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Abstract 

Background:  Current compound prioritisation and monitoring approaches within Europe focus mainly on widely 
occurring priority and river basin specific pollutants but may overlook site-specific contamination from local emission 
sources. Thus, we propose a robust and semiautomated approach for the identification of site-specific chemicals and 
a prioritisation of water bodies with specific contamination based on non-target screening data from liquid chroma-
tography coupled to high-resolution mass spectrometry.

Results:  For prioritisation of site-specific contaminants, we calculated rarity scores for all peaks occurring in a set of 
31 surface water samples, which combine the maximum signal intensity of a peak in a dataset with its frequency of 
occurrence in that dataset in one single number. These were a robust measure without the need to address the prob-
lems of missing data in more sophisticated multivariate statistical methods. For our dataset, site-specific compounds 
were defined for rarity scores > 1000, and the studied 31 sites showed a huge difference in the number of such peaks 
(0–91 in positive and 0–48 in negative ion mode). Together with isotopologue detection, the evaluation of mass 
defects and the occurrence of homologue series, which all could be obtained from automated data processing, a 
more detailed characterisation of these site-specific contaminations was possible. For three selected sites with a high 
number of site-specific peaks, novel or unexpected compounds could be identified, which stem from specific usage 
or (former) industrial production upstream of these sites.

Conclusions and outlook:  The proposed approach allows for a rapid screening of large non-target screening data-
sets for site-specific contaminants, the prioritisation of sites with such a specific contamination and the subsequent 
identification of these compounds. Thus, the risk of overlooking possibly hazardous chemicals (including unknowns) 
which are not covered in conventional monitoring and prioritisation schemes is reduced.
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Background
The occurrence of organic micropollutants in sur-
face water has raised concerns due to their harmful 
effects on aquatic organisms and the possible entry into 
human water supply [51]. Over the last two decades, the 
compound spectrum analysed has steadily increased, 
although the number of compounds included in routine 

monitoring programs is still rather low compared to 
those compounds known to be present in environmental 
samples [5].

The European Water Framework Directive (WFD; 
European Union 2000) is currently the main basis for sur-
face water monitoring activities in European countries. 
It has a specific focus on European scale Priority Sub-
stances, which are used to define the Chemical Status of a 
water body, together with varying lists of river basin spe-
cific pollutants (RBSPs). Thus, monitoring efforts are typ-
ically biased towards compounds relevant for larger-scale 
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catchments. However, also site-specific contamination 
might substantially contribute to the likelihood that 
surface water bodies fail to meet environmental qual-
ity objectives and thus a further assessment is required 
(WFD, Annex II, Sect. 1.5, Assessment of Impact).

Water pollution due to household effluents treated in 
and emitted via municipal wastewater treatment plants 
(WWTPs) is expected to be composed of a more or less 
consistent, typical set of substances from major human 
activities including laundry care, home care, health care, 
personal care and food [10]. Concentrations are mainly 
impacted by the type of wastewater treatment used, the 
number of inhabitants served by the WWTP, and the 
effluent dilution in the receiving water [29, 37]. Addition-
ally, micropollutants from agricultural use (dominated 
by pesticides) reach surface water via diffuse inputs from 
leaching, and in particular by surface runoff during rain 
events [18, 33]. Surface waters may also be contaminated 
by local inputs from industrial production sites, landfills, 
or accidental releases, either directly or via WWTPs. 
These inputs might contain highly specific substances or 
substances in much higher concentrations as compared 
to municipal wastewater (e.g. [14, 41, 43]).

To select the relevant compounds to be moni-
tored among these thousands of chemicals, different 
approaches for prioritisation have been developed. These 
use either predicted environmental concentrations from 
consumption and emissions models or measured concen-
trations and compare these to (eco)toxicological thresh-
old values (e.g. [1, 11, 55, 57]). The outcomes using these 
methods depend strongly on the availability and quality 
of data, which might be very limited for certain com-
pound classes [55]. Thus, they bias the spectrum towards 
well-known compounds, unknown or unexpected com-
pounds such as metabolites and by-products are hardly 
considered. Furthermore, such prioritisation approaches 
based on general emissions scenarios will not rank site-
specific chemicals among the top candidates.

With the introduction of liquid chromatography cou-
pled to high-resolution mass spectrometry (LC-HRMS), 
it became possible to screen water samples for a more 
comprehensive spectrum of chemicals, provided that 
these are amendable to the individual analytical steps 
of the method [21, 31, 53, 54]. As a consequence, data-
driven approaches based on LC-HRMS have been put 
forward for the discovery and prioritisation of com-
pounds by mining LC-HRMS data for the presence of a 
large number of known chemicals in so-called suspect 
screening approaches [17, 55, 56]. However, in a suspect 
screening based on a list of known chemicals, unknown 
or unexpected compounds such as transformation 
and by-products are hardly considered and very large 

compound list have to be processed to cover all poten-
tially relevant compounds.

Non-target screening approaches can be applied with-
out any prior knowledge of the compounds present solely 
starting from the analytical data [31]. It has been success-
fully applied to prioritise so far unknown chemicals in 
rivers based on time series analysis [8, 22], their spatial 
trends in a river course [49], or in the context of fish mor-
tality in a river [44]. It may be expected that NTS will be 
increasingly applied in water monitoring in Europe [6]. 
However, an exhaustive identification of all chemicals at 
all sites is not realistic.

In the present paper, we suggest a robust approach 
based on a semiautomated evaluation of non-target LC-
HRMS data for the prioritisation of water bodies with 
site-specific contamination and the identification of the 
underlying chemicals. These could either be compounds 
which are found with the given detection limits at only 
one or a few sites or whose concentrations are several 
orders of magnitude higher at a particular site as com-
pared to other sites or catchments due to local inputs. To 
express site-specific contamination in a single value, we 
calculate rarity scores for each detected peak in the data-
set and prioritise for sites with a high number of these 
peaks. Additionally, peak attributes with a diagnostic 
value such as isotope patterns, mass defects, and occur-
rence of homologue series are considered.

Using a set of 31 samples from the catchments of the 
Rivers Saale and Mulde, Germany, the prioritisation 
approach is demonstrated for three sites with a high 
number of site-specific peaks, which were further char-
acterised and identified.

Materials and methods
Sites and sampling
Surface water was sampled at 31 sites from the catch-
ments of the rivers Saale and Mulde, which are major 
tributaries of the river Elbe in Germany (Additional file 1: 
Figure S1). Sites were selected at rivers and streams of 
different size, downstream of the discharge of industrial 
and municipal wastewater treatment plant (WWTP) 
effluents, or upstream of the first WWTP. Samples were 
taken in 5 L aluminium containers and stored at 4  °C 
until extraction. Details on the sites are given in Addi-
tional file 1: Table S1.

Estimation of discharge and wastewater fraction
Discharge data for the sampling sites were obtained for 
each sampling date either from associated gauging sta-
tions or from the size of the flow profile of small streams 
and flow velocity measurements over the profile. Details 
are given by Hug et  al. [26] and in Additional file  1: 
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Table S2. The mean annual discharge was obtained from 
hydrological records for gauging stations. In general, the 
real wastewater fractions are likely larger than those cal-
culated, as for WWTPs < 2000 person equivalents, no 
data were available and wastewater from decentralised 
treatment or untreated wastewater might contribute. 
In the study area, about 85% of the inhabitants are con-
nected to centralised wastewater treatment, and par-
ticularly in rural areas on-site treatment, mainly through 
septic tanks, or discharge directly into surface waters can 
occasionally be found.

Chemical analyses
Information on chemicals used is given in Additional 
file  1: Sect.  1.1. Extraction of the samples was done by 
solid-phase extraction using multi-layer cartridges simi-
lar to those described elsewhere [28, 39]. Details are 
given in Additional file  1: Sect.  1.2. Within a previous 
study focusing on ecotoxicological characterisation of 
these extracts by an in  vitro assay, also a target screen-
ing for 205 compounds was carried out [26]. For this 
study, the extracts were stored at − 20  °C and analysed 
within 3  months after extraction and the data evalua-
tion reported in this study is based on the archived data. 
Extracts concentrated 625-fold were analysed by LC-
HRMS using reversed-phase separation and electrospray 
ionisation (ESI) in positive (ESI+) and negative ion mode 
(ESI−). A nominal resolving power of 100,000 refer-
enced to m/z 400 was used (details see Additional file 1: 
Sect.  1.3). MS/MS spectra were obtained in additional 
runs using data-dependent MS2 on a precursor ion list of 
the prioritised peaks with collision-induced dissociation 
(CID) and higher energy collisional dissociation (HCD) 
at different collisions energies and a nominal resolving 
power of 15,000. Due to the biological analysis of the 
extracts [26], isotope-labelled internal standards were 
added only prior to LC-HRMS analysis and were used for 
quality control of peak detection in this study.

Automated peak detection
Raw HRMS full-scan chromatograms (m/z 100–1000) 
from ESI+ and ESI− runs were converted from profile to 
centroid mode and to .mzML format using ProteoWiz-
ard 3.0.6485 [30]. Afterwards, aligned peak lists contain-
ing 31 samples, one processing blank (i.e. from 10 mL of 
ultrapure water processed with the SPE cartridge as a 
sample) and one solvent blank (i.e. the type and amount 
of solvent used for eluting the cartridge processed as a 
sample) were generated by MZmine 2.20 [45]. We applied 
the steps mass detection, FTMS shoulder peak detection, 
chromatogram building, smoothing, peak deconvolu-
tion by local minimum search (minimum peak intensity 
30,000 in ESI+ and 10,000 in ESI− mode), and alignment 

by the Join Aligner algorithm. Settings were slightly 
adjusted from Hu et al. [24] and are given in Additional 
file  1: Table  S3. For further processing, ESI+ and ESI− 
peak lists with accurate m/z, retention time, peak inten-
sity and area were exported from MZmine as.csv files. 
From the processing and solvent blanks, a combined 
blank peak list was generated in Excel by taking the 
maximum value in each of these two blanks. The sample 
and blank peak lists were imported into R, v3.3.0 (R [46] 
for further processing. All peaks with an area-to-height 
ratio > 50 were removed from the peak list to exclude sig-
nals coming from background noise (for details see [25]. 
Peaks with an intensity ratio < 10 between the surface 
water and the blank peak list were excluded from further 
analysis. Peak lists were exported for all individual sam-
ples as.csv files.

Determination of rarity scores
From the aligned peak lists, m/z, retention times (defin-
ing a unique peak in the dataset) and the intensities in 
all samples were used. To identify peaks which occur at 
a small number of the studied sites with high intensity as 
compared to the other sites, we calculated a rarity score 
for each peak x (RSx) according to:

For the calculation of the median intensity, non-detects 
were replaced with the threshold intensity of the peak 
detection in MZmine (30,000 in ESI+ mode and 10,000 
in ESI− mode).

The rarity scores combine a low frequency of occur-
rence of a peak in a dataset and its maximum signal 
intensity in relation to the median intensity in one single 
number. As for every value based on a statistical meas-
ure, the calculation of rarity scores is meaningful only for 
a larger dataset, although we cannot specify a minimum 
number of samples. While a value of 1 is the lowest pos-
sible one (with median = maximum intensity and present 
at all sites), the maximum values are given by the peak 
intensity range obtained by the instrument used and the 
number of samples.

An advantage of this univariate approach is that it can 
be applied even to datasets with a large fraction of non-
detects or “zeroes” using the threshold signal intensity 
for the missing data. Such data may be difficult to han-
dle by more sophisticated multivariate statistical meth-
ods, which are commonly used to prioritise peaks in 

(1)
RSx =

maximum intensity across all sites(x)

median intensity across all sites(x)

·

total number of samples

number of positive detects
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metabolomics and occasionally in environmental studies 
(e.g. [50]). Such methods are either vulnerable to bias of 
the data or computation is time-consuming and requires 
expert knowledge [19, 20]. Common methods are the 
deletion of data records with missing values, imputa-
tion of single values (e.g. the detection limit or the half 
detection limit) or simple regression imputation. Dele-
tion of records yields a small number of cases or variables 
and would remove such site-specific peaks occurring in 
maybe one single sample. Constant values infuse the data 
with unconditional and uncorrelated observations and 
thus bias the variance and correlation relationship as the 
distribution is changed. Regression imputation of per-
fectly correlated values is vulnerable to overestimation of 
the regression fit.

Determination of additional peak attributes
Mass defects (i.e. differences between the nominal mass 
and the accurate monoisotopic mass of an ion) were cal-
culated using an R script, assuming that the mass defects 
span a range from M − 0.4 to M + 0.6 for a nominal mass 
M. Using the R package non-target version 1.8 [34], peak 
lists of all individual samples were screened for bounds 
of feasible isotope peaks (13C, 15N, 34S, 37Cl and 81Br) 
with a rule-based algorithm. Homologue series detec-
tion [35] was carried out for four or more consecutive 
mass differences corresponding to CH2, CH2O, C2H4O, 
C3H6O, C2H6SiO, CF2 and C2H4 units for singly and 
doubly charged ions. Peaks were finally grouped into 
components, i.e., the monoisotopic peak and its associ-
ated isotope or adduct peaks representing an individual 
chemical compound. Details of the R package non-target 
settings are given in Additional file 1: Table S4. Statistical 
analyses were conducted using R, v3.3.0 and Statistica 12 
(Statsoft Inc.). For data visualisation, the R packages 
ggplot2 [61] and ggradar (https​://rdrr.io/githu​b/ricar​do-
bion/ggrad​ar, last accessed 01/07/2019) were used.

Identification of prioritised peaks
For the identification of prioritised peaks, most plausi-
ble molecular formulas were determined from the raw 
data files based on accurate masses and isotope patterns 
using the QualBrowser of Xcalibur (Thermo Scientific) 
by visual comparison of measured and simulated mass 
spectra. Possible structures were searched in compound 
databases (Chemspider, Royal Society of Chemistry [48]; 
Pubchem, NCBI [42], and experimental MS/MS spectra 
were searched against MassBank [23]. Plausible candi-
date compounds were selected based on commercial/
industrial relevance and additional literature search. 
For confirmation, reference standards were obtained if 
available. Confidence levels for the identification were 
assigned according to [52]. Marvin, InstantJChem and 

JChem for Excel (Chemaxon, Budapest, Hungary) were 
used for chemical structure drawing and handling and 
calculation of ion masses. Given the scope of this study 
on evaluating the approach for its potential to prioritise 
site-specific contamination, compound identification was 
based solely on compound database search of molecular 
formulas, a MassBank search and confirmation of plausi-
ble hits with reference standard, but we did not use addi-
tional approaches such as MS fragmentation prediction 
or retention time prediction to assist with the identifica-
tion of candidate compounds within this study.

Results and discussion
Prioritisation of site‑specific contamination based on rarity 
scores
The distribution of rarity scores was similar for ESI+ 
and ESI− mode, with about 80% of the detected peaks 
showing values between 10 and 100. About 1% of peaks 
had values above 1000, thus we prioritised these as rep-
resenting site-specific compounds in our set of samples 
(Fig. 1). At this RS level, peaks down to a signal intensity 
of 106 (which would for example correspond to a con-
centration of 20 ng/L of a well ionising compound such 
as atrazine) might become classified as rare peaks if they 
occur in a low number of samples. These peaks would 
usually be missed if only signal intensity is used as a cri-
terion for prioritisation. In contrast, many peaks with 
intensities between 106 and 107 occurring at many of the 
study sites get rarity scores below 50, thus these are not 
considered for site-specific contamination. Obviously, 
peaks detected at low intensities at only a few sites might 
potentially also represent a site-specific contamination; 
however, this cannot be assessed based on the data, as we 
do simply not know whether (or at which level) the com-
pounds are present in samples where we could not detect 
these.

Figure  2 shows that most of the prioritised peaks 
with RS > 1000 actually occur in only one sample, with 
substantially smaller numbers in 2–7 samples in ESI+ 
and two or three samples in ESI−. Only one to three 
peaks with an RS > 1000 occur in 8–15 samples in 
ESI+, and in 4–10 samples in ESI−; these were mainly 
peaks with intensities > 5 × 106 in one or a low num-
ber of samples and much lower intensities in other 
samples. These findings suggest that the rarity score 
is a suitable approach to prioritise site-specific con-
tamination which is characterised either by high dif-
ferences in intensity among the samples (as a proxy for 
concentration) or by a restricted frequency of occur-
rence. It should be noted, however, that the calcula-
tion of the RS might be problematic in rare cases: If a 
compound is detected in 15 out of 31 samples at peak 
intensities around 108, but not in the other 16 samples, 

https://rdrr.io/github/ricardo-bion/ggradar
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the resulting RS value would be about 25,000, as the 
median is at a threshold of 10,000. If the compound 
is detected in 16 out of 31 samples at peak intensities 
around 108, but not in the other 15 samples, the result-
ing RS value would be around 5, as the median is about 
108.

To prioritise sites with a specific contamination, we 
compared the numbers of peaks with rarity scores above 
threshold levels of 5000 and 1000, respectively, among all 

sites as shown in Fig. 3. The number of peaks with high 
rarity scores showed large differences among the samples. 
A RS value of 5000 was exceeded by up to ten compounds 
in ESI+ and 13 compounds in ESI− mode in one sample, 
and a value of 1000 by up to 91 compounds in ESI+ and 
up to 48 compounds in ESI− mode in individual sam-
ples, while other samples had no single compound with 
rarity scores above these levels. In ESI+ mode, the sites 
with the largest number of rare peaks are B2, S8, DB, 
LN, H2 (RS > 5000) and DB, LN, LA, WE (RS > 1000). In 
ESI− mode site, SP shows clearly the site with the largest 
number of rare peaks (13 peaks with RS > 5000, 48 peaks 
with RS > 1000). Still considerable numbers of peaks with 
RS > 1000 in ESI− mode could be detected at the sites Sol 
(14 peaks) and DB (11 peaks). The occurrence of detected 
peaks with rarity scores > 1000 in the individual samples 
is given in Tables S5 (ESI+) and S6 (ESI−) in Additional 
file 2.

Using peak attributes to further characterise site‑specific 
contamination
For a further characterisation of site-specific contami-
nation, we used the percentage of peaks containing 
potentially Cl, Br and S (as inferred from the isotopo-
logue detection), the percentage of peaks with negative 
mass defect and those being part of a homologue series 
which are visualised in Fig.  4 for all sites. A detailed 
discussion of the performance of the peak attribute 

Fig. 1  a Rarity scores in ESI+ and ESI− mode of all detected peaks (sorted according to increasing rarity scores), which is enlarged in b for the 
range of 95–100%

Fig. 2  Frequency of occurrence of peaks with rarity scores > 1000 in 
ESI+ and ESI− mode in the 31 samples



Page 6 of 12Krauss et al. Environ Sci Eur           (2019) 31:45 

determination and consequences for the usage of this 
data is given in Additional file 1: Sect. 2.1.

For site B2, the large number of rare peaks coincides 
with the largest percentage of peaks with potential Cl and 
Br isotopologue peaks and with negative mass defects 
(Figs.  3, 4). Other sites with relatively high fractions of 
Cl or Br isotopologue peaks were H1 and H2, with S iso-
topologue peaks B1, H1 and P2. The highest fractions of 
peaks in homologue series were found at sites B1, H1, M1 
and M2. In ESI− mode, the largest number of rare peaks 
at site SP coincides with the largest percentage of peaks 
with potential S isotopologue peaks and with negative 
mass defects. Site WE showed a similarly large fraction 
of S isotopologue peaks and peaks with negative mass 
defects as site SP, but no peaks with particularly high rar-
ity scores. Similar as for ESI+ mode, site B2 had the larg-
est percentage of Cl or Br isotopologue peaks, followed 
by site H1. The percentage of peaks contained in hom-
ologue series did not coincide with the occurrence of a 
large number of site-specific peaks, and in fact, no such 
peaks were among those with RS > 1000.

Characterisation and identification of site‑specific 
compounds
The previous section showed a range of sites with a spe-
cific contamination pattern and a detection of a  high 
number of peaks with a RS > 1000, for which the gener-
ated peak attribute information can be used within the 
identification process. This is exemplified here for the 
sites SP (in ESI− mode; RS > 1000 for 48 peaks), DB (in 

ESI+ mode; RS > 1000 for 91 peaks) and H2 (in ESI+ 
mode; RS > 1000 for 47 peaks). A detailed overview of all 
peaks with rarity scores > 1000 in all samples is given in 
Tables S7 (ESI+) and S8 (ESI−) in Additional file 2.

Site SP (Spittelwasser downstream of Bitterfeld)
The Spittelwasser showed a large number of peaks with 
high RS values in ESI− mode, along with a large percent-
age of compounds containing sulphur and with negative 
mass defects based on the determination of peak attrib-
utes (Fig. 4). In contrast, peak numbers and numbers of 
compounds with high RS values in ESI+ mode were not 
noticeably high. As evident from Figure S4C (Additional 
file  1), many of these high-intensity S-containing com-
pounds eluted around 3  min, others around 18-20  min 
retention time. The two most intense peaks at RT 18.8 
and 19.7 min could be identified as being 1- and 2-naph-
thalenesulphonic acid (m/z 207.0121, M−H−) based on a 
reference standard of 2-naphthalenesulphonic acid. Most 
of the other S-containing compounds were tentatively 
assigned as closely related compounds such as naphtha-
lenedisulphonic (m/z 286.9688, M−H−) and naphthale-
netrisulphonic acids (m/z 366.9256 for M−H− and m/z 
182.9594 for [M−2H]2−) hydroxy- and amino-naphtha-
lenesulphonic acids (m/z 302.9637 and m/z 301.9796, 
respectively, both M−H−) as well as naphthylsulphate 
(m/z 223.0069, M−H−). These assignments were based 
on the match and similarity of MS/MS spectra and 

Fig. 3  Comparison of the studied sites for the number of peaks above rarity scores of 1000 and 5000, respectively
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retention times to those of reference compounds. Details 
are given in Table S9 and Figures S5 to S11 (Additional 
file 1).

Thus, our non-target screening approach revealed 
that derivatives of naphthalenesulphonic acids are 
important water contaminants in the Spittelwasser. The 

Fig. 4  Comparison of the studied sites for percentages of peaks with S/Cl/Br isotope pattern (top) and percentages of peaks with negative mass 
defect (m/z < 500) and contained in homologue series (bottom)
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occurrence of naphthalene sulphonic acids and their 
derivatives in high concentrations was demonstrated for 
textile and tannery wastewater [9], stemming from their 
use as dye precursors and use in dyeing processes, and 
in landfill leachates [47]. In case of the Spittelwasser, 
it is likely that the found compounds are a legacy con-
tamination related to the former dye (and maybe other 
chemicals) production at Bitterfeld. The contamination 
of sediments of the Mulde river and its tributary Spit-
telwasser with arylsulphonic acid derivatives and alkyl-
sulphonic acid aryl esters was previously recognised 
[4, 15, 16]. Sediments of the Spittelwasser and lower 
Mulde are also heavily contaminated by persistent chlo-
rinated compounds from the former chemical indus-
try [15]. However, we did not detect a large percentage 
of chlorinated compounds in the Spittelwasser water 
sample, suggesting that their occurrence is limited to 
compounds with a high affinity to sediments and/or a 
poor ionisation by ESI. The peaks with high RS values at 
the site SP were not detected at any other site studied, 
except for one peak of a naphthalenedisulphonic acid 
found at about 100-fold lower intensity at site S1 (m/z 
182.9594, RT 2.3 min).

Site DB (Dorfbach Niederschindmaas)
The Dorfbach is a small brook receiving wastewater 
from the WWTP of a large car manufacturer with 8000 
employees, which also treats municipal wastewater of 
about 3000 inhabitants from adjacent settlements. In 
ESI+ mode, this site shows the largest number of peaks 
with RS values above 1000 (Fig. 3). The most intense rare 
peak in ESI+ mode at m/z 391.2294 could be identified 
as hexa(methoxymethyl)melamine (HMMM) based on a 
reference standard (Additional file 1: Table S10 and Fig-
ure S13). The full-scan spectrum of HMMM shows a sig-
nificant in-source fragmentation resulting in the loss of 
one to three CH4O from the protonated molecule, which 
was partially assigned vice versa as a methanol adduct of 
the fragment by the non-target package (Additional file 1: 
Figure S14). Without a reference standard, it is indeed 
impossible to distinguish in-source fragmentation from 
methanol adduct formation in this case. Several other 
high-intensity peaks showed a similar full-scan mass 
spectral pattern (CH4O losses difference), and molecu-
lar formulas suggested compounds related to HMMM. 
The same peaks were detected in an old HMMM ref-
erence standard stored for more than 2  years at 4  °C, 
where they obviously stem from hydrolysis (Additional 
file  1: Figure S13). Although these compounds showed 
a low fragment ion intensity (typically in the 104 inten-
sity range despite 107 precursor ion intensity) result-
ing in poor MS/MS spectra (Additional file  1: Figure 
S14), these compounds were tentatively identified as 

penta- and tetra(methoxymethyl)melamine and O-dem-
ethylated HMMM. HMMM is one important precur-
sor of melamine–formaldehyde resins used for durable 
coatings such as in beverage cans and car paint finishes. 
Thus, the car manufacturer releasing treated wastewater 
in the Dorfbach is a plausible source. The technical prod-
uct contains a mixture of monomers and oligomers of 
HMMM as well as not fully methyl-methoxylated mela-
mine (US EPA [58]. Thus, the observed demethylated and 
demethoxymethylated derivatives might stem both from 
transformation or these technical mixtures. HMMM 
and related compounds have been previously identified 
in wastewater and surface water [2, 3, 44]. A widespread 
presence of HMMM in German rivers was reported by 
Dsikowitzky and Schwarzbauer [13] with a huge tempo-
ral and spatial variation and maximum concentrations 
of up to 880  ng/L in the Mulde river. Furthermore, we 
detected several “rare” and high-intensity peaks with 
molecular formulas and retention times similar to those 
of HMMM (e.g. C25H28O8N4 at 22.8  min, C12H18O4N6 
at 21.6  min, C25H33O5N5 at 20.3  min, C22H25O8N6 at 
22.9 min, Table S10),which could be caused by the pres-
ence of similar substituted melamines used for pro-
duction of melamine–formaldehyde resins [12]. The 
co-occurrence of several melamine-derivatives coincides 
with results from Peter et al. [44], who detected a (meth-
oxymethyl)melamine “compound family” in urban storm-
water runoff in the USA.

Most of these compounds could also be detected at the 
other studied sites (Fig. 5), among them sites LN and S6, 
with peak heights about two orders of magnitude lower 
than at site DB, pointing towards some specific sources 
there. At the other sites fewer compounds, mainly 
PMMM and tetra(methoxymethyl)melamine were found 
and peaks heights were in general about three orders of 
magnitude lower, confirming a widespread occurrence of 
this compound class in surface waters.

Site H2 (Holtemme downstream of WWTP Silstedt)
Site H2 on the Holtemme river receives municipal waste-
water from one relatively large WWTP (80,000 person 
equivalents) serving the town of Wernigerode and sur-
rounding villages, showing second largest number of 
peaks with RS values > 1000 in ESI+ mode. The twenty 
most intense peaks with RS > 1000 and their tentative 
identification and confirmation are shown in Additional 
file 1: Table S11 and Figures S16–S19.

Among these compounds were 7-diethylamino-
4-methylcoumarin, 7-ethylamino-4-methylcoumarin 
and 7-amino-4-methylcoumarin, which were recently 
identified at this site as causative compounds for the 
observed anti-androgenicity [40]. The latter is used as 
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optical brightener (or fluorescent whitening agent) for 
textiles and a constituent in cleaning detergents and 
washing powders [27] and has not been found anywhere 
else in surface water or wastewater [36]. We could detect 
one to all three of these compounds at six other sites at 
much lower peak heights (Fig. 6). While at sites B2 and 
S8, which are located further downstream of site H2 at 
the Bode and Saale, respectively, the occurrence might be 
related to the input upstream of H2, an input occurs also 
into the Solgraben (site Sol), the Chemnitz (C1), the Alte 
Luppe (LA) and the Spittelwasser (SP).

Furthermore, we could identify the antipsychotic drugs 
melperon and pipamperone and the antibiotic clarithro-
mycin (included in the target screening compound set 
of [26]). All compounds could be confirmed by reference 
standards. The high concentrations of pipamperone and 
melperon (estimated > 1  µg/L) and of clarithromycin of 
more than 5 µg/L [26] are not likely to stem from medi-
cal use. Pipamperone was previously analysed by Van De 
Steene et  al. [59] and was detected in WWTP effluents 

typically at concentrations below 40  ng/L and in sur-
face water below 20  ng/L. However, the authors found 
high pipamperone concentrations of up to 36  µg/L in 
the effluent of a WWTP treating wastewater from phar-
maceutical and chemical industries. We did not detect 
pipamperone at any other site, while melperon was 
detected at six other sites at levels at least 20-fold lower. 
Clarithromycin concentrations in WWTP effluents are 
typically in the range of 50–500  ng/L [38, 53, 60], and 
the wastewater fraction in the Holtemme was calculated 
to be at about 27%. We did not detect clarithromycin or 
pipamperone at any other site. Thus, the most probable 
source of these compounds is the production by a phar-
maceutical company located in Wernigerode. Emissions 
from drug manufacturing have been recognised as a sig-
nificant source of pharmaceuticals at specific sites [7, 14, 
25].

Metoprolol, N-methyl-1-dodecylamine and tributyl-
amine were detected at similar peak intensities at three, 
four and eleven other sites, respectively, resulting in high 

Fig. 5  Occurrence and peak intensities at all the 31 studied sites of hexa(methoxymethyl)melamine (HMMM), likely transformation products and 
related compounds detected as site-specific contaminants at site DB (PMMM: penta(methoxymethyl)melamine; TMMM: tetra(methoxymethyl)
melamine; O-des: O-desmethylated compound). Details on the tentative identification of the compounds are given in Additional file 1

Fig. 6  Occurrence and peak intensities at all the 31 studied sites of the most intense compounds with RS values > 1000 at site H2. Details on the 
tentative identification of the compounds are given in Additional file 1
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RS values for these compounds, but not at other sites 
although previous studies indicate a ubiquitous occur-
rence of metoprolol in the aquatic environment [26]. 
The manual re-evaluation of these compound peaks in 
Xcalibur indicated that this finding was based on arte-
facts related to peak picking with MZmine, as all three 
compounds were present in most samples with varying 
intensity. However, the peaks of these compounds bear-
ing all an aliphatic amino group were typically more than 
1.5 min wide with a significant tailing, which hampered 
the peak picking, and resulted in their misclassification as 
site-specific contaminants. Note that in this case a false 
negative in peak detection resulted in a false positive 
assignment of a site-specific peak.

Conclusions
A new approach to identify and prioritise samples with 
a significant site-specific contamination based on LC-
HRMS non-target screening data without any prior 
knowledge of the chemicals present was proposed. It is 
based on a simple calculation of rarity scores (RS) for 
each detected peak, without the need that the dataset 
fulfils any prerequisites for more sophisticated statistical 
approaches. The data processing steps with a final prior-
itisation of site-specific peaks and determination of peak 
attributes can be accomplished within 3–4 h using freely 
available software and can be applied by users less expe-
rienced in non-target screening or statistical data evalu-
ation. The obtained rarity scores can be used for both, 
ranking compounds for identification, but also for rank-
ing sites with a large number of such peaks for further 
investigation. As the magnitude of RS values depends 
on the instrument used and the dataset itself, it is not 
possible to set a general threshold value for site-specific 
peaks; the selection of peaks should instead be guided by 
the ranking and the occurrence among the different sites, 
and—very pragmatically—by the time which can be spent 
on the subsequent identification. This second step is by 
far more laborious and time-consuming, although auto-
mated workflows including MS/MS fragmentation pre-
diction and MS library search have been established (e.g. 
[8]). Nevertheless, some degree of expert knowledge is 
required, but efforts can be focused on the relevant com-
pounds and are supported by the automated annotation 
of isotopologues, homologue series and mass defects.

LC-HRMS instrumentation is currently becoming 
more frequently available also at authorities carrying out 
regulatory monitoring (e.g. along the Rhine river; [22, 
32]). The proposed approach to detect site-specific con-
tamination can be used by such authorities in investiga-
tive monitoring of catchments and water bodies which 
fail to meet quality criteria, while monitoring of priority 

substances and RBSPs does not indicate a chemical pol-
lution issue. It may also be directly applied for locations 
where a specific contamination is suspected rather than 
using targeted methods focusing on a limited set of 
compounds. This will significantly reduce the risk of 
overlooking possibly hazardous chemicals (including 
unknowns), for which detailed investigations on sources 
and toxicity can follow. Ultimately, it could guide com-
pound- and source-specific mitigation measures at sites 
where problematic compounds are emitted.

Additional files

Additional file 1. Sampling sites, data processing and performance 
evaluation, as well as on compound identification for selected site-specific 
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Additional file 2. Calculated peak attributes for all sites and the intensities 
of peaks with high rarity scores for all sites.
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