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Abstract 

Species reproduction is an important determinant of population dynamics. As such, this is an important parameter in 
environmental risk assessment. The closure principle computational approach test (CPCAT) was recently proposed as 
a method to derive a NOEC/LOEC for reproduction count data such as the number of juvenile Daphnia. The Poisson 
distribution used by CPCAT can be too restrictive as a model of the data-generating process. In practice, the gener-
alized Poisson distribution could be more appropriate, as it allows for inequality of the population mean µ and the 
population variance σ 2 . It is of fundamental interest to explore the statistical power of CPCAT and the probability 
of determining a regulatory relevant effect correctly. Using a simulation, we varied between Poisson distribution 
( µ = σ

2 ) and generalized Poisson distribution allowing for over-dispersion ( µ < σ
2 ) and under-dispersion ( µ > σ

2 ). 
The results indicated that the probability of detecting the LOEC/NOEC correctly was ≥ 0.8 provided the effect was 
at least 20% above or below the mean level of the control group and mean reproduction of the control was at least 
50 individuals while over-dispersion was missing. Specifically, under-dispersion increased, whereas over-dispersion 
reduced the statistical power of the CPCAT. Using the well-known Hampel identifier, we propose a simple and straight 
forward method to assess whether the data-generating process of real data could be over- or under-dispersed.
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Introduction
In environmental risk assessment scientists often focus 
on assessing the effects of chemicals on an ecological sys-
tem or specific environmental compartments [1]. Species 
reproduction considerably affects population dynamics 
and ecology. As such, the new closure principle computa-
tional approach test (CPCAT) was proposed for the eval-
uation of discrete reproduction data [2]. Numbers of new 
Lemna fronds (Lemna minor L.), numbers of juvenile 
Daphnids (Daphnia magna), and numbers of fish eggs 

laid are popular examples of reproduction count data. It 
is well known that count and proportion data in ecotoxi-
cology are not normally distributed [3]. The reproduction 
data mentioned above are generally assumed to be Pois-
son distributed [4, 5].

Recently, a Poisson distribution together with CPCAT 
was used to test for differences in mean reproduction of 
different species [2]. Poisson distribution is known as the 
law of rare events [6]. Let µ represent mean reproduction 
and σ 2 the variance. The Poisson model implies equality 
of mean reproduction and variance, see Eq. (1):

If a chemical substance affects mean reproduction, it 
affects variance, too. Consequently, effects on mean 

(1)µ = σ
2
.
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reproduction cause inhomogeneous variances among 
treatments. Furthermore, normal approximation of Pois-
son distributed data is only valid if mean reproduction 
µ ≥ 5 holds (e.g., mean numbers of laid eggs ≥ 5 ). If a 
chemical substance reduces mean reproduction to near 
zero this normal approximation fails. Currently, the sta-
tistical power of CPCAT is unknown. As such, we con-
ducted a simulation to assess how reliable the results 
obtained using CPCAT are. A key point of CPCAT is the 
assumption of a Poisson distribution. A Poisson distri-
bution can be too conservative, as it implies expectation 
and variance to be equal [see Eq. (1)]. A generalized Pois-
son distribution allowing for over- and under-dispersion 
could be more appropriate. Using the Hampel identifier 
[7], we propose a simple and straight forward approach 
to assess whether observed data is over- or under-dis-
persed. The simulation included several scenarios of 
generalized Poisson distributed data and the statistical 
power of CPCAT was thus demonstrated. The probability 
of detecting the correct lowest observed effect concen-
tration (LOEC) was also computed.

Materials and methods
The LOEC is defined as the lowest treatment concentra-
tion at which an effect was seen, for example, reproduc-
tion differed statistically significantly from the control 
group. The NOEC is defined as the highest concentration 
at which no effect was seen. If the lowest tested concen-
tration significantly affects reproduction, it is concordant 
with the LOEC and no NOEC can be derived as a con-
sequence. We, therefore, used LOEC values instead of 
NOEC values.

CPCAT: a short overview
The CPCAT is a combination of the closure principle 
(CP) [8] and the computational approach test (CAT) 
[9]. The mean reproduction of the control group is rep-
resented by µ0 and the mean reproduction of the ith 
treated group is represented by µi.

The CP is used to overcome α-inflation, a major 
problem in multiple testing of “control vs. treat-
ments”. It is illustrated in Fig.  1. The CP dictates 
that to test H0 : µ0 = µ1 , it is necessary to test 
H0123 : µ0 = µ1 = µ2 = µ3 , H012 : µ0 = µ1 = µ2 , 
H013 : µ0 = µ1 = µ3 , and H01 : µ0 = µ1 . As a con-
sequence, the CPCAT is a two-sided computationally 
demanding test procedure, because more (intersecting) 
hypotheses have to be tested. On the other hand, α-infla-
tion is reduced to zero [8].

The CAT is used to test any (intersecting) hypoth-
esis H0,i1,i2,...,ir : µ0 = µi1 = µi2 = · · · = µir , where 
i1, i2, . . . , ir represent specific treatment groups. Instead 
of normal approximation, the CAT applies an estimated 

Poisson distribution of the reproduction count data. It is 
based on a parametric bootstrap, i.e., control and treat-
ment data are re-sampled according to their estimated 
underlying Poisson distributions. Maximum Likelihood 
estimators (MLE) are used to compute the test statistic.

Using the Hampel identifier as a pre‑test for Poisson 
distribution
One feature of assuming a Poisson distribution is that the 
mean and variance are equal, see Eq. (1). If Eq. (1) is cor-
rect, then for the sample mean µ̂ and the sample variance 
σ̂
2

follows also. That is, ( ̂µ, σ̂ 2)-pairs of Poisson distrib-
uted data should scatter around a line of slope = 1 with 
an intercept = 0 (identity line). To identify data sets not 
fulfilling Eq. (1) distances of ( µ̂, σ̂ 2)-pairs from the iden-
tity line (i.e., residuals) should be considered. Using the 
Hampel identifier and a cut-off value of 4.3 ( α = 0.01 ) 
deviations from Eq. (1) can be determined [10]. Sachs 
[11] proposed a cut-off value of 5, independent of the 
sample size. Residuals exceeding the cut-off value corre-
spond to ( ̂µ, σ̂ 2)-pairs located far from the identity line 
(so-called outliers). Such ( ̂µ, σ̂ 2)-pairs represent treat-
ments that do not seem to fulfill Eq. (1). The underlying 
data-generating process is rather generalized Poisson. If 
σ̂
2
− µ̂ > 5 data are over-dispersed and if σ̂ 2

− µ̂ < −5 
data are under-dispersed.

The generalized Poisson distribution
Poisson distribution can be too conservative, because it 
requires expectation µ and variance σ 2 to be equal. The 
generalized Poisson distribution allows for µ �= σ

2 . Let 
X be a generalized Poisson distributed random variable. 
The probability density function of X is presented in Eq. 
(3) [12, 13]:

(2)µ̂ ≈ σ̂
2

Fig. 1  Illustration of the CP. Main null hypotheses H0i : µ0 = µi and 
intersection hypotheses
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The parameter m ≥ 4 refers to the largest integer value 
satisfying θ +m� > 0 . Expectation and variance are 
given in Eqs. (4)–(5):

Setting � = 0 , we obtain the well-known Poisson distri-
bution with µ = σ

2
= θ [14]. If � < 0 , the corresponding 

Poisson distribution is under-dispersed, that is σ 2
< µ . 

Whereas, � > 0 implies over-dispersion represented by 
σ
2
> µ [12]. In the following, the term “Poisson distribu-

tion” refers to the case of µ = σ
2 if not otherwise stated. 

For further details concerning generalized Poisson distri-
butions, refer to [15–17].

Applicability of CPCAT in a generalized Poisson setting
Regarding the assumption of an underlying Poisson dis-
tribution the question arises whether CPCAT can be 
applied to generalized Poisson distributed data, too. A 
property of the Poisson distribution is that the popula-
tion mean µ and the distribution parameter are equal. 
The MLE of µ under the null hypothesis is given by the 
sample mean. Moreover, the sample mean is an estima-
tor of the first moment. Moment estimators are consist-
ent and may be used as an approximation to MLE. They 
converge to the real underlying moments (e.g., popula-
tion mean) as sample size increases and can be applied 
to every probability distribution [18]. Thus, CPCAT 
estimates the population mean µ approximately cor-
rect if the data-generating process is generalized Poisson 
distributed.

The simulation
The R-package ZIGP (version 1.3) was used for the gen-
eration of (generalized) Poisson distributed data. ZIGP 
uses a re-parametrization of the generalized Poisson 
model allowing for larger over-dispersion factors than 
possible in the standard parametrization. For details, 
refer to [19].

All simulated trials consisted of one control group 
( i = 0 ) and k = 4 treatments, where each group con-
tained 5 replicates. The number of simulations per sce-
nario was N = 1000.

(3)Pθ ,�(X = x) =

{

θ(θ+x�)x−1

x!
e−x�−θ x ∈ N0, θ > 0, max{−1,−θ/m} ≤ � < 1

0 if x > m, when � < 0.

(4)µ =
θ

1− �

(5)σ
2
=

θ

(1− �)3
.

We examined different situations of increasing and 
decreasing trends in µi-values. Setting µ0 = µ1 �= µ2 
expectation of the control and treatment 1 are identical. 
As a consequence, an effect was given by treatment 2.

Values of µi varied among control and treatment 
groups. We chose µ0 ∈ {25; 50; 75; 100; 125; 150} 
and µ2 = a · µ0 . For an increasing trend 
a ∈ {1.1; 1.2; 1.3; 1.4} , µ3 = 1.5µ0 and µ4 = 1.7µ0 
was set. A multiplier of 1.7 was chosen, because 
multipliers larger than 1.7 tended to yield infinite 
simulated (generalized) Poisson distributed values pre-
venting further statistical evaluations. For a decreas-
ing trend a ∈ {0.9; 0.8; 0.7; 0.6} was set, µ3 = 0.5µ0 
and µ4 = 0.1µ0 . Using this approach, the extent of the 
trend from the control group to treatment 3 was varied 
from slowly increasing/decreasing to rapidly increasing/
decreasing.

Different σ 2
= c · µ relations were investigated with 

c ∈ {0.1; 0.5; 1; 5; 10} , thereby accounting for under- and 
over-dispersion. Poisson distribution was obtained by 
setting c = 1 . Using c < 1 or c > 1 , the data-generating 
process refers to an under- or over-dispersed generalized 
Poisson distribution, respectively. In total, 240 scenarios 
were simulated.

Results and discussion of the simulation
The simulation was designed such that µ0 = µ1 �= µ2 . 
That is, the lowest effect concentration (LEC) refers 
to treatment 2. Thus, the LOEC derived using CPCAT 
should equal the LEC. PROB is defined to be the prob-
ability of the event “LOEC=LEC”, that is, the probability 
of deriving the correct LOEC. PROB values are presented 
in Tables 1, 2. The significance level was set to α = 0.05.

It can be seen that PROB was larger for rapidly increas-
ing/decreasing trends between the control group and 
treatment 3 than for slowly. This result is not surprising, 
because the larger the difference between µ0 and µ2 the 
more easily the true LOEC can be derived.

PROB is illustrated in Figs.  2, 3, 4, 5, 6, 7, 8, 9, 10, 
11, 12 and 13. The individual differences given on 
the x-axis for the data points generally correspond 
to 10%, 20%, 30%, and 40% effect. Over-dispersion 
(under-dispersion) increases (decreases) the prob-
ability of observing overlapping treatment data reduc-
ing (increasing) PROB. Simulation results indicated that 
PROB

σ 2<µ
> PROB

σ 2=µ
> PROB

σ 2>µ
 was correct, i.e., 

the statistical power of the CPCAT increases if the under-
lying generalized Poisson distribution is under-dispersed. 
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Table 1  PROB of the CPCAT (decreasing trend)

Parameter c > (<)1 indicates generalized Poisson distribution with over-(under-)-dispersion ( σ 2
= c · µ ) or Poisson distribution ( c = 1 ). Parameter a indicates the 

value of the true LOEC via µ2 = a · µ0 . Parameter µ0 denotes the mean reproduction of the control group

c a µ0 = 25 µ0 = 50 µ0 = 75 µ0 = 100 µ0 = 125 µ0 = 150

0.1 0.9 0 0.001 0 0.006 0.017 0.049

0.5 0.9 0.012 0.038 0.082 0.128 0.168 0.257

1 0.9 0.059 0.098 0.169 0.173 0.27 0.329

5 0.9 0.163 0.184 0.241 0.22 0.266 0.271

10 0.9 0.201 0.215 0.203 0.222 0.237 0.253

0.1 0.8 0.009 0.337 0.866 0.998 1 1

0.5 0.8 0.157 0.474 0.733 0.905 0.966 0.988

1 0.8 0.221 0.475 0.654 0.807 0.871 0.912

5 0.8 0.253 0.321 0.391 0.425 0.439 0.492

10 0.8 0.206 0.258 0.291 0.282 0.323 0.346

0.1 0.7 0.565 1 1 1 1 1

0.5 0.7 0.597 0.962 0.997 0.993 0.998 0.997

1 0.7 0.546 0.873 0.938 0.947 0.959 0.959

5 0.7 0.368 0.474 0.553 0.594 0.597 0.622

10 0.7 0.257 0.357 0.394 0.39 0.409 0.427

0.1 0.6 0.999 1 1 1 1 1

0.5 0.6 0.945 0.994 0.993 0.997 0.991 0.995

1 0.6 0.846 0.949 0.942 0.945 0.943 0.943

5 0.6 0.479 0.565 0.578 0.628 0.618 0.609

10 0.6 0.334 0.407 0.425 0.46 0.457 0.478

Table 2  PROB of the CPCAT (increasing trend)

Parameter c > (<)1 indicates generalized Poisson distribution with over-(under-)-dispersion ( σ 2
= c · µ ) or Poisson distribution ( c = 1 ). Parameter a indicates the 

value of the true LOEC via µ2 = a · µ0 . Parameter µ0 denotes the mean reproduction of the control group

c a µ0 = 25 µ0 = 50 µ0 = 75 µ0 = 100 µ0 = 125 µ0 = 150

0.1 1.1 0 0 0 0.004 1 1

0.5 1.1 0.015 0.035 0.07 0.098 0.995 0.994

1 1.1 0.067 0.096 0.127 0.167 0.95 0.959

5 1.1 0.191 0.199 0.211 0.234 0.591 0.595

10 1.1 0.2 0.207 0.2 0.209 0.438 0.445

0.1 1.2 0.002 0.101 0.608 0.935 1 1

0.5 1.2 0.11 0.311 0.594 0.789 0.998 0.998

1 1.2 0.154 0.384 0.544 0.697 0.942 0.947

5 1.2 0.239 0.319 0.379 0.42 0.601 0.61

10 1.2 0.225 0.251 0.289 0.291 0.451 0.453

0.1 1.3 0.178 0.985 1 1 1 1

0.5 1.3 0.38 0.831 0.977 0.99 0.994 0.993

1 1.3 0.402 0.744 0.891 0.943 0.946 0.947

5 1.3 0.276 0.427 0.481 0.516 0.596 0.609

10 1.3 0.259 0.292 0.345 0.348 0.458 0.443

0.1 1.4 0.9 1 1 1 1 1

0.5 1.4 0.724 0.989 0.998 0.998 0.993 0.995

1 1.4 0.677 0.906 0.953 0.937 0.945 0.943

5 1.4 0.382 0.484 0.532 0.601 0.594 0.625

10 1.4 0.288 0.359 0.396 0.413 0.446 0.463
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On the other hand, over-dispersion reduces statistical 
power.

PROB depends on various parameters, namely, direc-
tion of the observed trend, magnitude of the effect, and 
steepness of the observed effects. PROB is larger for 
decreasing than for increasing trends. This is due the 
characteristics of the Poisson distribution. For µ0 ≤ 75 , 
a difference |µ0 − µ2| ≥ 15 provides PROB of approxi-
mately 0.8. For µ0 ≥ 100 , a difference |µ0 − µ2| ≥ 18 
is required to obtain PROB ≈ 0.8 . Thus, PROB ≥ 0.8 if 

|µ0 − µ2| ≥ 0.2µ0 and µ0 > 50 while over-dispersion is 
missing.

Mean reproduction varies between species. It can 
be low (e.g., number of laid bird eggs) or large (e.g., 
reproduction of Collembola Folsomia candida). We 
tried to cover a large range of mean reproduction val-
ues using a set of many different µ values. However, a 
simulation using a mean reproduction level greater 
than 150× 1.7 = 255 could not be applied, because 
the number space of a computer is limited and infinite 
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Fig. 2  PROB of the CPCAT; µ0 = 25 , decreasing trend
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Fig. 3  PROB of the CPCAT; µ0 = 50 , decreasing trend
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Fig. 5  PROB of the CPCAT; µ0 = 100 ; decreasing trend
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values were generated for µ > 255 (see “The simula-
tion” section).

For some species, it could be appropriate to assume 
over- or under-dispersion of reproduction data. We 
tried to choose a realistic range of dispersion factors 
c ∈ {0.1; 0.5; 1; 5; 10} . For example, in some real data, we 
found reproduction of Collembola (Folsomia candida) 
being over-dispersed by factor 10. On the other hand, if 
a substance reduces reproduction to nearly 0 dispersion 
will be reduced to nearly 0, too. Thus, a factor of 0.1 can 
be reasonable, too.

Conclusion
Statistical theory and results of the simulation indicated 
that the CPCAT is applicable and powerful provided 
µ = σ

2 or µ > σ
2 holds. In the case of µ < σ

2 , the statis-
tical power is reduced.

To determine whether or not the data are over- or 
under-dispersed, the cut-off value of the Hampel identi-
fier, as explained in “Using the Hampel identifier as a pre-
test for Poisson distribution” section should be used. The 
difference between any pair (µ̂, σ̂ 2

) and the identity line is 
given by σ̂ 2

− µ̂ . The Hampel identifier is relevant in real 
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Fig. 6  PROB of the CPCAT; µ0 = 125 , decreasing trend
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data analyses, because it can indicate over-dispersion. 
Over-dispersion reduces the probability of detecting reg-
ulatory relevant effects. From the simulation, we can esti-
mate the loss of statistical power.

Overall, the CPCAT is applicable to generalized Pois-
son distributed data. A future version of CPCAT must 
explicitly take into account over- and under-dispersion, 
e.g., using MLE of the distribution parameters θ and �.
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Fig. 10  PROB of the CPCAT; µ0 = 75 , increasing trend
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Fig. 13  PROB of the CPCAT; µ0 = 150 , increasing trend
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