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Abstract 

Background:  Novel brominated flame retardants (NBFRs) have been increasingly used as alternatives to legacy BFRs 
(e.g., PBDEs and HBCDs) in consumer products, but are liable to emigrate and contaminate indoor dust. In this study, 
a total of 154 house dust samples including floor dust (FD) and elevated surface dust (ESD) were collected in the 
biggest metropolitan area (Shanghai) of East China in 2016. Limited information about temporal variation of NBFRs 
indoors is available, while the period of sampling is influential in human exposure estimates. Levels, temporal varia-
tion, and human exposure of seven target NBFRs such as decabromodiphenylethane (DBDPE), 1,2-bis(2,4,6-tribromo-
phenoxy) ethane (BTBPE), 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EHTBB), and bis(2-ethylhexyl) tetrabromophtha-
late (BEHTEBP) were investigated in indoor house dust.

Results:  Concentrations of ∑7NBFRs ranged from 19.11 to 3099 ng/g with a geomean of 295.1 ng/g in FD, and 
from 34.74 to 404.6 ng/g with a geomean of 117.9 ng/g in ESD. The geomeans of DBDPE were 219.6 ng/g in FD and 
76.89 ng/g in ESD, accounting for 90.5% and 80.5% of ∑7NBFRs. Levels of EHTBB, BTBPE, and DBDPE in FD exceeded 
significantly those in ESD. The temporal variation in ∑7NBFRs in FD was ranked as summer > winter > autumn > spring. 
The daily exposure doses (DEDs) of ∑7NBFRs via dust ingestion decreased as: infants > toddlers > children > teenag-
ers > adults. Infants showed the highest DED in FD, 9.1 ng/kg bw/day.

Conclusions:  DBDPE clearly dominated the NBFRs in both FD and ESD, but the concentrations of DBDPE in this 
study were generally moderate compared with the other international studies. Dust ingestion was the major pathway 
of human exposure to NBFRs indoors. About eightfold difference in exposure estimates between infants and adults 
showed that infants faced elevated exposure risks in FD. This study highlighted the necessity to estimate human 
exposure of NBFRs for different age groups using FD and ESD, respectively.
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Introduction
Brominated flame retardants (BFRs) are commonly 
used to inhibit or suppress combustion for industrial 
and commercial applications (e.g., building materi-
als, furniture, textiles, and e-products) [1]. Over the 
past decades, there have been of great concern over the 
prevalence and environmental fate of some legacy BFRs 
such as polybrominated diphenyl ethers (PBDEs) and 
hexabromocyclododecanes (HBCDs). Due to their per-
sistent, bioaccumulative, toxic, and long-range trans-
portable properties [2–6], Tetra- through Hepta-BDEs, 
Deca-BDE, and HBCDs had been listed in Annex A of the 
Stockholm Convention as persistent organic pollutants 
(POPs) for elimination by 2017 [7]. To meet flammability 
standards for goods and materials, the usage of alterna-
tive or novel brominated flame retardants (NBFRs) has 
rapidly increased in recent years [8]. Decabromodiphe-
nylethane (DBDPE), as an alternative to the Deca-BDE 
formulation, has been produced with a capacity of 12,000 
tons in China (2006), and its production increases at 
80% per year [8]. 1,2-Bis(2,4,6-tribromophenoxy) ethane 
(BTBPE) is used as a replacement for Octa-BDEs in ABS, 
thermoplastics, and textile applications [9]. 2-Ethylhexyl 
2,3,4,5-tetrabromobenzoate (EHTBB) and bis(2-ethyl-
hexyl) tetrabromophthalate (BEHTEBP) are replace-
ments for penta-BDEs, exist in the commercial mixtures 
such as Firemaster 550, BZ-54 and DP-45, which is 
mostly used in polyurethane foam (PUF) applications 
[10, 11]. Pentabromotoluence (PBT), pentabromoethylb-
enzene (PBEB), and hexabromobenzene (HBB) are often 
used with the other flame retardants (FRs) in polyesters 
[12]. Similar to PBDEs, these NBFRs were reported with 
semi-volatile and non-reactive properties [13, 14], and 
were constantly detected in environmental matrices. 
Moreover, NBFRs like EHTBB, BEHTEBP, BTBPE, and 
DBDPE display potential adverse environmental behav-
iors; for example, persistence and bioaccumulation [15, 
16]. Animal studies showed that EHTBB, BEHTEBP, 
BTBPE, and DBDPE posed the potential health risks of 
endocrine disruption, hepatotoxicity, impaired reproduc-
tive physiology, and gene expression [17–24].

Recently, the occurrences of NBFRs have been increas-
ingly investigated in indoor dust from various countries, 
including USA [25, 26], Canada [27], UK [17, 28, 29], Bel-
gium [30], Norway [31, 32], Spain [33], Sweden [34, 35], 
Australia [13], New Zealand [1], China [36–38], Pakistan 
[39], and South Africa [40]. In China, EHTBB, BEHTEBP, 
BTBPE, and DBDPE were frequently detected in indoor 
dust samples from e-waste sites in South China [37] and 
occupational areas in Beijing [38, 41]. However, infor-
mation about house indoor contamination with NBFRs 
in Shanghai remains scant. In a previous study, consid-
erable DBDPE concentrations (100–9500 ng/g dw) were 

detected only in floor dust (FD) samples from 15 dwell-
ings in East China, while elevated surface dust (ESD) 
samples were not fully considered. [36]. Oral ingestion 
and dermal absorption of house dust are considered 
as the major pathways of BFR exposure, accounting for 
56–77% of the total intake [42]. Dust ingestion is a more 
important exposure pathway for young infants and tod-
dlers due to their frequent hand-to-mouth behaviors [43]. 
Infants and toddlers may have more contacts with FD, 
while older age groups (children, teenagers, and adults) 
may face more NBFR exposure risks from the ESD on 
furniture and household electric appliances. As a whole, 
it will be more accurate to individually estimate human 
exposure risk of NBFRs for five different age groups in 
FD and ESD.

There is insufficient information regarding temporal 
variation of NBFRs indoors, while the period of sampling 
is influential in human exposure estimates. In a previous 
British study, over a 9-month sampling period, higher 
concentrations of PBEB, EHTBB, BEHTEBP, and BTBPE 
were observed in indoor dust of warmer seasons, but 
elevated levels of DBDPE were observed in colder sea-
sons, which might be attributed to the low vapor pressure 
that facilitated partitioning to indoor dust [28]. Over a 
10-month sampling period, Cao et al. [41] reported that 
NBFR (EHTBB, BEHTEBP, BTBPE, and DBDPE) levels in 
office dust of China were generally constant among dif-
ferent seasons. To our knowledge, no firm conclusions on 
temporal variation of NBFRs in indoor dust are available 
in the literature.

In the present study, the occurrence of seven NBFR 
compounds was investigated in FD and ESD samples 
of Shanghai, China. Our goals of this study were to: (1) 
determine the concentrations of seven target NBFRs in 
both FD and ESD; (2) compare the difference of NBFRs 
between FD and ESD; (3) understand the temporal vari-
ation of NBFRs in FD; (4) estimate human exposure to 
NBFRs via dust ingestion and dermal absorption in five 
age groups.

Materials and methods
Chemicals and standards
Individual standards of PBT, PBEB, HBB, EHTBB, 
BEHTEBP, BTBPE, DBDPE, and PBDE congeners (BDE-
77, -128, -138) were purchased from AccuStandard, Inc. 
(New haven, CT). BDE-77 and BDE-138 were used as 
surrogate standards in this study. 13C-decabromodiphe-
nylether (13C-BDE-209) was provided by Cambridge 
Isotope Laboratories, Inc. (Andover, USA) and used as 
an internal standard for DBDPE. BDE-128 was used as 
an internal standard for other six NBFR compounds and 
two surrogate standards (BDE-77, -138). Additional file 1: 
Table S1 lists physical properties of these chemicals. All 
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solvents used during the analysis were of pesticide grade. 
Silica gel (100–200 mesh) was acquired from Merck 
(Darmstadt, Germany).

Sample collection
From 22 dwellings in Shanghai, a total of 154 dust sam-
ples, including 132 FD samples and 22 ESD samples, 
were collected in 2016 (Fig. 1). More details about sam-
pling information were presented in Additional file  1. 
Briefly, FD samples were collected separately from the 
living room, washroom, kitchen, and bedrooms of each 
home at the same time. To provide sufficient dust mass 
for analysis, FD samples from each home every second 
month were then mixed up to obtain one composite FD 
sample. In terms of ESD samples, they were collected 
from the elevated surface of shelves, tables, or other fur-
nishings (typically 0.5–2  m height). All collected dust 
samples were sieved with pre-cleaned and dried stainless 
steel sieves with 500 μm diameter of mesh, and thereafter, 
the sieved dust samples were homogenized thoroughly 
and stored in aluminum foil at − 20 °C until extraction.

Dust extraction and purification
Analysis of target NBFRs in house dust was conducted 
following the similar extraction and cleanup methods as 
reported elsewhere with minor modifications [44]. Accu-
rately weighted aliquots of house dust (~ 150  mg) were 
spiked with a mixture of surrogate standards (BDE-77 
and BDE-138) in n-hexane, extracted by ultrasonication 
with 25  mL acetone/n-hexane (1:1, v/v) for three times 
(20 min each time), and then, the supernatant was evapo-
rated by a rotary vacuum evaporator (R-210/215, BUCHI 
Labortechnik). Evaporated extracts were reconstituted 
with 3 mL n-hexane and further concentrated to incipi-
ent dryness under a gentle nitrogen stream. The purifica-
tion was carried out using a Pasteur pipette packed with 

silica gel (0.1 g neutral bottom layer/0.9 g acidic top layer-
containing 0.3  g concentrated sulfuric acid). Columns 
were conditioned with 3 mL n-hexane; the extracts were 
loaded and then eluted with 10 mL dichloromethane/n-
hexane (1:1, v/v). The purified extracts were blown up 
to incipient dryness, before resolubilisation in 200 μL 
n-hexane containing BDE-128 and 13C-BDE-209 at 
200 pg/μL ready for instrumental analysis.

Instrumental analysis
Analysis of target NBFRs was performed using Agilent 
7890A gas chromatography coupled to a 5975C mass 
spectrometry (GC/MS). The GC was equipped with 
a programmable temperature vaporizer (PTV) injec-
tor and DB-5MS capillary column (15  m × 0.25  mm 
i.d. × 0.10  μm film thickness; Agilent J&W). 1  μL puri-
fied extracts were automatically injected in splitless mode 
at an injector temperature of 280  °C. Negative chemical 
ionization (NCI) with helium as carrier gas (1.5 mL/min) 
was used, and the MS was operated in the selected ion-
monitoring (SIM) mode. The ion source, quadrupole, 
and transfer line temperatures were set at 250, 150, and 
290  °C, respectively. The oven temperature was initially 
held at 110 °C for 1.5 min, ramped 20 °C/min to 200 °C 
held for 1 min, and then ramped 10 °C/min to 310 °C, and 
held for 5  min. The identification of target compounds 
was based on their retention times and the relative inten-
sity of the fragment ions. The selected fragment ions 
(m/z) were as follows: 495/497 for 13C-BDE-209, 384/462 
for BEHTEBP, 357/359 for EHTBB, and 79/81 for other 
target compounds.

Quality assurance and quality control
All glasswares used in the laboratory were washed thor-
oughly with detergent, rinsed with distilled water, and 
dried and baked at 400 °C for 5 h. Silica gel was activated 
at 300  °C for 12  h prior to use. To prevent photolytic 
degradation of the target compounds, ultraviolet-light 
protection was mounted on windows, and the glassware 
was covered with aluminum foil whenever possible. To 
assess any possible contamination during the process of 
sample treatment and analysis, one laboratory blank was 
processed in parallel with every set of eight dust samples. 
Blank correction was performed by subtracting the mean 
value detected in the laboratory blanks from the same 
batch. Spike/recovery experiments (n = 3) involving forti-
fication of seven target compounds produced satisfactory 
recovery rates (Table  1), demonstrating good method 
accuracy. Seven-point calibration plots were created for 
quantification and calibration curves with reliable regres-
sion coefficients (> 0.997) were obtained. Determination 
of the limit of detection (LOD) and limit of quantifica-
tion (LOQ) was performed according to Newton et  al. Fig. 1  The sampling sites of indoor dust in Shanghai
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[35]. For the analytes not present in blanks, LOD was 
estimated based on a signal-to-noise ratio (S/N) 3:1 and 
LOQ was set to S/N = 10. For compounds detected in 
blanks, the LOD and LOQ were defined as three times 
the mean values plus 3 and 5 standard deviations, respec-
tively (Table  1). As a further quality control procedure, 
an indoor dust Standard Reference Material (SRM 2585, 
National Institute of Standards and Technology, Gaith-
ersburg, MD; n = 3) was processed for target NBFRs, 
concentrations of NBFRs in SRM 2585 were in agreement 
with those reported in the previous studies (Table  1). 
The recoveries of surrogate standards were 82 ± 12% for 
BDE-77, 89 ± 10% for BDE-138. However, the reported 
concentrations in this study were not corrected with sur-
rogate recovery.

Data analysis
The statistical analyses of the data were performed using 
Microsoft Excel 2011 and GraphPad Prism 6 (GraphPad 
Software, La Jolla, USA). Any differences in NBFR con-
centration between two dust categories and between sea-
sons (or months) were examined using paired-samples T 
test and one-way analysis of variance (ANOVA), respec-
tively. Shapiro–Wilk normality test was conducted to 
confirm our data with skewed distribution, and thereaf-
ter, data were log-transformed prior to T test or ANOVA. 
The two-tailed Spearman’s correlation coefficient was 
calculated to analyze the correlations between the vari-
ables. A P value of less than 0.05 was defined as statistical 
significance.

Results and discussion
Concentrations of NBFRs in FD and ESD
The concentrations of seven NBFRs (PBT, PBEB, 
HBB, EHTBB, BEHTEBP, BTBPE, and DBDPE) were 

determined in FD and ESD. Table  2 lists detection fre-
quency, minimum, maximum, median, mean, and 
geomean concentrations detected with respect to target 
NBFRs in ng/g of dw house dust. Our results indicated 
that BTBPE and DBDPE were detected in all dust sam-
ples, while detection frequencies of PBT, PBEB, HBB, 
EHTBB, and BEHTEBP were between 55.2 and 96.8%. 
The concentrations of ∑7NBFRs in FD ranged from 19.11 
to 3099 ng/g with a geomean of 295.1 ng/g, while the lev-
els of ∑7NBFRs in ESD ranged from 34.74 to 404.6 ng/g 
with a geomean of 117.9  ng/g. The geomean levels of 
DBDPE in two dust categories were generally one or two 
orders of magnitude higher than the second dominant 
compound BTBPE. The concentrations of NBFR com-
pounds in FD were ranked as DBDPE ≫ BTBPE > HBB > E
HTBB > BEHTEBP > PBT > PBEB, while the similar trend 
in ESD was found as DBDPE ≫ BTBPE > EHTBB > HBB > 
BEHTEBP > PBT > PBEB. Seven target NBFR compounds 
were discussed individually in the following parts.

DBDPE
The concentrations of DBDPE ranged from 14.70 to 
2931  ng/g with a geomean of 219.6  ng/g in FD and 
ranged from 16.90 to 349.4  ng/g with a geomean of 
76.89 ng/g in ESD, respectively. DBDPE was the predom-
inant compound of target NBFRs in house dust samples 
of this study, contributing to 90.5% and 80.5% of total 
NBFRs in FD and ESD. The domination of DBDPE in 
indoor dust was in line with the other reports in China 
[36, 49, 50]. Compared with PBDEs in our previous study 
[51], DBDPE concentrations rivaled those of Deca-BDE, 
revealing that DBDPE has been widely used in China fol-
lowing the phase-out of PBDEs. Peng et al. [36] reported 
higher concentration range of DBDPE in indoor dust 
from Shanghai (100–9500  ng/g), but the concentration 

Table 1  Quality assurance and quality control results

na not detected or available

PBT PBEB HBB EHTBB BTBPE BEHTEBP DBDPE References

Limit of detection (LOD) 0.02 0.03 0.12 0.09 0.21 0.06 0.69 This study

Limit of quantification (LOQ) 0.06 0.08 0.43 0.31 0.74 0.21 2.3 This study

Average in blanks na na 0.32 0.23 0.51 0.12 2.1 This study

Blank detection (%) na na 67 70 90 72 96 This study

Recovery in spiked blanks (%) 92 (5) 93 (4) 95 (4) 93 (7) 97 (5) 90 (3) 101 (5) This study

Mean (SD) concentration in SRM 2585 na 1.5 (2.2) na 35 (4.3) 43 (10) 312 (121) < 5 This study

na na na < 30 < 0.8 145 (17) < 10 [11]

na na na 40 32 652 < 20 [45]

na na na 26 (2) 39 (14) 574 (49) < 7.1 [46]

na na na 36 (2.4) 39 (4.9) 1300 < 10 [47]

na na na 35 (6) 76 (4) 857 (73) na [48]

na 8.1 (2.0) na 34 (5.2) 53 (9.2) 869 (110) < 6 [29]
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range was still in the same order of magnitude with this 
study. Qi et al. [50] also reported the comparable median 
level of DBDPE in indoor dust across China (280 ng/g). 
Compared with the international studies, the median 
level of DBDPE in this study (185.4  ng/g) was an order 
of magnitude lower than that in Swedish indoor dust 
(1700 ng/g) [47]. However, the median concentration of 
DBDPE in USA [25], UK [29] and Norway [31] was 2.2, 
2.1 and 2.6 times lower than that in this study. The levels 
of DBDPE in house dust detected from different coun-
tries varied in two orders of magnitude; DBDPE con-
centrations in this study were generally moderate, while 
DBDPE in house dust from Sweden [47] and Spain [33] 
exhibited elevated concentrations (Fig.  2; Additional 
file 1: Table S2), probably due to different fire safety regu-
lations or living habits (e.g., ventilation time, the amount 
of e-products).

BTBPE
BTBPE was the second dominant compound of target 
NBFRs, ranging from 0.58 to 526.1 ng/g with a geomean 
of 17.26 ng/g in FD and ranging from 0.37 to 37.88 ng/g 
with a geomean of 9.59 ng/g in ESD, respectively. In this 
study, the full detection frequency of BTBPE indicates the 
extensive use of this emerging compound in indoor envi-
ronment. The median level of BTBPE (14.49  ng/g) was 
very comparable to that in USA [25], UK [29], and Paki-
stan [39], but was three-to-five times lower than reported 

levels in Norway [31] and Spain [33]. As a whole, the 
concentrations of BTBPE presented in this study were 
of middle level compared with the international studies 
(Fig. 2; Additional file 1: Table S2). In the previous studies 
of China, BTBPE in indoor dust showed very comparable 
levels to this study, about 10–20 ng/g, and concentrations 
of BTBPE were also one order of magnitude lower than 
DBDPE in these studies [36, 50].

Table 2  Statistical data of NBFR concentrations (ng/g) in two dust categories

Dust category/compound PBT PBEB HBB EHTBB BTBPE BEHTEBP DBDPE ∑7NBFRs

FD sample (n = 132)

 Detection (%) 93.5 88.9 96.8 63.6 100 55.2 100 –

 Minimum < LOD < LOD < LOD < LOD 0.58 < LOD 14.70 19.11

 5th Percentile 0.06 0.04 0.34 0.17 2.97 0.11 34.68 43.33

 Median 0.32 0.20 2.13 2.26 14.49 0.13 185.4 290.8

 95th Percentile 2.81 2.35 17.14 59.37 184.5 53.75 1571 1630

 Maximum 25.77 7.00 27.32 143.7 526.1 224.0 2931 3099

 Mean 0.96 0.45 3.65 12.64 42.68 12.1 419.4 491.8

 Std. deviation 2.83 0.90 4.78 23.76 84.03 28.50 575.4 579.7

 Geomean 0.38 0.21 2.11 1.85 17.26 0.84 219.6 295.1

ESD sample (n = 22)

 Detection (%) 77.3 81.8 100 90.9 100 63.6 100 –

 Minimum < LOD < LOD 0.61 < LOD 0.37 < LOD 16.90 37.74

 5th Percentile 0.03 0.04 0.61 0.17 0.37 0.11 16.9 37.74

 Median 0.59 1.20 2.41 2.80 9.30 0.98 71.43 104.8

 95th Percentile 7.87 7.87 16.9 26 37.88 45.43 349.4 404.6

 Maximum 7.87 7.87 16.9 26.10 37.88 45.43 349.4 404.6

 Mean 1.31 1.81 4.00 6.58 14.02 8.09 102.5 136.9

 Std. deviation 2.03 2.15 4.34 7.04 11.48 12.36 88.05 88.28

 Geomean 0.45 0.73 2.60 3.24 9.59 1.17 76.89 117.9

Fig. 2  Median concentrations of target NBFRs in house dust 
compared with other studies, ng/g. Asterisk: The horizontal axis 
represents country and sampling year
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EHTBB and BEHTEBP
EHTBB and BEHTEBP were detected in more than 
half of the house dust samples. EHTBB was, in general, 
more frequently detected than BEHTEBP in both FD 
and ESD. ESD samples showed higher concentrations 
of EHTBB and BEHTEBP, with a geomean of 3.24  ng/g 
and 1.17  ng/g, respectively. Geomean concentrations of 
EHTBB were 2.2 and 2.8 times higher than BEHTEBP in 
FD and ESD. Compared with the other regions, levels of 
EHTBB and BEHTEBP in this study were about one or 
two orders of magnitude lower than those in USA [11, 
25] and some European countries such as UK [17], Swe-
den [47], and Norway [31], whereas they were very close 
to those in New Zealand [1] and Pakistan [39], indicating 
that Europe and USA have apparently a higher consump-
tion of EHTBB and BEHTEBP, to comply with different 
fire safety standards [12, 52, 53].

Of particular interest to note was the ratio of EHTBB/
BEHTEBP. Three commercial mixtures Firemaster 550, 
Firemaster BZ-54, and DP-45 contain about 35% (15%), 
70% (30%), and 0% (100%) of EHTBB and BEHTEBP 
[54]. Another study reported that the ratio of EHTBB/
BEHTEBP in Firemaster 550 is approximately 4:1 by 
mass [11]. Firemaster 550 might have ratios of EHTBB/
BEHTEBP between 2.33 (35%:15%) and 4. However, 
among the dust samples analyzed the ratio ranged from 
0.01 to 80.3 with a geomean of 2.20 in FD, while the ratio 
range was from 0.08 to 122 with a geomean of 2.77 in 
ESD. The wide ratio range in house dust may reflect vari-
ous sources of these emerging compounds in indoor envi-
ronment; for example, the household electric products 
and building materials which contain different commer-
cial mixtures of EHTBB and BEHTEBP. Besides, EHTBB 
and BEHTEBP have both been reported to undergo 
sequential reductive debromination [10]. The photo-
degradation of BEHTEBP may result in the formation 
of tetrabrominated analogs, which have similar proper-
ties as di(2-ethylhexyl) phthalate (DEHP), and then may 
influence the ratios of EHTBB/BEHTEBP in collected 
dust samples. Moreover, there was possible breakdown 
of BEHTEBP during cleanup due to the breaking of two 
ester bonds, which affected the fate of BEHTEBP. Thus, 
the degradation of these emerging compounds may be 
another influencing factor to elucidate the wide ratio 
range of EHTBB/BEHTEBP in this study. Further investi-
gations need doing to draw firm conclusions.

HBB
In this study, HBB was detected in almost all the dust 
samples (> 96.8%). The levels of HBB were compara-
tive to EHTBB, ranging from < LOD to 27.32 ng/g with a 
geomean of 2.11 ng/g in FD and from 0.61 to 16.9 ng/g 
with a geomean of 2.60 ng/g in ESD, respectively. Under 

the similar conditions (e.g., sampling month), the median 
concentrations of HBB were approximately fourfold 
higher than those in 23 provinces across China [50], 
there might be the possibility of HBB being increasingly 
used as an alternative BFR in indoor environment over 
the past few years. From another perspective, HBB could 
be considered as decomposition product derived from 
the pyrolysis of polymeric BFRs, as reported by Gouteux 
et al. [55], which could be another possible source of HBB 
indoors. Further work is needed to assess the release of 
HBB from polymeric BFRs.

PBEB
Levels of PBEB in this study ranged from < LOD to a 
maximum of 7.00 ng/g in FD and from < LOD to a maxi-
mum of 7.87 ng/g in ESD. The geomean concentration of 
PBEB in FD was one order of magnitude lower than HBB 
and EHTBB, but it was very similar to PBT. In ESD, the 
geomean value of PBEB was approximately 3.6 and 4.4 
times lower than HBB and EHTBB, while it was slightly 
higher than PBT. Compared with the previous studies 
in USA [25], UK [17, 56] ,and Norway [31], the levels of 
PBEB in China were very close to them, mostly below 
1 ng/g (Fig. 2; Additional file 1: Table S2).

PBT
PBT was detected in over 77.3% of all the dust samples. 
One of FD samples showed the highest concentration 
of PBT at 25.77 ng/g, and the maximum of PBT in ESD 
was 7.87  ng/g. The geomean levels of PBT in FD and 
ESD were both below 0.5 ng/g, 0.38 ng/g, and 0.45 ng/g, 
respectively. Like PBEB, levels of PBT in house dust of 
the other regions were generally at low levels [17, 25, 32, 
50], ands house dust of UK showed the marginally higher 
level of PBT, about 1.8 ng/g (Additional file 1: Table S2).

Comparison and correlation of NBFRs between FD and ESD
In this study, the difference of NBFRs between FD and 
ESD was compared testing whether it was necessary 
to separately collect two dust categories for analyzing 
NBFRs, and then for further estimating human expo-
sure risks in different age groups. Following log trans-
formation of concentrations expressed on a dry dust 
weight basis, paired-samples T tests were applied to test 
whether concentrations of target NBFRs in FD would 
exceed those in ESD (n = 22). Concentrations of EHTBB, 
BTBPE, and DBDPE in FD exceeded significantly those 
in ESD, with (P < 0.05) 0.0169, 0.008, and < 0.0001 respec-
tively. Al-Omran and Harrad [28] reported that spatial 
variations in BFR concentrations were probably driven 
by various potential emissions or abrasion sources 
from household products. Owing to possible abrasion 
of household products containing NBFRs that causes 
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precipitation to the floor by gravity, and the low vapor 
pressure that may facilitate partitioning to FD, EHTBB, 
BTBPE, and DBDPE were possibly more accumulated on 
the floor than on elevated surfaces of household products 
in indoor environment, but it was not wholly true. Mul-
tiple mechanisms might influence the fate of each NBFR 
compound. Moreover, Harrad et al. [57] found that con-
centrations of PBDEs were inversely correlated with sur-
face loadings (ng dust per m2 of surface area) in indoor 
environment. The negative correlation between levels 
of NBFRs and surface loadings may exist under similar 
circumstances. It was plausible that, relative higher dust 
loadings of EHTBB, BTBPE, and DBDPE in ESD resulted 
in lower concentrations. In terms of relative abundance, 
there was not statistically difference at a significance level 
of 5% for target NBFR compounds in two dust categories, 
except for DBDPE and BEHTEBP. DBDPE accounted 
for about 90.5% and 80.5% in FD and ESD, respectively, 
while larger percentage of BEHTEBP was observed in 
ESD, with a value of 11.1% (Additional file 1: Fig. S1). In 
summary, paired-samples T tests showed the difference 
of NBFR compounds between FD and ESD, possibly 
indicating different distributions of NBFRs in two dust 
categories. As young infants and toddlers contact more 
with FD, it will be more valid to estimate human expo-
sure to NBFRs for them using FD. For older age groups 
(e.g., adults), ESD may be preferable for human exposure 
estimates.

Scatterplots and Spearman correlation coefficients 
examining relationships of seven target NBFRs between 
two dust categories were selected in this study. As 
shown in Fig.  3, log-transformed concentrations of 
some target compounds in FD, including PBT, HBB, 
EHTBB, BEHTEBP, and DBDPE, were significantly cor-
related with those in ESD (P < 0.05). Particularly, strongly 

significant correlations (P < 0.01) of HBB, BEHTEBP, and 
DBDPE were found between FD and ESD, with respec-
tive correlation coefficient values of 0.69, 0.78, and 0.61. 
The results indicated that these compounds might be 
from similar emission sources such as polymeric materi-
als, which was consistent with the report by Covaci et al. 
[8]. Similar results were also reported in house dust from 
Iraq [58]. However, no significant correlations of PBEB 
or BTBPE were obtained between FD and ESD, though 
PBEB and BTBPE were both used in thermoset resins [8]. 
The number and type of household products contain-
ing PBEB or BTBPE at different sampling heights may be 
potential factors that influence the environmental fate of 
PBEB and BTBPE.

The correlations among NBFRs in FD or ESD were 
also investigated. In terms of FD, the results in Table  3 
pointed to a positive statistically significant correla-
tion between concentrations of PBT, PBEB, and HBB, 
which may give grounds for assuming similar sources of 
their emission and transport mechanism to house dust. 
Interestingly, a weak positive statistically significant cor-
relation was also found between the levels of HBB and 
DBDPE in FD, which may be associated with the photo-
degradation of DBDPE partially into HBB [55]. No sig-
nificant correlation was examined between EHTBB and 
BEHTEBP, possibly indicating various emission sources 
of EHTBB and BEHTEBP from commercial mixtures 
(e.g., firemaster 550, BZ-54, DP-45) or different behavior 
of the two. Table 4 shows the tests of relationship among 
target NBFRs in ESD. Similar to FD, a stronger positive 
statistically significant association was found between 
PBT and PBEB in ESD (r = 0.879, P < 0.01). Furthermore, 
a significant correlation (P < 0.05) was also found between 
EHTBB and other four compounds PBT, PBEB, HBB, 
and DBDPE with respective correlation coefficient values 

Fig. 3  Correlations between log-transformed concentrations of FD and ESD in paired samples (n = 22)
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of 0.635, 0.573, 0.676, and 0.469, possibly indicating the 
similar source in indoor environment.

Temporal variations of NBFRs in FD
The geomean concentrations of ∑7NBFRs were ranked 
as August (327.0, ng/g) > December (320.7) > October 
(258.1) > February (251.5) > June (216.9) > April (162.3) 
(Additional file  1: Fig. S2). The concentrations of 

∑7NBFRs in August were higher than those in the other 
months by testing with one-way ANOVA (P < 0.05). 
April, (June, August), and October (December, Febru-
ary) represent the seasons of spring, summer, autumn, 
and winter, respectively. Geomean concentrations of 
∑7NBFRs in FD decreased in the order: summer > win-
ter > autumn > spring (Fig.  4). Higher room tempera-
ture, which led to more volatile emissions of NBFRs 

Table 3  Spearman’s rank correlation coefficient (r) between concentrations of NBFRs in FD

* P < 0.05; ** P < 0.01

PBT PBEB HBB EHTBB BTBPE BEHTEBP DBDPE

PBT 0.571** 0.031 − 0.055 0.095 0.012 0.031

PBEB 0.571** 0.203* − 0.061 0.085 − 0.022 0.109

HBB 0.031 0.203* − 0.100 0.089 − 0.020 0.186*

EHTBB − 0.055 − 0.061 − 0.100 − 0.066 0.023 − 0.114

BTBPE 0.095 0.085 0.089 − 0.066 − 0.008 0.005

BEHTEBP 0.012 − 0.022 − 0.020 0.023 − 0.008 − 0.016

DBDPE 0.031 0.109 0.186* − 0.114 0.005 − 0.016

Table 4  Spearman’s rank correlation coefficient (r) between concentrations of NBFRs in ESD

* P < 0.05; ** P < 0.01

PBT PBEB HBB EHTBB BTBPE BEHTEBP DBDPE

PBT 0.879** 0.445 0.635** 0.086 − 0.083 0.556*

PBEB 0.879** 0.249 0.573* 0.205 − 0.090 0.564*

HBB 0.445 0.249 0.676** 0.345 − 0.116 0.161

EHTBB 0.635** 0.573* 0.676** 0.154 0.014 0.469*

BTBPE 0.086 0.205 0.345 0.154 − 0.091 0.014

BEHTEBP − 0.083 − 0.090 − 0.116 0.014 − 0.091 − 0.270

DBDPE 0.556* 0.564* 0.161 0.469* 0.014 − 0.270

Fig. 4  Temporal concentration variations of ∑7NBFRs and each NBFR compound in FD
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from sources (e.g., electrical appliances and furnish-
ings), may be one possible explanation for higher con-
centrations of NBFRs in summer, but this is not wholly 
true. Interestingly, FD in winter showed the second 
highest concentration of ∑7NBFRs. Household heating 
system indoors may counterbalance the effect of lower 
temperature in winter. Moreover, ventilation in win-
ter is poorer, which may contribute to the residence of 
NBFRs indoors. Similar conclusions were reported in 
former studies [41, 59].

It was not surprising that the temporal trend of 
DBDPE was very analogous to that of ∑7NBFRs (Fig. 4). 
The temporal variation of DBDPE might determine the 
temporal trend of ∑7NBFRs, due to the domination 
of DBDPE in indoor dust. FD in summer showed the 
highest concentration of DBDPE (305.4  ng/g), while 
FD in spring the lowest (140.9 ng/g) (Additional file 1: 
Fig. S2). Over twofold difference of DBDPE between 
the maximum (winter) and minimum (spring) indicated 
that the sampling period is a vital influencing factor for 
further investigations of human exposure risk assess-
ment. FD in summer also showed the highest levels of 
PBT, PBEB, EHTBB, and BEHTEBP except for HBB 
and BTBPE (Fig.  4). Higher levels of BTBPE appeared 
in colder months (February and December), indicat-
ing different fate of BTBPE in indoor environment over 
the monitoring period. Other influencing factors like 
the introduction or remove of FR-containing goods, 
floor materials, and humidity of rooms might also affect 
the levels of NBFRs indoors. To sum up, PBT, PBEB, 
EHTBB, BEHTEBP, and DBDPE in FD exhibited higher 
concentrations in warm summer. HBB and BTBPE, 
which were probably more favored at lower tempera-
ture, showed elevated concentrations in colder seasons.

Estimation of human exposure to NBFRs
Human exposure to NBFRs via oral ingestion and der-
mal contact of house dust was estimated through appli-
cation of the exposure factors recommended by the U.S. 
Environmental Protection Agency (EPA) and Minis-
try of Ecology and Environment of the People’s Repub-
lic of China (MEEPRC) [60, 61]. 5th percentile, mean/
geomean, and 95th percentile concentrations were used 
to calculate various plausible low-end, ‘typical’, and high-
end exposure scenarios. Five age groups were taken into 
consideration: infants (< 1  year), toddlers (1–5  years), 
children (6–11 years), teenagers (12–19 years), and adults 
(≥ 20 years). The recommended daily exposure values are 
listed in Table 5.

Calculated daily exposure doses (DEDs) of NBFRs with 
different exposure scenarios are presented in Table  6. 
The contribution of dust ingestion to NBFR exposure is 
nearly one order of magnitude higher than the exposure 
from dermal absorption in FD and ESD. Dust ingestion 
was the more important pathway of human exposure to 
NBFRs. On the basis of mean concentration, the DED 
of NBFRs via dust ingestion (DEDi) in both FD and ESD 
was decreased in the order: infants > toddlers > chil-
dren > teenagers > adults. The highest DED was in the 
group of infants via dust ingestion at 95th percentile in 
FD, 9.10  ng/kg bw/day, which was about 1, 2, 4, and 8 
times higher that that for toddlers, children, teenagers, 
and adults, respectively. The DED via dermal absorption 
(DEDda) of NBFRs present in house dust was estimated 
based on the assumption that only 3% of the dose is 
absorbed through the skin [42, 64, 65]. All five age groups 
had lower DEDda than DEDi, and the highest DEDda was 
0.49 ng/kg bw/day for infants (FD). Total DEDs of NBFRs 
for five age groups were also calculated through sum-
mation of the DED via these two pathways (Additional 

Table 5  The recommended daily exposure values of  five age groups for  estimating daily exposure dose via  dust 
ingestion and dermal absorption

a  Data from MEEPRC [62]
b  Data from USEPA [63]

Dust exposure pathway Factors Daily exposure value

Infants Toddlers Children Teenagers Adults

Dust ingestion Weight (kg)a 9.4 16.3 28.8 54.8 63.5

Daily ingestion rate (g/day)a 0.06 0.10 0.103 0.086 0.05

Indoor exposure fractionb 0.875 0.792 0.792 0.875 0.875

Dermal absorption Weight (kg)a 9.4 16.3 28.8 54.8 63.5

Total skin area (cm2)a 4475 6940 11,500 16,100 17,000

Body surface area (cm2/day)b 1119 1735 2875 4025 4250

Dust adhered to skin (mg/cm2)b 0.096 0.096 0.096 0.096 0.096

NBFR fraction absorbed through the skina 0.03 0.03 0.03 0.03 0.03

Indoor exposure fractionb 0.875 0.792 0.792 0.875 0.875
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file  1: Table  S3). It is not surprising that the DED of 
NBFRs through dust ingestion made greater contribu-
tion to the cumulative DEDs, accounting for, on average, 
90.4% of the total NBFR exposure. With age increasing, 
the proportion of DEDi was becoming smaller, and der-
mal absorption for adults made greater contribution to 
total DEDs than that for younger groups. Adults showed 
the smallest percentage of DEDi (80.9%), while the high-
est percentage was for the groups of infants and tod-
dlers, both 95%. Younger infants and toddlers may be 
exposed more susceptibly to the risk of NBFRs from dust 
ingestion.

The DEDs of four main NBFRs (EHTBB, BEHTEBP, 
BTBPE, and DBDPE) via dust ingestion were also esti-
mated for exposure risk from single NBFR compound 
(Additional file  1: Table  S4). According to Hardy et  al. 
[66], the oral reference dose (RfD) values for EHTBB, 
BEHTEBP, BTBPE, and DBDPE were 20,000, 20,000, 
243,000, and 333,333 ng/kg bw/day. Compared with oral 
RfDs, the estimated DEDs of EHTBB, BEHTEBP, BTBPE, 
and DBDPE were at least 2 × 106, 106, 3 × 106, 3.3 × 106 
times lower for five age groups in this study, probably 
revealing that residents faced low exposure risks from 
EHTBB, BEHTEBP, BTBPE, and DBDPE in indoor house 
dust. We assumed 100% absorption efficiency of intake in 
accordance with the other studies [37, 67]. However, this 
assumption may result in the overestimation of human 
exposure to NBFRs. People may face lower risks if bio-
accessibility of NBFRs is taken into account in future 
studies.

Conclusions
This study investigated the levels, temporal variation, 
and human exposure of seven target NBFRs (PBT, PBEB, 
HBB, EHTBB, BEHTEBP, BTBPE, and DBDPE) in indoor 
house dust from Shanghai. DBDPE was the predominant 

compound in both FD and ESD, probably indicating 
the extensive used of DBDPE in indoor environment. 
Compared with the other studies, the concentrations of 
DBDPE in this study were generally moderate. DBDPE, 
BTBPE, and EHTBB in FD exceeded significantly those 
in ESD, revealing that different influencing factors (e.g., 
physicochemical property, emission or abrasion source, 
and particle size) may affect the distribution of these 
compounds in two dust categories. Significant correla-
tions of PBT, HBB, EHTBB, BEHTEBP, and DBDPE were 
found between FD and ESD, which may be influenced 
by similar emission sources such as polymeric materi-
als. The concentrations of ∑7NBFRs in FD decreased 
in the order: summer > winter > autumn > spring, pos-
sibly due to more volatile emissions caused by higher 
room temperature. The estimated DEDs of ∑7NBFRs for 
young infants and toddlers via dust ingestion and dermal 
absorption were higher than other age groups. The DEDs 
of EHTBB, BEHTEBP, BTBPE, and DBDPE were several 
orders of magnitude lower than their oral RfDs, showing 
people faced low risks of these four emerging compounds 
through dust ingestion. In the future, bioaccessibility of 
NBFRs should be fully considered for human exposure 
estimates.

Additional file

Additional file 1. Additional tables and figures.
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ANOVA: analysis of variance; BEHTEBP: bis(2-ethylhexyl) tetrabromophthalate; 
BFRs: brominated flame retardants; DEDs: daily exposure doses; DBDPE: deca-
bromodiphenylethane; DEHP: di(2-ethylhexyl) phthalate; ESD: elevated surface 
dust; EPA: Environmental Protection Agency; FRs: flame retardants; FD: floor 
dust; GC/MS: gas chromatography/mass spectrometry; HBB: hexabromoben-
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Table 6  Estimated daily exposure dose (DED) of NBFRs in house dust for five age groups in Shanghai, ng/kg bw/day

Dust type DEDi DEDda

Infants Toddlers Children Teenagers Adults Infants Toddlers Children Teenagers Adults

FD

 Mean 2.75 2.39 1.39 0.68 0.34 0.15 0.12 0.11 0.09 0.08

 Geomean 1.65 1.43 0.84 0.41 0.20 0.09 0.07 0.07 0.05 0.05

 5th 0.24 0.21 0.12 0.06 0.03 0.01 0.01 < 0.01 < 0.01 < 0.01

 95th 9.10 7.92 4.62 2.24 1.12 0.49 0.40 0.37 0.30 0.27

ESD

 Mean 0.76 0.67 0.39 0.19 0.09 0.04 0.03 0.03 0.03 0.02

 Geomean 0.66 0.57 0.33 0.16 0.08 0.04 0.03 0.03 0.02 0.02

 5th 0.21 0.18 0.11 0.05 0.03 0.01 < 0.01 < 0.01 < 0.01 < 0.01

 95th 2.26 1.97 1.15 0.56 0.28 0.12 0.10 0.09 0.07 0.07
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POPs: persistent organic pollutants; PBDEs: polybrominated diphenyl ethers; 
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