
Li et al. Environ Sci Eur  (2018) 30:27  
https://doi.org/10.1186/s12302-018-0152-2

RESEARCH

Factors associated with blooms 
of cyanobacteria in a large shallow lake, China
Di Li1,2, Naicheng Wu3, Song Tang4, Guanyong Su5, Xuwen Li2, Yong Zhang2, Guoxiang Wang6, Junyi Zhang7, 
Hongling Liu1, Markus Hecker8,9, John P. Giesy1,10,11,12 and Hongxia Yu1*

Abstract 

Background: Eutrophication of freshwater systems can result in blooms of phytoplankton, in many cases cyanobac-
teria. This can lead to shifts in structure and functions of phytoplankton communities adversely affecting the quality of 
drinking water sources, which in turn impairs public health. Relationships between structures of phytoplankton com-
munities and concentrations of the toxicant, microcystin–leucine–arginine (MC-LR), have not been well examined in 
large shallow lakes. The present study investigated phytoplankton communities at seven locations from January to 
December of 2015 in Tai Lake, and relationships between structures and diversities of phytoplankton communities 
and water quality parameters, including concentrations of MC-LR and metals, were analyzed.

Results: A total of 124 taxa of phytoplankton were observed, and the predominant taxa were Microcystis sp. and 
Dolichospermum flos-aquae of Cyanophyta and Planctonema sp. of Chlorophyta. The greatest diversities of phytoplank-
ton communities, as indicated by species richness, Simpson, Shannon–Wiener, the Berger and Parker, and the Pielou 
evenness indices, were observed in spring. Furthermore, productivity of phytoplankton was significantly and nega-
tively correlated with diversities. These results demonstrated that Simpson, Shannon–Wiener, the Berger and Parker, 
and the Pielou evenness indices of phytoplankton communities were significantly related to trophic status and overall 
primary productivity in Tai Lake. In addition, temperature of surface water, pH, permanganate index, biochemical 
oxygen demand, total phosphorus, arsenic, total nitrogen/total phosphorous ratio, and MC-LR were the main factors 
associated with structures of phytoplankton communities in Tai Lake.

Conclusion: The present study provided helpful information on phytoplankton community structure and diversity in 
Tai Lake from January to December of 2015. Our findings demonstrated that Simpson, Shannon–Wiener, the Berger 
and Parker, and the Pielou evenness indices could be used to assess and monitor for status and trends in water quality 
of Tai Lake. In addition, MC-LR was one of the main factors associated with structures of phytoplankton communities 
in Tai Lake. The findings may help to address important ecological questions about the impact of a changing environ-
ment on biodiversity of lake ecosystems and the control of algae bloom. Further studies are needed to explore the 
relationship between MC-LR and phytoplankton communities in the laboratory.
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Background
Biodiversity represents the complexity of life and includes 
phenotypic, genotypic, taxonomic and ecological diver-
sity [1]. Characterization of biodiversity of phytoplankton 
communities can help managers and researchers under-
stand the status and trends in changes in the structure 
of ecosystems, e.g., due to stressors such as contamina-
tion with pollutants and nutrients [2]. Therefore, under-
standing the ecological processes, as well as abiotic and 
biotic factors that contribute to absolute and relative 
abundances of taxa in these communities are major goals 
of basic and applied community ecology. Metrics, such 
as species richness and the Shannon–Wiener diversity 
index, represent important tools for the characterization 
of changes in phytoplankton communities in aquatic eco-
systems [3–5].

Compositions of phytoplankton communities are cru-
cial determinants of structures of food webs in aquatic 
ecosystems, and because of their rapid responses to 
environmental stressors such as pollution these are 
considered to be important environmental indicators 
[6–9]. Results of previous studies have suggested that 
water temperature (WT), water level, seasonality, opti-
cal properties, and nutrients, especially nitrogen (N) and 
phosphorus (P) are the main factors that affect the com-
position of phytoplankton communities [9–15]. Hydro-
dynamic force, mixing depth, and euphotic depth were 
also important physical factors that influenced phyto-
plankton dynamics and bloom condition [16, 17]. Species 
compositions and richness of phytoplankton can also be 
altered by exposure to pollution, such as metals [18, 19]. 
Thus, to protect biodiversity and restore aquatic ecosys-
tems, there is a need for regular monitoring to ascertain 
that these water quality parameters are within acceptable 
levels, and it is important to understand the impact of the 
changing environment on the structure of phytoplankton 
communities. Although productivity of phytoplankton, 
expressed as concentrations of Chlorophyll a, has been 
suggested as a robust indicator for assessment of qual-
ity of ecosystems [20], relationships between productiv-
ity and composition and diversity of phytoplankton have 
been seldom studied in aquatic ecosystems.

Due to human activities and climate changes, eutrophi-
cation of lakes have been global problems, and can cause 
significant shifts in phytoplankton communities resulting 
over-dominance of unwanted taxa, such as cyanobacte-
ria [21]. Cyanobacteria blooms are expected to become 
more frequent, of greater severity and duration world-
wide [22], posing serious threats to the health of many 
surface water ecosystems, and as such affecting the safety 
of drinking water sources [23]. Because of their unique 
characteristics, such as adapting low or high light, in 
the presence of excess nutrients, cyanobacteria have 

competitive advantages of many other species of plank-
ton. Several cyanobacteria, such as Microcystis spp., 
Dolichospermum flos-aquae, and Oscillatoria tenuis, can 
produce toxins [24, 25], such as microcystins (MCs) [26], 
microcystins, especially microcystin-LR (MC-LR; L for 
leucine and R for arginine), are widely distributed across 
eutrophic freshwater ecosystems and have been shown to 
be toxic to a wide range of aquatic organisms and humans 
[27–31]. However, the impacts of MC-LR on structure 
and diversity of aquatic communities specifically phyto-
plankton communities have been rarely reported in natu-
ral waters [5, 32].

As the third-largest lake in China, Tai Lake is a shal-
low lake that is a critical source of drinking water for sev-
eral populous cities of China. However, due to numerous 
anthropogenic stressors, between 1998 and 2007, a num-
ber of blooms of cyanobacteria occurred throughout the 
year, except for January and February [33]. Between 2008 
and 2011, the frequency of algae blooms was increas-
ing, and blooms occurred even in January [34]. Blooms 
of cyanobacteria first appeared in Meiliang Bay of Tai 
Lake in the 1980s [35], and previous studies found that 
absolute and relative density of phytoplankton in Tai lake 
was highest in this bay [36–38]. However, phytoplankton 
in the other areas of Tai Lake was seldom surveyed. In 
addition, since the most common freshwater cyanobac-
terium, Microcystis spp. [39], is also a dominating and 
problematic species in Tai Lake, this species has been 
extensively researched [40–42]. However, effects of the 
dominant taxa on the other taxa of phytoplankton during 
cyanobacteria blooms were seldom studied in the lake.

In the present study, variations in environmental con-
ditions and communities of phytoplankton were investi-
gated monthly at seven different locations of Tai Lake in 
2015. The aims of this study were to (1) explore potential 
effects of environmental parameters on the structures of 
phytoplankton communities; (2) determine relationships 
between phytoplankton productivity and diversity: and 
(3) identify factors driving changes in dominant taxa of 
phytoplankton. Addressing these important ecological 
questions could help managers better understand biodi-
versity of plankton community and better make decision 
to protect this important shallow lake.

Methods
Study area
Tai Lake is located between Jiangsu and Zhejiang Prov-
ince. Communities of phytoplankton were investigated 
monthly at seven different sites, which are two of the 
most densely populated regions in China. Tai Lake has 
an area of 2338 km2, with a maximum length and width 
of 68.5 and 56  km, respectively. The average depth 
is approximately 1.9  m and the average annual air 
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temperature is between 16.0 and 18.0  °C. The annual 
mean precipitation is between 1100 and 1150  mm. 
In the present study, seven sampling locations were 
established in Tai Lake (Fig.  1), which represented 
areas of differing ecological characteristics across the 
entire Lake. Specifically, they were in the eastern bay 
(TH1), Meiliang Bay (TH2), southwest area of the lake 
(TH3), northwest area of the lake (TH4), central lake 
(TH5), and Gonghu Bay (TH6 and TH7).

Sampling
Collection of water and analyses
Sampling was performed at seven locations each month 
from January to December in 2015. In brief, water was 
collected from a depth of 0.5 m below the surface, stored 
in glass containers at 0–4 °C in the dark, brought to the 
laboratory, and processed within 12  h for each sample 
based on standard methods [43]. Water temperature 
(WT), pH, dissolved oxygen (DO), and conductivity 
were measured in situ by use of YSI water quality sondes 
(YSI Incorporated, 6600V2-4, Ohio, USA). Water trans-
parency (SD) was determined with a 30-cm Secchi disk. 
Analysis of  CODCr,  CODMn, TP, TN,  BOD5,  NH4

+-N,  F−, 

Fig. 1 Locations of seven sampling sites in Tai Lake
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As, Pb, Cu, and Chl a in water samples was based on a 
standard method [43]. Enzyme-linked immune sorb-
ent assay (ELISA) was used to measure concentrations 
of MC-LR [44, 45], and the assay kits were bought from 
institute of hydrobiology of Chinese academy of sci-
ences. The TN/TP ratio (NPR) was calculated. Based 
on five limnological parameters, including SD,  CODMn, 
TP, TN, and Chl a, the synthesized trophic state index 
(STSI) was calculated for each water sample and used to 
assess eutrophication status (Additional file 1: Table S1) 
[46–48].

Collection of phytoplankton and analyses
In brief, 1000 mL samples of water were collected at each 
location, and phytoplankton was fixed in acid Lugol’s 
solution and transported to laboratory at 4 °C [43]. Iden-
tification of phytoplankton was performed to the species 
level and enumerated by counting at least 30 random 
fields in Sedgewick-Rafter sedimentation chambers 
(30 mL) using an inverted microscope (BX53, Olympus, 
Japan) [43, 49–51]. Numbers of cells of each taxon, as 
well as dimensions of individuals, including maximum 
linear dimension, were estimated. The dominant taxa 
were identified in the following equation [52]:

where ni is the number of cells of the ith taxa, fi is the 
frequency of the ith taxa appearing at the survey sites; 
N is the number of phytoplankton taxa observed during 
the study. When Y > 0.02, the taxa were classified as being 
dominant in the phytoplankton community.To determine 
diversity of phytoplankton communities, commonly used 
diversity indicators, included species richness (S), the 
Shannon–Wiener index (H′), the Simpson index (Ds), the 
Berger and Parker index (Db), and Pielou evenness index 
(J) were calculated by PRIMER software version 6.1.10 
(Lutton, Ivybridge, United Kingdom).

Species diversity was estimated by Shannon–Wiener 
index, Simpson index, and Berger–Parker index, which 
are members of Renyi diversity family, as given the fol-
lowing equation [53, 54]:

This is a one-parametric diversity index family in which 
diversity of an assemblage is characterized by a diver-
sity profile instead of a numerical value (Additional 
file  1: Fig. S1). By increasing the scale parameter (α), 
contributions of abundant species to the diversity of the 
assemblage increase, while contributions of rare species 
decrease. Researchers who want the index to be sensitive 

(1)Y = (ni/N )fi,

(2)HRα =

1

1− α
log

s∑

i=1

Piα .

to the compositions of more abundant species but rela-
tively indifferent to that of more rare species can use the 
diversity indices of Renyi family [55]. The values of Renyi 
diversity are lgS, H′, Ds, and Db when the following α val-
ues were used 0, 1, 2, and ∞ respectively.

Data analyses
Differences in water quality parameters or phytoplank-
ton indicators during months or four seasons, and 
among seven sites in Tai Lake were analyzed by use of 
the Kruskal–Wallis, non-parametric test (SPSS 22.0, Chi-
cago, Illinois, USA). A linear regression analysis was used 
to elucidate relationships between phytoplankton pro-
ductivity (Chl a) and diversity metrics in Tai Lake (SPSS 
22.0, Chicago, Illinois, USA). A p value < 0.05 was used 
as the threshold for statistical significance. The Multi-
Response Permutation Procedure (MRPP, mrpp function 
in R package vegan) was used to determine differences 
in community composition and structure among loca-
tions and months. The null hypothesis was that there was 
no difference among the groups in a Monte Carlo rand-
omization procedure with 999 permutations. To explore 
potential effects of environmental parameters on phyto-
plankton communities (Objective 2), the following pre-
liminary data analyses were conducted. First, rare species 
with relative abundance < 0.5% when all samples were 
summed were excluded; this requirement reduced the 
number of taxa in the analysis from 124 to 31. Second, 
species counts were converted to relative abundances 
(0–100%), which were Hellinger transformed to reduce 
the weight of abundant species, while preserving Euclid-
ean distances between samples in the multidimensional 
space [56].  Third, environmental variables with signifi-
cant multicollinearity (with variance inflation factor > 10 
and Spearman’s rank correlation coefficient |r| ≥ 0.75) 
were excluded. STSI was removed due to its greater cor-
relations with TP (Additional file  1: Table  S2) and the 
other 17 environmental variables were included in the 
following analyses. A preliminary detrended correspond-
ence analysis (DCA) on the species data produced a 
longest gradient length of 3.18 along the first axis, which 
suggested that redundancy analysis (RDA) was appropri-
ate [57]. RDA was performed by use of the rda function 
and tested for significance using the anova function. Only 
when it was significant, forward selection and Monte 
Carlo permutations (999 iterations) were used to select 
variables that significantly (p < 0.05) explained the vari-
ance in species composition. Forward selection was per-
formed by use of the envfit function in R package vegan. 
Furthermore, generalized linear models (GLMs) with 
Gaussian error distribution [58] were used to examine 
influencing factors of different algal indices (e.g., diver-
sity indices, the dominant taxa) (Objective 3). The best 
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approximating model was selected, based on Akaike’s 
information criterion (AIC) [59], using function stepAIC 
in R package MASS. GLMs were performed with all envi-
ronmental variables, except for STSI which was excluded 
due to its greater correlations with TP (see also above). 
The reason GLMs were selected rather than univariate 
analyses was because GLM models interpret importance 
of variables in a multivariate setting [60]. All these analy-
ses were performed with R software version 3.3.2.

Results
Water quality parameters
Mean values of water quality parameters varied among 
seven sampling locations (Table  1). Concentrations of 
Chl a, measuring of phytoplankton productivity that cov-
ered the whole trophic spectrum, ranged between 5.0 
and 362 μg/L in Tai Lake. The largest synthesized trophic 
state index (STSI) was observed at TH4, while the least 
was observed at TH1. Greatest concentrations of MC-LR 
(0.352 μg/L) were observed at TH2, and least concentra-
tions (0.069 μg/L) were observed at TH1. For concentra-
tions of pollutants at the seven locations, TH4 seemed to 

be most contaminated, whereas TH1 (the eastern region) 
and TH5 (the central lake) were less contaminated 
(p < 0.000001).

Phytoplankton community composition and diversity
During a period of January to December of 2015, 124 taxa 
of phytoplankton, including eight phyla 21 taxa Cyano-
phyta, 63 Chlorophyta, 25 taxa of Bacillariophyta, 3 
Cryptophyta, 4 Pyrrophyta, 7 Euglenophyta, and 1 Chrys-
ophyta, were found in Tai Lake. These taxa belonged to 
68 genera, including 13 genera of Cyanophyta, 27 genera 
of Chlorophyta, 17 genera of Bacillariophyta, 2 genera of 
Cryptophyta, 4 genera of Pyrrophyta, 4 genera of Eugle-
nophyta, and 1 genera of Chrysophyta, were observed. 
Over the 12  months, relatively large densities of phyto-
plankton were observed at all seven locations in Tai Lake 
(Additional file  1: Fig. S2), with the greatest density of 
approximately 9.0 × 108 cells/L at site TH4 in July. The 
second greatest density of phytoplankton was 7.4 × 108 
cells/L, which was observed at TH3 in July. Among all 
these monitored locations, TH7 in Gonghu Bay exhibited 

Table 1 Monthly values (mean ± SD) of  water parameters at  seven sampling sites from  January to  December of  2015 
in Tai Lake

Items TH1 TH2 TH3 TH4 TH5 TH6 TH7 P

WT (°C) 17.6 ± 8.7 18.8 ± 9.0 17.3 ± 9.1 17.6 ± 8.8 17.1 ± 8.4 18.6 ± 8.9 18.7 ± 8.3 0.999

pH 8.22 ± 0.34 8.49 ± 0.42 8.16 ± 0.46 8.11 ± 0.42 8.18 ± 0.44 8.48 ± 0.33 8.29 ± 0.29 0.113

SD (m) 0.33 ± 0.05 0.40 ± 0.08 0.27 ± 0.08 0.32 ± 0.04 0.30 ± 0.03 0.38 ± 0.07 0.37 ± 0.05 < 0.0001***

DO (mg/L) 9.8 ± 1.8 10.7 ± 1.5 10.2 ± 1.5 10.1 ± 1.7 9.92 ± 1.70 10.2 ± 1.6 9.08 ± 1.54 0.336

Conduc-
tivity 
(ms/m)

45.9 ± 8.5 50.1 ± 5.4 40.2 ± 8.5 49.0 ± 13.8 42.0 ± 7.0 50.5 ± 5.6 48.6 ± 7.7 < 0.05*

CODMn 
(mg/L)

3.6 ± 0.8 4.8 ± 0.7 3.8 ± 0.8 4.9 ± 1.0 3.6 ± 0.6 4.6 ± 0.7 4.0 ± 0.7 < 0.0001***

BOD5 
(mg/L)

1.4 ± 0.5 3.0 ± 1.3 2.1 ± 1.4 3.4 ± 1.4 1.6 ± 0.3 2.6 ± 0.7 2.8 ± 0.7 < 0.0001***

TN (mg/L) 1.44 ± 0.68 1.97 ± 1.11 1.75 ± 1.07 2.67 ± 1.05 1.39 ± 0.73 1.69 ± 0.64 1.88 ± 0.74 < 0.05*

NH4
+-N 

(mg/L)
0.07 ± 0.04 0.10 ± 0.05 0.103 ± 0.105 0.228 ± 0.229 0.08 ± 0.06 0.10 ± 0.06 0.21 ± 0.14 < 0.05*

TP (mg/L) 0.04 ± 0.02 0.07 ± 0.04 0.06 ± 0.03 0.10 ± 0.02 0.05 ± 0.02 0.06 ± 0.03 0.06 ± 0.02 < 0.0005***

Chl a 
(μg/L)

7.25 ± 4.58 69.2 ± 109 16.2 ± 2.4 64.1 ± 7.6 24.2 ± 44.6 14.8 ± 6.6 13.9 ± 7.7 < 0.0005***

CODCr 
(mg/L)

20 ± 5 25 ± 7 19 ± 5 25 ± 9 19 ± 6 25 ± 6 20 ± 6 0.065

F− (mg/L) 0.621 ± 0.079 0.632 ± 0.076 0.615 ± 0.100 0.636 ± 0.104 0.607 ± 0.102 0.639 ± 0.065 0.553 ± 0.043 0.123

As (mg/L) 0.0017 ± 0.008 0.0029 ± 0.0024 0.0019 ± 0.0006 0.0026 ± 0.0019 0.0019 ± 0.004 0.0027 ± 0.0021 0.0023 ± 0.0014 0.760

Cu (mg/L) 0.0039 ± 0.0033 0.0049 ± 0.0055 0.0034 ± 0.0028 0.0044 ± 0.0037 0.0035 ± 0.0027 0.0048 ± 0.0057 0.0043 ± 0.0046 0.998

Pb (mg/L) 0.0043 ± 0.0058 0.0056 ± 0.0037 0.0028 ± 0.0033 0.0044 ± 0.0053 0.0042 ± 0.0061 0.0050 ± 0.0044 0.0073 ± 0.0066 0.425

MC-LR 
(μg/L)

0.069 ± 0.036 0.352 ± 0.349 0.091 ± 0.039 0.242 ± 0.196 0.098 ± 0.058 0.234 ± 0.281 0.116 ± 0.081 < 0.005**

NPR 55.7 ± 45.4 48.6 ± 63.0 32.1 ± 19.0 28.0 ± 13.4 33.1 ± 19.4 48.2 ± 62.9 35.2 ± 15.8 0.690

STSI 49.3 ± 3.3 57.6 ± 6.3 54.0 ± 4.7 61.0 ± 5.1 52.5 ± 4.0 54.5 ± 2.7 54.1 ± 2.5 < 0.00005***

Trophic 
state

Mesotrophication Eutrophication Eutrophication Supereutrophica-
tion

Eutrophication Eutrophication Eutrophication /
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lesser densities of phytoplankton, ranging from 2.1 × 106 
to 6.8 × 107 cells/L over the 12 months (p = 0.009).

In the present study, Cyanophyta was the dominant 
phylum in Tai Lake, with a mean percentage of abun-
dance of 79.5%, followed by Chlorophyta, Bacillari-
ophyta and Cryptophyta, with relative abundances of 
12.9, 6.2 and 1.3%, respectively. Assemblages of phyto-
plankton in Tai Lake were dominated by Cyanophyta, 
including Microcystis sp. (Y = 0.80) and Dolichospermum 
flos-aquae (Y = 0.08). Based on monthly data, Dolichos-
permum flos-aquae was the dominant species in Tai Lake 
from February to March; Planctonema sp. of Chlorophyta 
was the most dominant species in May, while Microcystis 
sp. was dominant taxa in the nine other months (Fig. 2). 
In addition, Microcystis sp. was the absolutely dominant 
taxa from June to December. Meanwhile, average per-
centage of Microcystis sp. density in the phytoplankton 
community at TH4 was greatest to about 65.9%, followed 
by TH2 and TH6, with 63.0 and 57.0%, respectively 
(Table 2). Phytoplankton indicators at the seven locations 

in Tai Lake are shown in Table 2. The diversity of H′ and 
J at TH5 was greatest among the seven locations, while 
TH4 was the least (p < 0.01). Differences in phytoplank-
ton indicators were significant among four seasons in Tai 
Lake. Diversity (Ds, H′ and Db) and evenness (J) of phy-
toplankton communities in spring were greatest among 
four seasons in Tai Lake, while diversity of phytoplankton 
was least in summer (Additional file  1: Fig. S3). Differ-
ences in structures of phytoplankton communities were 
significant among seven locations in Tai Lake (MRPP: 
A = 0.031, p < 0.05), and differences in structures of com-
munities of phytoplankton were also significant among 
months (MRPP: A = 0.242, p < 0.01).

Relationships between species composition 
and environmental variables
Using a linear regression analysis, the relationships 
between phytoplankton productivity and diversity 
of S, Ds, H′, J, and Db are shown in Fig.  3 (r2 = 0.132, 

a Microcystis sp.
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Fig. 2 Percentages of dominant taxa (Microcystis sp., Anabaena flos-aquae, Planctonema sp. and Melosira sp.) in phytoplankton community and their 
temporal changes from January to December of 2015 in Tai Lake
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p = 0.232; R r2 = − 0.432, p < 0.001; r2 = − 0.392, p < 0.001; 
r2 = − 0.418, p < 0.001; r2 = − 0.323, p < 0.01, respectively). 
The species richness was positively, though not signifi-
cantly, associated with productivity of phytoplankton 
(Fig. 3a), while significantly inverse relationships for the 
other four metrics of Ds, H′, J, and Db (Fig. 3b–e).

RDA was carried out on 17 environmental variables 
against Hellinger-transformed abundance species data 
with 999 permutations and significant relationships were 
determined by use of a global test (F = 2.446, p < 0.001). 
Among the 17 environmental variables, 11 parameters 
(WT, pH, SD, DO,  CODMn,  BOD5, TP,  CODCr,  F−, As 
and MC-LR) were significantly correlated (p < 0.05, 999 
Monte Carlo permutations, Table  3) and accounted for 
33.5% of the variance in the algae data. The first RDA 
axis, representing 21.5% variance of the species data, was 
significantly associated with WT, pH, SD, DO,  CODCr, 
 F−, As and MC-LR. RDA axis 2 contributed additional 
6.3% to the explained variance and was characterized sig-
nificantly by  CODMn,  BOD5 and TP (Table 3).

Factors associating with phytoplankton indicators
Relationships among various indices, including diversity 
indices, dominant taxa and environmental variables were 
analyzed by use of generalized linear models (GLMs). 
WT,  CODMn,  BOD5, MC-LR and NPR were the main 
factors that affected most parameters (Table  4). Several 
parameters, such as Chl a, S, total density, Microcystis 
sp., Melosira sp., Cyanophyta, Chlorophyta, and per-
cent of Dolichospermum flos-aquae density were sig-
nificantly related with WT (Table  4). Phytoplankton 

diversity indices (H′, J and Db) were significantly related 
with  BOD5, MC-LR and NPR.

Discussion
Temporal changes in phytoplankton communities of Tai 
Lake
Tai Lake is a large shallow lake, which provides hospita-
ble environment for phytoplankton, and phytoplankton 
communities have changed over time (Table  5). In the 
1960s, there were 91 genera of phytoplankton belong-
ing to eight phyla, which were more frequently observed 
compared to the present study. Although the mean per-
cent of Cyanophyta among constituents of phytoplank-
ton density was 96.6% in the western area of the lake in 
1960s, the greatest density of total phytoplankton was 
only 6.6 × 105 cells/L in Tai Lake [61], and were much 
less than densities observed in this study (Additional 
file  1: Fig. S2). Meanwhile, at that time, the community 
was dominated by Bacillariophyta–Chlorophyta in TH3, 
which is in the southwest of the lake. Concentrations of 
nutrients (Nitrogen: 0.15 mg/L,  PO4

3−P: 0.05 mg/L) and 
pollutants  (CODMn: 1.90  mg/L) in the whole Tai Lake 
were also less than those measured here (Table 1). Since 
1980s, cell density of phytoplankton increased in the rate 
of 5.8 times per year. Subsequently, blooms of cyanobac-
teria led to a drinking water crisis in summer of 2007; 
numbers of phytoplankton in Meiliang Bay ranged from 
3.0 × 106 to 3.7 × 109 cells/L, with a maximum density of 
phytoplankton occurring in June in 2008 [62].

The structure of the phytoplankton community in 
Tai Lake is still changing but in a good direction. In the 

Table 2 Percentages (mean ± SD) of  densities of  dominant taxa and  values (mean ± SD) of  phytoplankton indicators 
(diversity) at seven sampling sites from January to December of 2015 in Tai Lake

P Cyanophyta: percent of Cyanophyta density among the phytoplankton community; P Chlorophyta: percent of Chlorophyta density among the phytoplankton 
community; P Bacillariophyta: percent of Bacillariophyta density among the phytoplankton community; P Cryptophyta: percent of Cryptophyta density among the 
phytoplankton community; P Microcystis sp.: percent of Microcystis sp. density among the phytoplankton community

* p < 0.05; ** p < 0.005; n.s not significant

Items TH1 TH2 TH3 TH4 TH5 TH6 TH7 P

P Cyanophyta % 76.2 ± 23.3 87.3 ± 19.7 86.8 ± 16.4 96.2 ± 3.5 69.5 ± 24.0 85.2 ± 20.0 55.4 ± 37.5 **

P Chlorophyta % 18.9 ± 21.6 6.1 ± 9.4 11.0 ± 16.0 2.3 ± 2.4 25.5 ± 21.4 9.2 ± 13.3 17.3 ± 25.5 *

P Bacillariophyta % 3.7 ± 3.1 5.7 ± 9.4 1.7 ± 1.6 1.2 ± 1.4 3.6 ± 3.4 4.7 ± 7.1 22.5 ± 28.8 *

P Cryptophyta % 1.1 ± 0.9 0.8 ± 1.6 0.4 ± 0.3 0.3 ± 0.2 1.3 ± 0.7 0.8 ± 1.3 4.5 ± 8.5 **

P Microcystis sp. % 50.3 ± 32.8 63.0 ± 35.3 45.1 ± 32.8 65.9 ± 36.5 40.7 ± 29.1 56.9 ± 34.7 44.0 ± 34.0 n.s.

P Anabaena flos-aquae % 18.2 ± 18.7 18.4 ± 21.0 26.6 ± 24.8 26.6 ± 33.0 24.3 ± 23.6 15.3 ± 20.7 1.8 ± 3.6 *

P Planctonema sp. % 18.9 ± 21.6 6.1 ± 9.4 11.0 ± 16.0 2.3 ± 2.4 25.5 ± 21.4 9.2 ± 13.3 17.3 ± 25.5 **

P Melosira sp. % 1.4 ± 2.2 1.6 ± 2.2 1.1 ± 1.3 0.6 ± 0.8 2.3 ± 2.8 0.6 ± 0.9 1.3 ± 2.9 n.s.

Taxa-S 14 ± 2 15 ± 6 19 ± 8 15 ± 4 15 ± 4 17 ± 5 14 ± 3 n.s.

Ds 0.51 ± 0.25 0.39 ± 0.26 0.53 ± 0.24 0.27 ± 0.22 0.57 ± 0.16 0.46 ± 0.26 0.52 ± 0.21 n.s.

H′ 1.14 ± 0.55 0.89 ± 0.58 1.21 ± 0.62 0.61 ± 0.46 1.28 ± 0.43 1.11 ± 0.69 1.24 ± 0.50 *

J 0.26 ± 0.12 0.20 ± 0.11 0.22 ± 0.11 0.14 ± 0.07 0.26 ± 0.09 0.21 ± 0.11 0.29 ± 0.13 *

Db 0.23 ± 0.16 0.17 ± 0.17 0.25 ± 0.17 0.10 ± 0.10 0.26 ± 0.15 0.24 ± 0.24 0.21 ± 0.14 n.s.
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present study, Microcystis sp. and Dolichospermum flos-
aquae of Cyanophyta, and Planctonema sp. of Chlo-
rophyta were still predominant taxa observed (Fig.  2). 
Numbers of phytoplankton at the seven locations stud-
ied ranged from 2.5 × 106 to 9.0 × 108 cells/L. In Meiliang 
Bay, the number of phytoplankton ranged from 3.2 × 106 
to 2.4 × 108 cells/L, that was less than that in 2008 [62]. 
This result was probably because nitrogen and phospho-
rus have been controlled in Tai Lake since the drinking 
water crisis of 2007. Many ecological restoration projects 

used a wetland system to treat the rural wastewater 
removing nitrogen in the Lake [63]. Therefore, concen-
trations of TN and TP observed in 2015 were less than 
reported before [64].

In the present study, numbers of cells of cyanobacte-
ria were still high in the lake, and concentrations of N 
and P were still greater than the thresholds of 0.80 and 
0.05  mg/L, respectively, limiting blooms of Microcystis 
in Tai Lake [38]. In 2015, 68 genera of phytoplankton 
among seven phyla were observed, which was less than 
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Fig. 3 Scatter plots and linear regressions between productivity of phytoplankton (expressed in Chl a; log transformed) and measures of diversity 
of the phytoplankton community (S (log transformed), Ds, H′, Db and J) in Tai Lake. The curves were fitted based on n = 84 data points. The equation 
and p value for the specific linear regressions are given in each panel
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the 91 genera in eight phyla in 1960s [61]. The dominance 
(Y) of Microcystis sp. in Tai Lake was the greatest (Fig. 2), 
which was consistent with results of a previous study that 
phytoplankton of eutrophic shallow lakes was frequently 
dominated by one species or species of the same func-
tional group, resulting in species-pure algal assemblages 
[65]. Phyla including Pyrrophyta, Euglenophyta and 
Chrysophyta appeared rarely in Tai Lake, which is con-
sistent with the previous studies in eutrophic waters [66]. 
As nutrient concentrations and phytoplankton blooms 
were increasing, transparency was low in Tai Lake and 
cyanobacteria can outcompetes subsurface phytoplank-
ton species by reducing photosynthetically available light 
through shading [67, 68].

Relationships between phytoplankton productivity 
and diversity
In general, diversity curves are either concave-down or 
exhibit increasing functions with productivity [55, 69]. 
Retention and concentrations of nutrients are relatively 
high and residence time is long in Tai Lake [35]. Thus, 
the morphometric and hydrologic parameters are favora-
ble for development of great biomasses of phytoplank-
ton. In the present study, various shapes of relationships 
between productivity and diversity were observed. Diver-
sity metrics of H′, Ds, Db and J showed similar changes 
along the productivity gradient in Tai Lake (Fig.  3b–e). 

An inverse relationship was observed between diversity 
of the phytoplankton community and primary produc-
tion in Tai Lake. Results of a previous study [65] have 
demonstrated that dominance of bloom-forming cyano-
bacteria that can more successfully compete for light, 
exerted strong negative effects on other species of phy-
toplankton. In contrast, the logarithm of species richness 
was slightly and positively correlated with primary pro-
ductivity in Tai Lake, which was consistent with previous 
findings [70], showing that productivity could determine 
the upper values of diversity metrics and lesser values 
of species richness were found in the whole productiv-
ity range. The results of previous studies that focused on 
the decisive role of physical disturbances in determin-
ing diversity and the productivity–diversity relationship 
for phytoplankton in lakes, suggested that the relation-
ships between productivity and diversity can be used to 
assess ecological state [70, 71]. The results of this study 
indicated that diversity of phytoplankton communities is 
significantly related to trophic status and overall primary 
production in Tai Lake.

Factors effecting on structure of the phytoplankton 
community
WT, pH,  CODMn,  BOD5, TP, NPR, As and MC-LR were 
the main factors effecting structures of the phytoplank-
ton community in Tai Lake (Tables  3 and 4). The pH 
(from 7.29 to 9.07) in 2015 was greater than those (from 
7.30 to 8.10) observed in the 1960s, and numbers of 
cyanobacteria was greater than they were in 1960s [61]. 
When photosynthesis of algae consumed inorganic car-
bon, the carbonate-buffering capacity of the Tai lake was 
decreased, which increased pH [72, 73]. The research-
ers explained that photosynthesis is increasing pH by 
 CO2 consumption; cyanobacteria have the ability to use 
 HCO3

− [74] which could be part of their competitive 
advantage under higher pH conditions.

Temperature is a crucial factor affecting the composi-
tion of the phytoplankton community, and greater num-
bers of cells usually observe in warmer seasons [14]. 
Furthermore, temperature is the most important fac-
tor controlling which phytoplankton taxa is present in 
freshwater lakes [75, 76]. Results of the current study are 
consistent with results of previous studies [77–80], and 
showing that cyanobacteria-dominated phytoplankton 
communities in warmer seasons. Once critical concen-
trations of nutrients were exceeded, temperature was 
the principal factor driving blooms of Microcystis [81, 
82]. Compared with Bacillariophyta, Cyanophyta have a 
competitive advantage under conditions of greater tem-
perature, especially when temperature of water exceeds 
25  °C [13, 83]. In addition, Gala and Giesy [84] demon-
strated that UV light can penetrate into water, especially 

Table 3 Results of forward selection with 999 Monte Carlo 
permutations of  environmental variables for  species 
composition

Correlations with RDA1 and RDA2, R2 and p values are shown. Significance was 
expressed as *p < 0.05, **p < 0.01, and ***p < 0.001

Variables RDA1 RDA2 R2 P value

WT 0.892 0.452 0.240 0.001***

pH 0.769 0.639 0.110 0.013*

SD 0.960 − 0.279 0.086 0.017*

DO − 0.738 − 0.675 0.201 0.001***

Conductivity − 0.999 0.053 0.063 0.080

CODMn − 0.036 − 0.999 0.129 0.002**

BOD5 0.662 − 0.750 0.100 0.016*

TN − 0.967 − 0.256 0.023 0.36

NH4
+–N 0.973 − 0.232 0.025 0.35

TP 0.603 − 0.798 0.080 0.026*

CODCr − 0.943 − 0.334 0.091 0.025*

F− − 0.884 − 0.467 0.417 0.001***

As 0.982 − 0.190 0.128 0.005**

Cu − 0.859 0.511 0.007 0.764

Pb 0.678 0.735 0.063 0.069

MC-LR 0.803 − 0.596 0.108 0.007**

NPR − 0.976 0.219 0.025 0.347
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in shallow lakes, and that phytoplankton exhibited differ-
ential sensitivities. Hence, there can be seasonal changes 
in relative densities due to these differential sensitivities 
and cyanobacteria are the least sensitive class of taxa. 
Even though arsenic (As) can isomorphically substitute 
for phosphorus (P), it was not conducive to growth of 
algae. In the present study, significantly negative correla-
tions between concentrations of As and concentrations of 
Chl a and total numbers of phytoplankton were observed 
(Table  4). Phytoplankton can be involved in geochemi-
cal cycling of As in aquatic ecosystems [85, 86]. In fact, 
there are some phytoplankton, especially cyanobacteria, 
that are resistant to adverse effects of As [87, 88], because 
they contain a class of proteins similar to metallothio-
neins [89] and could accumulate and transform As. Con-
centrations of phosphorus cannot rescue other species 
from the toxic effects of As.

Since growth and reproduction of phytoplankton 
requires absorption of nutrients, such as N and P, con-
centrations of these nutrients have an important impact 
on structures of phytoplankton communities [38, 90, 91]. 
Species richness of phytoplankton changed as a func-
tion of the ratio of N to P (NPR) [92, 93]. In Tai Lake, 
Microcystis spp. was the most competitive among taxa 
of phytoplankton. This observation is supported by the 
significantly negative relationship between concentra-
tions of MC-LR and indicators of diversity (H′, J and Db) 
of the phytoplankton community (Table  4). Results of 
this study also demonstrated that Cyanophyta, such as 
Microcystis spp., had a negative effect on growth and rel-
ative proportions of other phytoplankton. Toxins derived 
from cyanobacteria can reduce the growth of diatoms 
[94]. Specifically, Microcystis spp. and Pseudanabaena 
spp. can produce extracellular products that are toxic to 
both aquatic organisms and humans [95–97]. Our find-
ings indicated that blooms of Microcystis resulted in less 
stability of structure of the phytoplankton community. 
This result was consistent with a previous study, in which 
extracellular products of Cyanophyta promoted cluster-
ing of cyanobacterial cells, which might be due to the 
toxins inducing algal cells to release polysaccharides [98]. 
Furthermore, formation of clusters helped cyanobacteria 
in escaping predation by zooplankton [99]. Collectively, 

results of the present study demonstrated that MC-LR 
was significantly and negatively associated with diver-
sity of aquatic communities, which were consistent with 
results of a previous study (Li et al. [32]).

Conclusions
The present study investigated the structure of the phy-
toplankton community over a period of January to 
December of 2015 in Tai Lake and demonstrated that 
the structure of phytoplankton community was changed 
as the changing concentrations of nutrients and other 
stressors. WT, pH, permanganate index  (CODMn),  BOD5, 
TP, As, TN/TP ratio (NPR) and MC-LR were the main 
factors that influenced the structure of the phytoplank-
ton community in Tai Lake. The results demonstrated 
that Simpson, Shannon–Wiener, Berger and Parker and 
the Pielou evenness indices could be used to assess and 
monitor for status and trends in water quality of Tai Lake. 
This research will be helpful in understanding the chang-
ing environment on biodiversity in aquatic ecosystems.
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Additional file 1: Figure S1. Profiles of diversity represented by one-par-
ametric Renyi diversity index for two hypothetical assemblages, denoted 
by A and B. Vertical dotted lines denote values of the scale parameter 
(measured along the x-axis), which provides classical diversity index sta-
tistics, such as number of species, Shannon, Simpson, and Berger–Parker 
index of diversity. Figure S2. Densities of phytoplankton taxa of seven 
sampling sites in Tai Lake. Figure S3. Diversities of phytoplankton com-
munities at four different seasons in Tai Lake. Table S1. Synthesized index 
of trophic state (STSI), trophic state, and qualitative descriptor of water 
quality. Table S2. Pairwise Spearman’s correlations coefficients (ρ) among 
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