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Poison in paradise: increase of toxic effects 
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Abstract 

Background:  To date, only 8.2% of German surface waters achieve a good ecological status according to the Euro‑
pean Water Framework Directive. This is primarily attributed to structural deficits, intensive land use, and chemical 
contaminations of water bodies. In this context, hydromorphological restoration measures are implemented with the 
aim to increase habitat and species diversity and thus improve the ecological status of water bodies. Nevertheless, 
existing studies show that restorations promote the reintroduction of individual species, but only in exceptional cases 
an improvement in the ecological status is achieved. Therefore, we examined the impact of the prevailing chemical 
contamination on the restoration success in the catchment of the river Nidda in Hessen (Germany) by comparing 
restored river sections at the rivers Nidda and Horloff with unrestored sections upstream (space-for-time-substitution) 
and a transect downstream the restoration measures. For this purpose, we conducted active biomonitoring cam‑
paigns with Potamopyrgus antipodarum and Gammarus fossarum and analyzed water and sediment samples with 
effect-based in vitro bioassays.

Results:  At the river Horloff, mortality of P. antipodarum and toxicity in water samples measured via the microtox 
assay were highest within the restoration. At the river Nidda, the reproduction of snails and gammarids significantly 
increased within the restorations, and reproduction of snails correlated positively and significantly with estrogenic 
activities. The microtox assay also exhibited the highest toxicities in water and sediment samples from the restorations 
and dioxin-like as well as estrogenic activities significantly increased compared to the unrestored reference site. On 
the basis of these results, the prevailing chemical contamination has negatively affected snails and gammarids in the 
active biomonitoring campaigns and consequently is likely to have also a negative impact on the local invertebrate 
community and thus endangers the restoration success.

Conclusion:  Hydromorphological restorations as a stand-alone measure are insufficient to improve the ecologi‑
cal status of a water body as long as the water and sediment quality remain deficient. Therefore, it is necessary to 
improve water and sediment quality in parallel with hydromorphological restoration measures to achieve the objec‑
tives of the EU-WFD.
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Background
For decades, water bodies have been structurally 
degraded to protect against flooding, gain land for agri-
culture and settlements, and navigate rivers [1]. To 
achieve this, rivers were straightened (i.e., channelized) 
[2, 3], their beds obstructed and monotonous transversal 
and longitudinal profiles were created to avoid bank ero-
sion and enable navigation [2, 3]. Additionally, wooded 
banks were cleared [3], gravel banks dredged, river con-
nectivity was hindered by the construction of weirs, 
and old arms were cut off [4]. This resulted in a loss of 
aquatic habitats and thus in a decreased biodiversity 
[2, 5–7]. With the European Water Framework Direc-
tive (2000/60/EC; EU-WFD) [8], the European Parlia-
ment and the Council of the European Union adopted in 
2000 a regulatory framework for measures in the field of 
water policy. The aim of the EU-WFD was to achieve a 
good ecological and chemical status for all European sur-
face waters by 2015, which is defined by a near-natural 
water type-specific species assemblage of aquatic flora, 
benthic invertebrate and fish fauna as well as specific 
pollutants, hydromorphological, chemical and phys-
ico-chemical components as expected in conditions of 
minimal anthropogenic changes and disturbances [8–
10]. The ecological status of a given water body is then 
determined by the worst rated component (“one-out, 
all-out-principle”) [8]. Accordingly, all stressors, includ-
ing pollutants, can lead to a loss of species and thus to 
altered biocenoses, resulting in an inadequate status of 
water bodies according to the EU-WFD. In principle, it 
is therefore to be expected that chemical contamination 
may lead to ecological deficits in water bodies according 
to the EU-WFD.

In fact, only 8.2% of German surface waters and a 
minority of rivers in other European countries achieved 
the required good ecological status according to the 
EU-WFD by 2015 [9, 10]. This is mainly attributed to 
structural deficits (e.g., straightening, damming, embank-
ments) [2, 11, 12] and also to chemical contaminations 
of water bodies (e.g., by wastewater treatment plants, 
intensive agriculture) [6, 13–16]. However, the relative 
contribution of chemical contamination in relation to 
structural deficits to the inadequate ecological status of 
water bodies remains unclear.

Nevertheless, hydromorphological restorations with 
the aim of increasing habitat and species diversity are 
considered as a key measure to improve the ecologi-
cal status of water bodies [5, 13, 17, 18]. Such morpho-
logical restorations include dismantling of bank and bed 
fixations [5, 19, 20], removal of weirs to restore river 
connectivity enabling the migration of fish and inverte-
brates [20, 21], purchase of land along the watercourse 
and thus the extensification of land use [12, 20], channel 

reconfiguration and reconnection of floodplains for flood 
protection [2, 20], alteration of structural complexity to 
increase habitat and species diversity [20], as well as the 
creation of riparian strips to reduce trophic effects by 
capturing nutrients and toxicants, moderating tempera-
tures and introducing organic matter [2, 21, 22].

However, a number of studies have investigated the 
efficiency of restoration measures with conflicting 
results. While few studies reported an enhanced water 
quality [23–25] and an improved diversity of the benthic 
invertebrate assemblage [17, 26–28], others found little 
signs of improvement even years after the restoration [13, 
29–33]. As a possible cause for the poor success of many 
restoration efforts, the potential impact of the prevailing 
chemical contamination at two model restorations in the 
catchment of the river Nidda in Hessen (Germany) is in 
focus of the present study. For this purpose, we inves-
tigated the biological effects caused by chemical con-
tamination in active biomonitoring campaigns, as they 
represent temporally integrated exposures to pollutants 
and thus offer a more holistic approach than the inves-
tigation of individual pollutants in grab samples, which 
only provide a snapshot of the chemical contamination in 
water bodies.

Therefore, we performed active biomonitoring cam-
paigns and laboratory experiments with combined water/
sediment samples of the corresponding sampling sites 
with the freshwater mudsnail Potamopyrgus antipo-
darum and the amphipod Gammarus fossarum at sites 
in restored river sections, at unrestored reference sites 
upstream (space-for-time-substitution [16, 34]) and at a 
transect downstream the restored sections to account for 
changes in biological responses. In addition, water and 
sediment samples from every sampling site were ana-
lyzed with effect-based in vitro bioassays (yeast reporter 
gene assays and microtox assay) to support the in  vivo 
findings.

Methods
Sampling sites and restoration measures
The Nidda catchment, which covers almost 2000  km2, 
is characterized by intensive agricultural and industrial 
use [35] and represents a typical catchment of Central 
Europe. Many water bodies in the catchment have been 
structurally degraded due to river engineering for flood 
protection and exhibit numerous obstacles to migra-
tion as for example weirs, dams and hydropower plants. 
In addition, the river Nidda and its tributary Horloff 
are negatively impacted by intensive agriculture, as 
well as municipal and industrial wastewater treatment 
plants (WWTPs) resulting in proportions of clearwater 
(i.e., treated wastewater) of up to 50% at mean low dis-
charge (MNQ) [36] and thus a potential high chemical 
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contamination level. On the other hand, for more than 
20  years restoration measures have been conducted in 
the Nidda catchment. Despite these efforts, the ecologi-
cal status of the water bodies has not improved and is still 
deficient [35, 37]. For this reason, we examined two res-
toration measures with different intervention depths in a 
comparative manner: the lower Horloff, whose status in 
the investigated river sections was assessed with ecologi-
cal status class 5 (bad), and the river Nidda, which corre-
sponds to ecological status class 4 (poor) throughout the 
examined sections [35, 37].

At the river Horloff, we chose three unrestored refer-
ence sites upstream of the restored section (marked in 
white in Fig.  1a) based on space-for-time-substitution 
[16, 34]. Thus, the reference sites represent the unre-
stored condition in the same river stretch, which is also 
subject to the same influences as the restoration. Refer-
ence site H1 is located 60 m upstream of a WWTP efflu-
ent with a capacity of 78,000 population equivalents (PE) 
[38], H2 is 160 m downstream the WWTP effluent and 
H3R, which serves as statistical reference, is about 700 m 
upstream the restoration site H4. Additionally, the river 
Horloff receives the surface runoff of the A45 motor-
way bridge upstream of site H4 [35]. Restoration site H4 
is located within a river section which was restored in 
2002/2003 and 2006/2007 and extends over a total length 
of 1.6 km (marked in light grey in Fig. 1a). Due to inten-
sive agriculture, the intervention depth for the restora-
tion measure was lower compared to the second model 

restoration at the river Nidda. Then five transect sites fol-
low 1.4 km (H5), 2.4 km (H6), 4.3 km (H7), 6.1 km (H8) 
and 8.1 km (H9) downstream of the restored section, in 
which possible changes in biological effects were investi-
gated (marked in dark grey in Fig. 1a).

At the river Nidda, we selected two unrestored refer-
ence sites (marked in white in Fig.  1b) on the basis of 
space-for-time-substitution [16, 34]. N1 is located 50 m 
upstream the effluent of a WWTP with a capacity of 
48,000 PE [38] and N2R, which serves as statistical refer-
ence, lies 500 m downstream the WWTP effluent. Sub-
sequently, three restoration sites N3, N4 and N5 follow 
(marked in light grey in Fig. 1b). N3 represents the resto-
ration at the so-called “Nidda-Knie” from 2001 and sam-
pling sites N4 and N5 are located within the restoration 
“Gronauer Hof” from 2010, which extends over a length 
of 3.2  km. Then four transect sites follow 1.0  km (N6), 
1.7 km (N7), 3.2 km (N8) and 6.0 km (N9) downstream 
the restored section (marked in dark grey in Fig. 1b).

Test organisms
Potamopyrgus antipodarum, the New Zealand mudsnail, 
was chosen as test organism, as it is a standard organism 
in the testing of chemicals according to OECD guideline 
242 [40] and reacts sensitively towards reproductive toxi-
cants including endocrine disrupting chemicals (EDCs) 
[41–43]. Besides, P. antipodarum has successfully been 
used in field studies to evaluate the conditions of rivers 
and environmental samples [44–48]. The snails used in 

Fig. 1  Sampling sites at the river Horloff (a) and sampling sites at the river Nidda (b). Black: wastewater treatment plant, white: reference sites, with 
H3R and N2R as statistical reference sites, light grey: sites in restored section, dark grey: transect sites. Maps were modified with Adobe® Photoshop 
CC (Version 20.0.0, Adobe Systems Incorporated, San José, California, US) and are based on kompass.de [39]
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the present study originated from the in-house breeding 
stock of the Department Aquatic Ecotoxicology at Goe-
the University, which was kept according to the recom-
mendations of the OECD guideline 242, annex 2 [40].

The genus Gammarus, which includes the fresh-
water amphipod Gammarus fossarum, reacts sensi-
tively to pollutants such as pesticides (e.g., terbutryn, 
fenoxycarb) or micropollutants from wastewater (e.g., 
17α-ethinylestradiol) [49–55]. Furthermore, G.  fossarum 
has already been used in field studies to assess the condi-
tions of rivers and environmental samples [56–60]. The 
gammarids used in the present study were collected 1 day 
prior to the active biomonitoring campaigns and labo-
ratory experiments from the source region of the river 
Nidder (N 50°29′7″, E 9°14′52″, Sichenhausen, Hessen, 
Germany), and kept in aerated river water in a climate 
chamber at 10 ± 1.5 °C over-night until tests started.

Active biomonitoring campaigns
The active biomonitoring campaigns at the rivers Hor-
loff and Nidda were conducted in March and May 2017, 
respectively, and were performed as previously described 
in detail [48], but with minor modifications. Thus, the 
number of snails and gammarids used in the active bio-
monitoring campaigns was increased to ten gammarids 
and ten snails per replicate. The sexing of gammarids 
prior to the exposure was not possible, since determina-
tion of sexes requires a fixation of the individuals. Gam-
marids with a minimum size of 6.0 mm were introduced 
in stainless steel enclosures (12.5 cm × 6 cm) with a piece 
of wire gauze (polytetrafluorethylene, 8.2  cm × 3.3  cm) 
and conditioned black alder leaves (Alnus glutinosa) 
ad libitum. Snails with a size of 3.5 to 4.5 mm were intro-
duced in stainless steel tea-eggs (4.5  cm × 3.5  cm) that 
contained pieces of carrots from controlled biological 
cultivation ad libitum. At each site, two cages each con-
taining three replicates were exposed (in total 60 snails 
and 60 gammarids per site). In addition, a data log-
ger (HOBO Pendant®, Onset Computer Corporation, 
Bourne, USA) was exposed simultaneously at each site 
measuring the water temperature every 30  min. After 
28  days of exposure, snails and gammarids were recov-
ered and checked for mortality. Snails were shock fro-
zen in liquid nitrogen per replicate, and gammarids were 
fixed separately in 70% ethanol. As endpoints the size and 
the number of embryos in the brood pouch of snails as 
a reproductive parameter were measured according to 
OECD guideline 242 [40], while in gammarids the size, 
sex, and fecundity index describing the number of eggs 
depending on the size of the respective gammarid were 
assessed.

Associated water parameters (water temperature, pH, 
conductivity, oxygen concentration and saturation) were 

measured with a portable multimeter (HQ40d, Hach, 
Germany), ammonium, nitrite, nitrate, ortho-phosphate, 
sulfate, chloride and dissolved organic carbon (DOC) 
concentrations were determined via Spectroquant test 
kits (Merck, Darmstadt, Germany), and total hardness 
as well as carbonate hardness were determined with 
MColortest kits (Merck, Darmstadt, Germany) at the 
beginning of the biomonitoring campaigns.

Laboratory experiments with combined water/sediment 
samples
Static laboratory experiments with P. antipodarum 
und G. fossarum using combined water/sediment sam-
ples from each site served for plausibility verification to 
exclude environmental stressors such as water tempera-
ture, hydraulic pressure or stream velocity as causes for 
occurring in vivo effects and were conducted in parallel 
to the active biomonitoring campaigns. Tests with mud-
snails were conducted at 16 ± 1.5 °C in 500 mL glass beak-
ers with 400 mL river water and 40 g sediment according 
to Duft et al. [41]. The negative control contained 400 mL 
test medium according to the OECD guideline 242 [40] 
and 40  g artificial sediment [95% (dw) quartz sand, 5% 
(dw) powdered beech leaves (Fagus sylvatica)] according 
to Duft et al. [41]. The test conditions followed the OECD 
guideline 242 [40] and every combined water/sediment 
sample and the control were tested in duplicate, each 
containing 26 individuals of P.  antipodarum with sizes 
between 3.5 and 4.5 mm. Snails were fed three times per 
week with 70 µg finely ground TetraPhyll® (Tetra GmbH, 
Melle, Germany) per snail and day.

The tests with gammarids were performed at 
10 ± 1.5  °C in 250-mL glass beakers with 200  mL river 
water and 50 g sediment. The negative control contained 
200 mL ISO test water [61] and 50 g artificial sediment 
according to Duft et  al. [41]. In the experiments with 
gammarids, we used six replicates for the control and 
four replicates for every combined water/sediment sam-
ple, each containing 10 individuals of G. fossarum with a 
minimum size of 6.0  mm. Gammarids were fed ad  libi-
tum with conditioned black alder leaves (Alnus gluti-
nosa). After 28  days of exposure, snails and gammarids 
were checked for mortality, snails were shock frozen in 
liquid nitrogen per replicate and gammarids were fixed 
separately in 70% ethanol and subsequently examined 
regarding the same endpoints as described for the active 
biomonitoring campaigns. Associated water parameters 
(water temperature, pH, conductivity, oxygen saturation 
and concentration) were measured once per week.

In vitro analyses of water samples
At the start day of the active biomonitoring campaigns, 
aqueous grab samples were collected at every site. Within 
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48  h after collection, anti-estrogenic and anti-andro-
genic activities of unfiltered native water samples were 
analyzed in the yeast anti-estrogen screen (YAES) and 
the yeast anti-androgen screen (YAAS) [62]. Thereby, 
YAES and YAAS require background concentrations of 
0.3  nmol 17β-estradiol/L and 10  nmol testosterone/L, 
respectively.

For the analysis with agonist screens and the microtox 
assay, water samples were solid-phase extracted (SPE) 
according to Giebner et  al. [62]. Therefore, 1000  mL of 
each water sample were filtered within 24 h after collec-
tion through glass microfibers filters (VWR International 
GmbH, No. 692, European Cat. No. 516-0885, 90  mm, 
particle retention: 1.0  µm, Darmstadt, Germany), and 
the filtrate was passed through conditioned Oasis HLB 
cartridges (200 mg, Waters, Milford, MA, USA) to cap-
ture mid-polar and non-polar substances [63]. Further-
more, a SPE blank was prepared by passing 1000  mL 
ultrapure water through conditioned cartridges. The 
cartridges were dried under a gentle stream of nitrogen 
and eluted with 4  mL methyl tert-butyl ether (MTBE) 
and 4 mL methanol (MeOH) according to Giebner et al. 
[62]. Afterwards, 0.1  mL dimethyl sulfoxide (DMSO) 
was added and the extracts were concentrated under a 
gentle stream of nitrogen to the final volume of 0.1 mL, 
which corresponds to a 10,000-fold enrichment. Subse-
quently, the extracts were analyzed in the yeast estrogen 
screen (YES), the yeast androgen screen (YAS) [62] and 
the yeast dioxin screen (YDS) [64]. The maximum DMSO 
concentration amounted to 0.21% in yeast assays. The 
measured activities were expressed as equivalent con-
centrations for 17β-estradiol (YES), testosterone (YAS), 
4-hydroxytamoxifen (YAES), flutamide (YAAS) and 
β-naphthoflavone (YDS) and have been corrected for 
dilution and enrichment so that equivalent concentra-
tions refer back to native water samples.

In addition, the microtox assay with Aliivibrio fis-
cheri was conducted with water extracts [49, 65]. The 
maximum DMSO concentration amounted to 1% in the 
microtox assay. Therefore, the luminescence inhibition in 
A. fischeri is measured, which is expressed as 50% effect 
concentration (EC50) referring to the relative enrich-
ment factor (REF) of the respective water sample. An 
EC50-threshold value of 750 REF was defined for water 
samples that reached less than 20% luminescence inhi-
bition according to Harth et  al. [49]. This threshold is 
equivalent to the lowest EC50 that a non-toxic sample can 
reach.

In vitro analyses of sediment samples
Sediment samples were collected from the first two 
centimeters of the upper sediment layer at each site on 
the start day of the active biomonitoring campaigns. 

Sediment samples were freeze-dried (Martin Christ 
Gefriertrocknungsanlagen GmbH, Alpha 1-4 LSC plus, 
Osterode, Germany), and 50 g of each sediment sample 
was shaken with 100 mL ultrapure water at 210 rpm for 
10  min (GFL 3017, GFL Gesellschaft für Labortechnik 
mbH, Burgwedel, Germany), eluted by sonication for 
10  min (Sonorex RK 52 H, Bandelin electronic, Berlin, 
Germany) and afterwards centrifuged at 4400  rpm for 
5 min (Centrifuge 5702, Eppendorf AG, Hamburg, Ger-
many). After centrifugation, the estrogenic (YES), andro-
genic (YAS), anti-estrogenic (YAES), anti-androgenic 
(YAAS) and the dioxin-like activities (YDS) of the aque-
ous eluates were measured within 48  h [62, 64]. These 
activities were expressed as equivalent concentrations 
per kg sediment for 17β-estradiol (YES), testosterone 
(YAS), 4-hydroxytamoxifen (YAES), flutamide (YAAS) 
and β-naphthoflavone (YDS) and corrected regarding 
dilution.

To quantify the baseline toxicity of sediment sam-
ples in the microtox assay with A. fischeri, sediment 
extracts were prepared. Therefore, 20  g of each freeze-
dried sediment sample was extracted with 400  mL ace-
tone in a Soxhlet extractor (Electrothermal EME30500/
CEB, Cole-Parmer Ltd., Staffordshire, UK; VWR RC-10 
Digital Chiller, VWR International GmbH, Darmstadt, 
Germany) at 56 °C for 24 h. Sediment extracts were con-
centrated in a rotary evaporator (Heidolph Laborota 
4000-efficient, vacubrand CVC 2000, Heidolph Instru-
ments GmbH & Co. KG, Schwabach, Germany; VWR 
RC-10 Digital Chiller, VWR International GmbH, Darm-
stadt, Germany) at 56 °C, 0.5 mL DMSO were added and 
extracts were reduced under a gentle stream of nitrogen 
to the final volume of 0.5 mL. These extracts were sub-
sequently analyzed in the microtox assay [49, 65]. The 
inhibitions of the luminescence are expressed as EC50 
referring to mg sediment-equivalents. An EC50 thresh-
old value of 30 mg sediment-equivalents was defined for 
non-toxic sediment samples, i.e., samples that reached 
less than 20% inhibition of luminescence. This threshold 
is equivalent to the lowest EC50 that a non-toxic sample 
can reach.

In addition, the mean grain size [66] and the loss on 
ignition [67] were determined in sediment samples from 
each sampling site.

Data analysis
Statistical analyses were conducted with the software 
Microsoft® Excel 2016 (Microsoft Corporation, Red-
mond, USA) and GraphPad Prism®, v.5.04 (GraphPad 
Software Inc., San Diego, CA, USA). Differences in mor-
tality compared to the corresponding reference site were 
determined using Fisher’s exact test. Continuous data 
were examined for normal distribution with D’Agostino 
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and Pearson omnibus normality test and for variance 
homogeneity with Bartlett’s test for equal variances. In 
case of normal distribution and variance homogeneity an 
unpaired t test or a one-way ANOVA with Bonferroni’s 
post hoc test was applied. If continuous data were not 
normally distributed or variances were inhomogeneous, 
a Mann–Whitney test or Kruskal–Wallis test followed by 
Dunn’s post hoc test was applied. The level of significance 
was defined as α < 0.05 and is illustrated in the graphs 
with asterisks (*p < 0.05, **p < 0.01, ***p < 0.001). For the 
correlation of explanatory variables (in vitro activity and 
baseline toxicity in water and sediment samples, loss 
on ignition, mean grain size) and the response variables 

(mortality and reproduction of P. antipodarum and G. 
fossarum), linear regression analyses were conducted.

Results
Active biomonitoring campaigns and laboratory experiments 
with Potamopyrgus antipodarum
At the river Horloff, the reproduction of snails exposed 
at site H2 downstream the wastewater discharge slightly 
increased compared to H1 but was not significantly 
enhanced in the active biomonitoring campaign (Fig. 2a). 
At sites H1 and H2 also significantly fewer snails died 
than at reference site H3R (p < 0.05–0.01, Fig.  2c). At 
restoration site H4, we found the highest mortality of 

a b

c d

Fig. 2  Potamopyrgus antipodarum. Mean and standard deviation of the number of embryos (a, b) and mean and standard error of the mean of the 
percentage mortality (c, d) after 28 days of exposure in the active biomonitoring campaigns at the river Horloff in March 2017 (a, c) and the river 
Nidda in May 2017 (b, d). White: reference sites, with H3R and N2R as statistical reference sites, light grey: restoration sites, dark grey: transect sites. 
Significant differences in the number of embryos compared to the reference site N2R (shaded) were determined via unpaired t test. Significant 
differences in the percentage mortality compared to the corresponding reference site H3R or N2R (shaded) were determined using Fisher’s exact 
test. *p < 0.05, **p < 0.01, ***p < 0.001, n = 6
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P. antipodarum among all sites at the Horloff (Fig.  2c). 
Here, 53.3% of the exposed snails died which corresponds 
to a significantly higher mortality than at reference site 
H3R (p < 0.01). At the transect sites, the reproduction 
varied around the reference level (Fig. 2a), the mortality 
of P. antipodarum decreased again and was, in case of 
transect site H8, significantly reduced compared to ref-
erence site H3R (p < 0.01, Fig. 2c). A similar trend in the 
reproduction of P. antipodarum was also observed in 
laboratory experiments with combined water/sediment 
samples from the corresponding sampling sites (Addi-
tional file 1: Figure S1a).

In contrast to the river Horloff, snails produced con-
siderably more embryos in the active biomonitoring 
campaign at the river Nidda (cf., Fig. 2a, b). At reference 
site N2R downstream the wastewater discharge, snails 
produced slightly less embryos compared to site N1, but 
this was not statistically significant (Fig. 2b). At the res-
toration sites N3 to N5, snails’ reproduction was signifi-
cantly higher than at reference site N2R (p < 0.05–0.01), 
whereas mortality was not significantly affected (Fig. 2b, 
d). Reproduction of P. antipodarum corresponded in the 
transect sites to the reference level at N1 (Fig.  2b) and 
mortality rose significantly, reaching 33.3% and 31.7% at 
transect sites N7 and N9, respectively (p < 0.001, Fig. 2d). 
In laboratory experiments with P. antipodarum and com-
bined water/sediment samples from the river Nidda, we 
found a different pattern for the reproduction and mor-
tality (Additional file 1: Figure S1b, d). Here, the embryo 
numbers in snails significantly decreased at restoration 
site N5 compared to N2R (p < 0.05) and mortality was not 
affected.

Active biomonitoring campaigns and laboratory 
experiments with Gammarus fossarum
At the river Horloff, the fecundity indices of gammarids 
slightly increased from sites H2 to H4 (Fig. 3a), whereas 
the mortality decreased slightly at these sites compared 
to H1 (Fig.  3c), but these differences were not statisti-
cally significant. At the transect sites H5 (p < 0.001) and 
H8 (p < 0.05), significantly fewer G. fossarum individu-
als died, whereas at H7 a significantly higher mortality 
of gammarids was observed compared to H3R (p < 0.01, 
Fig. 3c). At H9, the highest fecundity index was recorded 
but did not differ significantly from H3R (Fig. 3a). Also, 
in the laboratory experiment with combined water/sedi-
ment samples from the river Horloff, the fecundity index 
did not differ significantly between sampling sites (Addi-
tional file 2: Figure S2a). In contrast to the active biomon-
itoring at the river Horloff, significantly fewer gammarids 
died at site H1 in the laboratory experiment than at refer-
ence site H3R (p < 0.05, Additional file 2: Figure S2c). The 
highest mortality with 25% dead G. fossarum individuals 

was observed at the reference site H3R in laboratory 
experiments, and a significantly lower mortality was 
determined at the restoration site H4 (p < 0.01, Additional 
file 2: Figure S2c).

At the river Nidda, the fecundity index of gammarids 
declined by 43% at reference site N2R downstream the 
wastewater discharge, whereas mortality rose by 78% 
compared to site N1 (Fig.  3b, d), but these differences 
were not statistically significant. At the restoration site 
N3, the fecundity index significantly increased com-
pared to the reference site N2R (p < 0.01, Fig.  3b) and 
the mortality remained on a comparable level as at site 
N2R (Fig.  3d). At N5, the fecundity index was highest 
among all sites at the river Nidda (Fig.  3b) but was not 
statistically significant compared to N2R due to the high 
standard deviation. At the transect site N6, the fecun-
dity index was significantly higher than at reference site 
N2R (p < 0.05, Fig.  3b) and at N7 and N9, no reproduc-
tion of gammarids occurred (Fig. 3b), since the mortality 
increased significantly to 76.7% and 83.3%, respectively 
(p < 0.001, Fig.  3d). In the laboratory experiment with 
combined water/sediment samples from the river Nidda, 
completely different patterns were observed for fecundity 
and mortality (Additional file  2: Figure S2b, d). Within 
the restoration sites, the fecundity indices showed a 
decreasing trend compared to reference site N2R and 
reached the lowest fecundity index at N5. Significantly 
fewer gammarids died at reference site N1 (p < 0.05), res-
toration site N3 (p < 0.001) as well as transect sites N6 
(p < 0.001), N8 (p < 0.05) and N9 (p < 0.001) compared to 
N2R.

In vitro analyses of water samples
The microtox assay revealed already moderately toxic 
water samples at the Horloff reference sites H1 to H3R 
(Fig. 4a). At sites H1 and H2, we also found significantly 
increased anti-estrogenic activities with 2.21 and 1.48 mg 
OHT-EQ/L, respectively, compared to H3R (p < 0.01–
0.001, Additional file 3: Figure S3a). Furthermore, we also 
found slight dioxin-like activities in water samples from 
sites H2 and H3R (Fig. 4c), but these were very low and 
close to the detection limit (Additional file 4: Table S4). 
Surprisingly, the baseline toxicity at restoration site H4 
increased significantly by 66% compared to the reference 
site H3R (p < 0.05) and, therefore, represented the most 
toxic water sample from the river Horloff (Fig.  4a). The 
baseline toxicity of water samples declined within the 
transect sites compared to H3R, reaching a significantly 
increased EC50 of 750 REF at H6 and H7, which is equiv-
alent to non-toxic water samples (p < 0.001, Fig.  4a). At 
site H7, we also found significantly increased dioxin-like 
and anti-estrogenic activities with 0.495 mg OHT-EQ/L 
compared to H3R (p < 0.01, Fig.  4c, Additional file  3: 
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Figure S3a). However, these activities were compara-
tively low and close to the detection limits (Additional 
file 4: Table S4). In water samples from the river Horloff, 
no estrogenic activities were found at any sampling site 
(Fig. 4e).

At the river Nidda, we also found a moderate baseline 
toxicity in water samples at the reference sites N1 and 
N2R as well as the highest baseline toxicities in water 
samples from the restoration sites N3 to N5 (Fig.  4b), 
but these did not differ significantly from N2R. At these 
restoration sites, the dioxin-like activities significantly 
raised by up to 92% (p < 0.001, Fig. 4d) and the estrogenic 

activities significantly increased by up to 124% compared 
to N2R (p < 0.001, Fig. 4f ). The baseline toxicities of water 
samples from transect sites N6 and N8 reached a compa-
rable level as at the restoration sites N3 to N5 (Fig. 4b). 
At these transect sites, the dioxin-like (Fig.  4d) and the 
estrogenic activities (Fig.  4f ) were also significantly 
higher compared to N2R (p < 0.05–0.001). Also, the anti-
estrogenic activity was at N8 with 24.6  mg OHT-EQ/L 
considerably higher but not significantly different from 
reference site N2R (14 mg OHT-EQ/L) and increased sig-
nificantly at N9 with 28.8 mg OHT-EQ/L (p < 0.05, Addi-
tional file 3: Figure S3b).

a b

c d

Fig. 3  Gammarus fossarum. Mean and standard deviation of the fecundity index (a, b) and mean and standard error of the mean of the percentage 
mortality (c, d) after 28 days of exposure in the active biomonitoring campaigns at the river Horloff in March 2017 (a, c) and the river Nidda in May 
2017 (b, d). White: reference sites, with H3R and N2R as statistical reference sites, light grey: restoration sites, dark grey: transect sites. Significant 
differences in the fecundity index compared to the reference site N2R (shaded) were determined via unpaired t test. No brooding females 
occurred at N7 and N9, therefore, fecundity index could not be calculated. Significant differences in the percentage mortality compared to the 
corresponding reference site H3R or N2R (shaded) were determined using Fisher’s exact tests. *p < 0.05, **p < 0.01, ***p < 0.001, n = 6
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a b

c d

e f

Fig. 4  Mean and standard error of the mean of EC50 for baseline toxicity (a, b), dioxin-like activity (c, d) and estrogenic activity (e, f) in water 
samples from the river Horloff in March 2017 (a, c, e) and the river Nidda in May 2017 (b, d, f). White: reference sites, with H3R and N2R as statistical 
reference sites, light grey: restoration sites, dark grey: transect sites. Significant differences in baseline toxicity compared to the reference site H3R 
(shaded) were determined using one-way ANOVA and Bonferroni’s post hoc test. Significant differences in dioxin-like activity and estrogenic activity 
compared to the corresponding reference site H3R or N2R (shaded) were determined via Kruskal–Wallis test with Dunn’s post hoc test. If no bar is 
illustrated, the activity was below the LOQ or no activity at all was measured. *p < 0.05, **p < 0.01, ***p < 0.001, n = 3 with 8 pseudo-replicates each



Page 10 of 20Brettschneider et al. Environ Sci Eur           (2019) 31:36 

In vitro analyses of sediment samples
The microtox assay revealed at site H2 downstream the 
wastewater discharger the highest baseline toxicity of 
sediment samples from the river Horloff (Fig.  5a) but 
did not differ significantly from H3R. At this site, we also 
observed an increasing trend in the dioxin-like activity 
compared to H1 (Fig. 5c). At the restoration site H4 and 
the transect sites, baseline toxicity and dioxin-like activ-
ity varied around the reference level of H3R.

In the microtox assay with sediment samples from the 
river Nidda, the highest baseline toxicity was found at 
restoration site N3 but did not differ significantly from 
reference site N2R (Fig.  5b). At reference site N2R and 
restoration sites N3 and N4 no dioxin-like activities were 

found, since they were below the LOQ (Fig.  5d, Addi-
tional file 4: Table S4). The least toxic sediment from the 
river Nidda and, thus, a significantly higher EC50 were 
determined at N7 (p < 0.01, Fig. 5b). At this site, we found 
a significantly increased dioxin-like activity compared to 
reference site N2R (p < 0.001, Fig. 5d). However, the activ-
ity was comparably low and close to the detection limit 
(Additional file 4: Table S4). At N9, the dioxin-like activ-
ity significantly rose to 38.5  µg β-NF-EQ/kg (p < 0.01, 
Fig. 5d).

Anti-estrogenic activities were only found in sedi-
ments from reference site N1 and the restoration site 
N3 with 152 mg OHT-EQ/kg and 84.8 mg OHT-EQ/kg, 
respectively.

a b

c d

Fig. 5  Mean and standard error of the mean of EC50 for baseline toxicity (a, b) and dioxin-like activity (c, d) in sediment samples from the river 
Horloff in March 2017 (a, c) and the river Nidda in May 2017 (b, d). White: reference sites, with H3R and N2R as statistical reference sites, light grey: 
restoration sites, dark grey: transect sites. Significant differences in baseline toxicity compared to the reference site N2R (shaded) were determined 
using one-way ANOVA and Bonferroni’s post hoc test. Significant differences in dioxin-like activity compared to reference site N2R (shaded) 
were determined via Kruskal–Wallis test with Dunn’s post hoc test. If no bar is illustrated, the activity was below the LOQ or no activity at all was 
measured. **p < 0.01, ***p < 0.001, n = 3 with 8 pseudo-replicates each
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The results of the mean grain size of sediment samples 
from the river Horloff revealed, that nearly all sampling 
sites, except restoration site H4 and transect site H9, 
belong to the sediment category fine sand (Table 1). The 
highest loss on ignition and, thus, the highest organic 
content was found at reference site H2 and at transect 
site H6.

At the river Nidda, the mean grain size of most sedi-
ment samples lay between 0.2 and 0.6  mm, which cor-
responds to sediment category medium sand. Only 
reference site N2R and restoration site N3 exhibited 
mean grain sizes ranging from 0.06 to 0.2  mm and 

correspond to sediment category fine sand. The highest 
loss on ignition was measured in sediment samples from 
the reference site N2R, the restoration site N5 and the 
transect site N8.

Linear correlation analyses
The results of the linear correlation analyses between 
explanatory variables (endocrine activity and toxicity of 
water and sediment samples, loss on ignition, mean grain 
size) and response variables (reproduction and mortality 
of P. antipodarum and G. fossarum) are summarized in 
Table 2 and are illustrated in Additional file 5: Figure S4. 

Table 1  Mean grain size in mm and corresponding 95% confidence intervals (CI), classification according to DIN EN ISO 
14688-1 [66] and mean and standard deviation of percentage loss on ignition according to DIN 38414-3 [67] of sediment 
samples from  the  reference sites (H1-H3R, N1-N2R), restoration sites (H4, N3-N5) and  transect sites (H5-H9, N6-N9) 
at the river Horloff in March 2017 and at the river Nidda in May 2017

Sampling site Mean grain size in mm [95% CI] Classification according to DIN EN ISO 
14688-1

Mean loss 
on ignition in % 
[± SD]

Horloff

 H1 0.127 [0.090–0.164] Fine sand 8.45 ± 0.16

 H2 0.077 [0.063–0.091] Fine sand 14.1 ± 0.47

 H3R 0.154 [0.144–0.195] Fine sand 10.9 ± 0.28

 H4 0.204 [0.135–0.273] Medium sand 11.2 ± 0.20

 H5 0.135 [0.099–0.171] Fine sand 11.3 ± 0.08

 H6 0.186 [0.114–0.259] Fine sand 14.5 ± 0.24

 H7 0.072 [0.056–0.089] Fine sand 8.72 ± 0.05

 H8 0.153 [0.108–0.197] Fine sand 10.5 ± 0.25

 H9 0.234 [0.153–0.315] Medium sand 12.3 ± 0.06

Nidda

 N1 0.562 [0.335–0.789] Medium sand 5.18 ± 0.16

 N2R 0.158 [0.116–0.200] Fine sand 10.8 ± 0.19

 N3 0.178 [0.127–0.221] Fine sand 8.70 ± 0.17

 N4 0.253 [0.186–0.319] Medium sand 9.40 ± 0.34

 N5 0.386 [0.258–0.513] Medium sand 10.1 ± 0.11

 N6 0.317 [0.193–0.441] Medium sand 6.00 ± 0.12

 N7 0.270 [0.170–0.370] Medium sand 9.96 ± 0.11

 N8 0.441 [0.291–0.591] Medium sand 10.6 ± 0.25

 N9 0.226 [0.158–0.294] Medium sand 8.08 ± 0.14

Table 2  Overview of the linear correlation analyses

*** p < 0.001, **p < 0.01, *p < 0.05, –  not significant

Variables Water samples Sediment samples

Estrogenic 
activity

Dioxin-like 
activity

Baseline 
toxicity

Dioxin-like 
activity

Baseline 
toxicity

Loss on ignition Grain size

Potamopyrgus no. of embryos *** *** – *** – * **

Potamopyrgus mortality – – – – – – –

Gammarus fecundity index ** * – – – – –

Gammarus mortality – – – – – – –
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In addition to the linear correlations of Table 2, we found 
a significant positive correlation between the estrogenic 
and the dioxin-like activity in water samples (p < 0.001, 
Additional file 5: Figure S4i) as well as a significant nega-
tive correlation between the loss on ignition and the 
dioxin-like activity in water samples (p < 0.05, Additional 
file 5: Figure S4f ).

Discussion
Horloff
Since reproduction of snails and gammarids increased 
or at least showed an increasing trend at H2 in both, the 
active biomonitoring campaign and under standardized 
conditions in the laboratory, this cannot be explained by 
the higher water temperature (+ 0.78 °C) due to the dis-
charge of the WWTP. However, the organic carbon con-
tent in sediments increased considerably from sampling 
site H1 with 8.45% dry weight (dw) to 14.1% dw at site 
H2, which is possibly due to the discharge of the WWTP 
(Table 1). A higher proportion of organic matter may pro-
vide additional food for the detritivorous mudsnails and 
gammarids, probably increasing reproduction [45, 68]. 
In addition, the enhanced food supply may have masked 
toxic effects, such as the substantially increased sediment 
toxicity at H2 compared to H1 (Fig. 5a) [69–72]. It is also 
conceivable that the increased organic content in sedi-
ments, the smaller mean particle size (Table  1) and the 
increased DOC (Additional file  4: Table  S1) could have 
bound organic pollutants and thus reduced the bioavail-
ability of toxic substances for snails and gammarids [68, 
73–79]. Therefore, no toxic effects, i.e., no significantly 
increased mortality of P. antipodarum and G. fossarum, 
occurred despite the high sediment toxicity determined 
in the microtox assay at H2 following a total extraction 
of sediments via Soxhlet (Fig. 5a). This is in line with the 
observations of Schmitt et al. [80], who found significant 
increases in the estrogenic activity after total extraction 
of sediments, while the reproduction of P. antipodarum 
was not enhanced. Furthermore, the anti-estrogenic 
activity declined at site H2 compared to H1 (Additional 
file 3: Figure S3a), which may have also contributed to the 
higher reproduction at site H2, since anti-estrogens are 
able to reduce the reproduction of snails [41, 81, 82].

The high mortality of P. antipodarum within the res-
toration measure in the active biomonitoring cannot be 
attributed to differences in associated water parameters, 
since these differed just slightly between sampling sites 
(Additional file 4: Table S1) and is rather due to the sig-
nificantly increased baseline toxicity in water (Fig.  4a), 
the high sediment toxicity (Fig.  5a) and the dioxin-like 
activity at site H4 (Fig. 5c). The decline in water and sedi-
ment quality is likely to result from the surface runoff of 
the A45 motorway bridge and might be attributed to the 

presence of polycyclic aromatic hydrocarbons (PAHs) 
and metals in sediments and water phase [74, 83, 84] 
which would also explain the in vitro results in the pre-
sent study. In contrast to the active biomonitoring, no 
significant increase in the mortality of P. antipodarum 
occurred in laboratory experiments. This may be due to 
the use of grab samples of river water and sediments that 
may have been taken before contaminants appeared and 
affected snails and gammarids in the active biomonitor-
ing campaign. Moreover, it is conceivable that contami-
nant concentrations have decreased through chemical 
and biological degradation since no water renewal was 
conducted in laboratory experiments.

Although most invertebrates do not express the aryl 
hydrocarbon receptor (AhR) and are, therefore, rela-
tively unresponsive to dioxin-like compounds [85], PAHs 
and dioxins as potent agonists at the AhR [85–87] nega-
tively affect reproduction and mortality of invertebrates 
[74, 88–93]. The correlation analyses also revealed that 
increasing dioxin-like activities lead to a decrease in the 
reproduction of G. fossarum (Table  2, Additional file  5: 
Figure S4h) but do not have a lethal effect on G. fossarum 
and P. antipodarum. Therefore, an influence of dioxin-
like substances on the reproduction of G. fossarum and 
P. antipodarum cannot be excluded in the present study 
and might have contributed to the biological responses.

Nidda
A possible explanation for the decreasing trend in repro-
duction and the increasing trend in mortality of snails 
and gammarids downstream the WWTP discharger is 
the 22% lesser DOC concentration at site N2R compared 
to N1 (Additional file 4: Table S1) so that less hydropho-
bic organic contaminants are bound, thus increasing 
bioavailability and toxicity of these pollutants to aquatic 
organism [77–79, 94].

The results of the river Nidda revealed a substantially 
higher level of endocrine activity and toxicity in restored 
river sections compared to the reference site upstream, 
although not all observed endpoints were significantly 
elevated. This especially refers to estrogenic and dioxin-
like activities in water samples as well as baseline toxic-
ity in water and sediment samples (Figs.  4b, d, f, 5b). 
The estrogenic activity in water samples correlates sig-
nificantly and positively with the embryo numbers in P. 
antipodarum (cf., Figs.  2b, 4f, Table  2, Additional file  5: 
Figure S4a), for which an increase in reproduction with 
rising estrogenic activities has already been reported 
[41, 47, 80, 93, 95]. Since only reduced reproduction 
and increased mortality of invertebrates by dioxin-like 
substances are described in the literature [83, 88–91] 
but no increased reproduction, it can be assumed that 
the significant positive correlation between dioxin-like 
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activities and the reproduction of snails only reflects the 
wastewater load and thus the estrogenic activity (Table 2, 
Additional file  5: Figure S4b). This results mainly from 
the correlation between estrogenic and dioxin-like 
compounds in water samples and is supported by the 
significant negative correlation between dioxin-like 
activities in sediment samples and the reproduction 
of P. antipodarum (Table  2, Additional file  5: Figure 
S4c, i). Moreover, the correlation analyses showed that 
the reproduction of snails in the active biomonitoring 
increases with increasing mean grain size and decreases 
with increasing loss on ignition (Table  2, Additional 
file 5: Figure S4d, e). This was to be expected as the bio-
availability of estrogens increases with increasing mean 
grain size and decreases with increasing organic content 
in sediments [96–98], so that these could have contrib-
uted indirectly to the elevated reproduction of snails in 
restored river sections.

In contrast, the relation between water and sediment 
contamination and the reproduction of G. fossarum is 
less clear. On the one hand, Schneider et al. [53] observed 
an increase in the fecundity index of Gammarus pulex 
with increasing wastewater content and attributed this 
to the presence of EDCs, especially to estrogenic sub-
stances, which is in line with the present findings within 
restored river sections in the active biomonitoring; on 
the other hand, various studies report on decreasing 
fecundity indices downstream of WWTP effluents or on 
shifts in sex ratio in favor of females induced by estro-
gens but not on elevated fecundity of gammarids [50, 53, 
54]. Thus, a reliable proof of an increased fecundity of G. 
fossarum due to estrogen exposure is not yet available 
and correlation analyses in the present study revealed 
decreasing fecundity indices with increasing estrogenic 
or dioxin-like activity, which is likely due to the correla-
tion between estrogenic and dioxin-like activity in water 
samples (Table 2, Additional file 5: Figure S4g, i). There-
fore, it is assumed that estrogenic activity represents just 
the wastewater load and that dioxin-like activities are 
responsible for a decrease in fecundity indices. However, 
the cause for an increased reproduction of gammarids 
within restored river sections remains unknown in the 
present study.

The effect pattern on reproductive parameters in the 
laboratory experiments with P. antipodarum and G. fos-
sarum showed a completely different picture (Additional 
file 1: Figure S1b, Additional file 2: Figure S2b), probably 
due to a superimposition of estrogenic and toxic effects 
(cf., Figs. 4b, d, f, 5b). Snails and gammarids in the active 
biomonitoring campaigns are primarily exposed via the 
water phase, while they are more affected in laboratory 
experiments by substances in the sediment. As already 
mentioned, the biomonitoring campaigns represent 

temporally integrated exposures to substances in the 
water phase, whereas laboratory experiments were per-
formed with grab samples of water and sediments and, 
therefore, only represent snapshots of the chemical con-
tamination at a certain time. Estrogenic substances in 
water samples may have been degraded during the 28-day 
exposure in laboratory experiments as stated in Schnei-
der et al. [53], who showed a halving of estrogenic activ-
ity within 24 h, whereas the contamination of sediments 
remains comparably stable. Therefore, an increased 
reproduction as a consequence of estrogen exposure 
was not observed in laboratory experiments with snails 
and gammarids but reduced reproduction, probably due 
to the baseline toxicity in sediments and the dioxin-like 
activities in water and sediment samples known to be 
highly resistant to chemical and biological degradation 
[99]. Correlation analyses also revealed a decreasing 
number of embryos in P. antipodarum with increasing 
dioxin-like activity in sediment samples (Table  2, Addi-
tional file 5: Figure S4c).

Comparison of the rivers Horloff and Nidda
The reproduction of mudsnails at the river Nidda was 
much higher than at the river Horloff, which can partially 
be explained by the higher water temperature in May 
2017 in the Nidda (N1: 18.1 ± 2.07  °C) compared to the 
Horloff in March 2017 (H1: 9.82 ± 1.97 °C), since repro-
duction of P. antipodarum is temperature-dependent 
[100] and snails in the river Nidda were exposed almost 
to their optimum temperature [101]. Besides the substan-
tially higher water temperature, the significantly higher 
estrogenic activity in combination with a higher bioavail-
ability due to lower organic carbon contents and higher 
mean particle sizes (Table  1) [96–98] in the Nidda is a 
likely cause for the higher embryo numbers in P. antipo-
darum compared to the river Horloff [42, 47, 80, 95]. The 
higher reproduction at the reference sites of the Nidda 
compared to the Horloff is likely due to higher water 
temperature and higher estrogen exposure as measured 
by the YES. But since the reproduction of snails and the 
estrogenic activity at the river Nidda highly correlate over 
the course of all sampling sites (Additional file 5: Figure 
S4a) and the temperatures are more or less constant, 
the estrogenic compounds are the likely explanation for 
the significantly increased embryo numbers within the 
restoration sites at the river Nidda. In contrast to the 
snails, gammarids exhibited higher fecundity indices at 
the river Horloff than at the river Nidda, which is prob-
ably due to the lower average water temperature at the 
Horloff in March compared to the river Nidda in May, 
considering that the optimum temperature for G. fos-
sarum is 12.1  °C [102, 103]. In addition, a substantially 
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higher contamination with dioxin-like substances could 
be detected in the Nidda than in the Horloff, which could 
have also contributed to the lower reproduction of the 
gammarids in the Nidda (Additional file 5: Figure S4h).

The in  vitro assays indicated a higher level of activ-
ity and, therefore, contamination in the river Nidda, 
although the analyzed section was restored with a con-
siderably higher intervention depth and is primarily 
surrounded by grassland and pastures, while the river 
Horloff is mainly surrounded by intensive agricultural 
land. The most probable causes for the increased in vitro 
activities in river water and sediments are wastewater 
discharges [104–107], intensive agricultural use [108–
111] and surface runoff from motorways [74, 83, 84]. 
Since riverine sediments represent a major sink for some 
contaminants [96, 97, 112–118], the lower level of activ-
ity at the river Horloff could likely be due to the higher 
organic content and the smaller mean grain size of sedi-
ments so that contaminants are less bioavailable (except 
for the microtox assay with sediment samples for which 
a total extraction was performed) [68, 73, 74, 97]. This 
is also supported by the significant negative correlation 
between loss on ignition and dioxin-like activity in water 
samples (Additional file 5: Figure S4f ).

As this is the first study to report an increase in tox-
icity as well as estrogenic and dioxin-like activity in 
restored river sections, this may explain the lack of suc-
cess of many other in-stream restoration projects [13, 29, 
31–33]. A possible explanation for the significantly worse 
results within the restored sections is the transport and 
deposition of polluted fine sediments within the restora-
tion measures [18, 119–121]. Since the restored sections 
are characterized by a higher flow diversity, it is conceiv-
able that polluted fine particulate matter, e.g., introduced 
by soil erosion from surrounding fields [122–125] or by 
WWTPs [107, 125], may settle in the flow-calmed zones 
[119, 126–128]. The reduced flow velocity might result in 
an increased exchange between sediment and water, so 
that formerly sediment associated substances are remo-
bilized and affect the local invertebrate fauna [96, 97, 122, 
129]. Furthermore, remobilization of sediment associ-
ated contaminants increases by bioturbating activities of 
sediment dwelling invertebrates [130–133] and dredg-
ing activities during the restoration process [18, 123, 
134, 135]. This underlines that river sediments are both 
important sinks and sources of contaminants [85, 115, 
116, 136].

Hence, the present study shows that the success of 
restoration measures is endangered by the prevailing 
chemical contamination, which was assessed via in vivo 
whole organism and effect-based in vitro bioassays. Thus, 
restoration measures on their own will not lead to the 
desired good ecological status according to EU-WFD 

unless chemical contamination of water and sediments 
is reduced in parallel. As our approach provides clear 
advantages compared to the assessment of the chemical 
status according to EU-WFD, which focuses only on the 
concentrations of 45 priority substances and completely 
neglects effects of metabolites, transformation products, 
non-regulated substitutes of priority substances and mix-
ture effects of substances [137–143], while these can be 
assessed by effect-based in  vitro bioassays, we recom-
mend implementing effect-based methods in the EU-
WFD [137–139, 144] and improving water and sediment 
quality in conjunction with hydromorphological restora-
tion measures to achieve the objectives of the EU-WFD.

Conclusion
The in  vivo and in  vitro assessments yielded the worst 
results for the restored sections. In addition, the meas-
ured in  vitro activities and in  vivo effects for the river 
Nidda were even worse than for the river Horloff, 
although the Nidda was restored with a consider-
ably higher intervention depth. Accordingly, restoration 
measures do not seem to have any compensating positive 
influence on the organisms that are affected by chemi-
cal contamination, irrespective of the intervention depth 
of the restoration. Furthermore, the results revealed 
that the prevailing chemical contamination negatively 
affected snails and gammarids in the active biomonitor-
ing campaigns and consequently will also affect the local 
invertebrate community and thus endangers the restora-
tion success.

Additional files

Additional file 1: Figure S1. Potamopyrgus antipodarum. Mean and 
standard deviation of the number of embryos (a, b) and mean and stand‑
ard error of the mean of the percentage mortality (c, d) after 28 days of 
exposure in laboratory experiments with combined water/sediment sam‑
ples of the river Horloff in March 2017 (a, c) and of the river Nidda in May 
2017 (b, d). White: reference sites, with H3R and N2R as statistical reference 
sites, light grey: restoration sites, dark grey: transect sites. Significant 
differences in the number of embryos compared to the corresponding 
reference site H3R or N2R (shaded) were determined via Mann–Whitney 
test. *p < 0.05, n = 52.

Additional file 2: Figure S2. Gammarus fossarum. Mean and standard 
deviation of the fecundity index (a, b) and mean and standard error of 
the mean of the percentage mortality (c, d) after 28 days of exposure in 
laboratory experiments with combined water/sediment samples of the 
river Horloff in March 2017 (a, c) and of the river Nidda in May 2017 (b, d). 
White: reference sites, with H3R and N2R as statistical reference sites, light 
grey: restoration sites, dark grey: transect sites. Significant differences in 
the percentage mortality in comparison to the corresponding reference 
site H3R or N2R (shaded) were detected using Fisher’s exact test. No 
mortality of gammarids occurred at H4 which is illustrated with “no bar”. 
*p < 0.05, **p < 0.01, ***p < 0.001, n = 4.

Additional file 3: Figure S3. Mean and standard error of the mean of 
anti-estrogenic activities in water samples from the river Horloff in March 
2017 (a) and the river Nidda in May 2017 (b). White: reference sites, with 

https://doi.org/10.1186/s12302-019-0218-9
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H3R and N2R as statistical reference sites, light grey: restoration sites, 
dark grey: transect sites. Significant differences in anti-estrogenic activity 
compared to the reference site H3R (shaded) were determined using 
Kruskal–Wallis test with Dunn’s post hoc test. Significant differences in 
anti-estrogenic activity compared to the reference site N2R (shaded) 
were detected via one-way ANOVA and Bonferroni’s post hoc test. If no 
bar is illustrated, the activity was below the corresponding LOQ. *p < 0.05, 
**p < 0.01, ***p <  0.001, n = 3 with 8 pseudo-replicates each.

Additional file 4: Table S1. Associated water parameters in the active 
biomonitoring campaigns at the river Horloff in March 2017 and the river 
Nidda in May 2017. H1-H3R and N1-N2R: reference sites, with H3R and N2R 
as statistical reference sites, H4 and N3-N5: restoration sites, H5-H9 and 
N6-N9: transect sites. Table S2. Average associated water parameters in 
laboratory experiments with Gammarus fossarum and combined water/
sediment samples from the river Horloff in March 2017 and the river Nidda 
in May 2017. H1-H3R and N1-N2R: reference sites, with H3R and N2R 
as statistical reference sites, H4 and N3-N5: restoration sites, H5-H9 and 
N6-N9: transect sites. Table S3. Average associated water parameters in 
laboratory experiments with Potamopyrgus antipodarum and combined 
water/sediment samples from the river Horloff in March 2017 and the river 
Nidda in May 2017. H1-H3R and N1-N2R: reference sites, with H3R and N2R 
as statistical reference sites, H4 and N3-N5: restoration sites, H5-H9 and 
N6-N9: transect sites. Table S4. Limits of quantification (LOQ) for in-vitro 
assays with water or sediment samples.

Additional file 5: Figure S4. Linear correlation analysis between explana‑
tory variables (estrogenic and dioxin-like activity in water samples, dioxin-
like activity in sediment samples, mean grain size, loss on ignition) and 
the response variables (number of embryos of Potamopyrgus antipodarum 
and fecundity index of Gammarus fossarum).
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