dependence of these spiders on aquatic prey. The web 
weavers’ diet was also related to the first SPCA axis, rep-
resenting a gradient of agricultural intensity and stream 
habitat quality. We suggest that this gradient affected the 
contribution of the aquatic diet through several direct 
and indirect paths. First, as discussed above, this gradi-
ent affected the potential aquatic prey biomass, repre-
senting an indirect effect because the web weavers’ diet 
was directly related to the potential aquatic prey biomass. 
Second, given that the gradient exhibited independent 
explanatory power in addition to the potential aquatic 
prey biomass, the agricultural stressors represented 
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by this gradient may have directly affected the spiders. 
Third, the agricultural stressors represented by this gra-
dient may have directly affected terrestrial prey compo-
sition and biomass, thereby indirectly affecting the diet 
of the web weaver. Overall, although field studies are 
important to identify the main drivers of populations and 
communities in real world ecosystems, more controlled 
conditions would be required to test specific hypotheses 
regarding the mechanisms (e.g. direct or indirect effects) 
of the observed patterns.

The diet of ground-hunting spiders also responded to 
a complex gradient of environmental variables (SPCA 
axis 2). However, this gradient mainly represented ripar-
ian habitat conditions (Table 2), whereas the gradient to 
which the diet of the web weaver responded mainly rep-
resented stream conditions. The contribution of aquatic 
diet in the ground-hunter increased when the riparian 
habitat changed from shrubs to meadows.

Moreover, the proportion of aquatic diet consumed by 
ground-hunting spiders increased with in-stream toxic-
ity. While the proportion of aquatic diet of the ground 
hunter increased, a follow-up analysis showed that the 
abundance of ground hunting Pardosa  sp. responded 
strongly negatively to toxicity (GLM, p = 0.002, D2 = 0.48, 
n = 17) (see data from [23]). However, no statistically 
significant relationship between web weaving Tetragna-
tha sp. and toxicity was found (GLM, p = 0.150, D2 = 0.13, 
n = 17). A study on insectivorous birds also found a nega-
tive response of their abundance to pesticides, which 
the authors attributed to a decrease in available prey [4]. 
It is well established that the levels of pesticide toxicity 
observed in our study can lead to compositional changes 
in aquatic invertebrate communities as shown in a meta-
analysis [19, 66] and review [26]. This will in turn affect 
the composition of emerging insects and riparian preda-
tors, where the direction of the effect will depend on 
predator preferences. However, we are not aware of other 
studies demonstrating such a response (i.e. the decrease 
in abundance of a riparian predator but increase in 
aquatic prey consumption in response to in-stream tox-
icity) and, as emphasised above, controlled experiments 
would be required to rigorously test mechanisms under-
lying the observed pattern. We speculate that in-stream 
toxicity is a proxy for the general pesticide exposure 
and that this has directly reduced the abundance of the 
ground-hunting spiders. Indeed, we found that in-stream 
pesticide toxicity is a major driver of the riparian spider 
community composition in our sites [23]. High in-stream 
toxicity might also have sublethal effects on emerging 
aquatic insects, making them easy prey for ground-hunt-
ing spiders and thus increasing their contribution to the 
diet of ground-hunter. At the same time, uptake of toxi-
cants by preying on moribund aquatic insects could also 

explain the decline in ground-hunting Pardosa sp. densi-
ties with increasing stream toxicity [23].

As an alternative explanation for the increase of aquatic 
prey in ground-hunting spiders with increasing in-stream 
toxicity, the lower abundances of ground hunting spiders 
along streams with high toxicity may in turn reduce com-
petition for aquatic prey and consequently increase the 
contribution of aquatic prey in their diets (i.e. “death frees 
up resources”). However, this explanation contrasts with 
the fact that a reduction in spiders would also decrease 
the competition for terrestrial prey. This apparent con-
tradiction may be resolved when taking prey quality into 
account. Aquatic and terrestrial organisms differ in their 
quality and compositions [67]. Studies of aquatic prey 
have mainly considered their quantity and not their qual-
ity [68], although nutritional quality of aquatic prey is 
important for spiders (e.g. immune system, prey capture 
efficiency) [69, 70]. Indeed, the quality of aquatic prey 
organisms can vary [71]. A study suggested that qualita-
tive rather than quantitative (e.g. biomass) differences 
in prey may have driven responses in terrestrial spiders 
related with land use in their study [13]. A study in South 
Africa showed a general net flow of highly unsaturated 
fatty acids from river to land, even though land-to-river 
inputs were dominated by biomass [68]. Due to the accu-
mulation of predators at streams [2, 16, 72] we assume 
that aquatic prey might be preferred by spiders due to 
a higher quality. However, we can only speculate on the 
mechanisms underlying the observed patterns. To rigor-
ously test hypotheses related to underlying mechanisms, 
we suggest that future studies on the response of spiders 
to agricultural land use and specifically pesticide gradi-
ents should consider i) potential direct effects on abun-
dances and ii) potential indirect effects resulting from 
direct effects on aquatic and terrestrial prey availability. 
This will likely require different study designs, i.e. con-
trolled field experiments or mesocosm studies.

Conclusions
The contribution of aquatic prey to the diet was related 
to different drivers in two riparian spiders. Partly 
matching our expectation, in-stream toxicity influenced 
the abundance of ground hunting Pardosa  sp, and the 
relative contribution of aquatic and terrestrial prey in 
its diet. However, the web weaver also responded to a 
gradient of agricultural intensity and stream habitat 
quality, to which pesticide toxicity may have contrib-
uted. This agricultural gradient reduced the biomass 
of potential aquatic prey, and their contribution to the 
diet of the web-building spider, but not abundance of 
the web builder. In general, a reduction in riparian spi-
ders may in turn impact organisms that rely on them 
as prey such as birds [4, 73]. Spiders can be affected by 
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pesticides in streams via lower quantity of aquatic prey 
as well as lower quality, but also via an accumulation 
of the contaminants in spiders and their prey [12, 13, 
71, 74]. Further field, mesocosm and laboratory stud-
ies on the relationships between prey organisms from a 
pesticide-contaminated habitat and their predators are 
needed to differentiate between qualitative and quan-
titative as well as direct and indirect aspects of cross-
ecosystem effects. This seems particularly important 
given the worldwide increase in the use of agricultural 
pesticides [75].
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