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Abstract

Background: The fish embryo toxicity test (FET) is an established method in toxicology research for quantifying the
risk potential of environmental contaminations and other substances. The typical results of the method are the half

maximal effective concentration (ECsp) or the no observed effect concentration (NOEC). However, from an environmental
perspective, it is most important to safely identify the concentration of the substance effect which lies above the

generating binary (yes/no) outcomes.

that adapts the test to the specific user's need.

a continuous concentration.

effect under control condition (spontaneous effect). The common FET is not optimal to detect ECs for small
target effects. This paper shows how to optimize the efficiency and consequently the benefit of the FET for small
effects using an adequate experimental design. The approach presented here can be carried over to all test systems

Results: The experimental design has three components in this context: determination of spontaneous response,
sample size calculation, and dose allocation. A strategy for all three components is proposed from which a
design is given including precision requirements and makes the most effective use of the experimental effort. This
strategy amounts to expanding the usual FET guidelines of Organisation for Economic Co-operation and Development,
German Institute for Standardization, or American Society for Testing and Materials by adding a planning step

Conclusions: For the practical calculation of an adapted design, a newly developed software is presented as R package
toxtestD. It provides a user-friendly way of developing an optimal experimental design for the FET without
in-depth statistical knowledge. The programme is suited for all experimental problems involving a binary outcome and

Keywords: Toxicity test planning; R statistic package; Zebrafish embryo; Spontaneous lethality; Sample size; Dose design
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Background

Toxicity tests in ecotoxicology serve to detect and quan-
tify toxic properties of chemical substances. Typically, a
toxicity test is a laboratory test, which means that the
experimenter chooses the test procedure, the number of
subjects to test, the doses or concentrations to apply, as
well as the appropriate way to quantify toxicity. Such
quantifications are used to set thresholds for allowable
concentrations in the environment. Choices in experi-
mental design should ensure high quality of the results
in terms of precise and unbiased toxicity quantification
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and of statistical decisions with controlled error rates.
The design should also make optimal use of the experi-
mental effort. A proper experimental design is frequently
demanded, but only a few publications on risk assess-
ment deal with this aspect in detail. In this paper we use
the fish embryo toxicity test (FET) as an example to
demonstrate how to design a toxicity experiment attain-
ing the required precision of results. We also include
considerations on how to quantify toxicity using the
FET results. The procedure proposed involves a four-
parameter logistic dose-response model, which allows
incorporating spontaneous effects as well as non-effects
due to an insusceptible subpopulation. For the numerical
operations of planning and analysis, we provide the R
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package toxtestD, whose reference manual can be down-
loaded from the CRAN homepage [1, 2].

In recent years, FET has predominantly replaced the fish
acute toxicity test [3, 4]. Research projects like DanTox
favour the embryos of the model organism Danio rerio to
identify toxicity processes [5]. The classical version of the
FET is established in research laboratories as well as in ser-
vice laboratories [6—8].

A core component of the FET is exposing fertilized eggs,
preferentially from zebrafish (D. rerio), in an early stage of
cell division to an aquatic compound, which is charged with
harmful substances. Responses to the tested substance can
be death, coagulation, lethal or sublethal malformations, or
teratogenic effects. The presence of effects is examined
after 48 or 96 h post fertilization (hpf) [9, 4]. This test setup
is used because early life stages are more sensitive than the
adult life stage. In addition, early life stage tests operate fas-
ter than tests on full-grown parental fishes [10]. Following
the norm of the German Institute of Standardization
(DIN), ten fertilized, normally developed eggs per concen-
tration and a negative control should be tested [4]. The
Organisation for Economic Co-operation and Development
(OECD) guideline recommends 20 eggs per test concentra-
tion and positive control, respectively, and 24 eggs per
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negative control [9]. Both guidelines accept up to 10 %
spontaneous deaths among negative controls [4, 9].

Effect quantification

Effect quantification means expressing the toxicity of a
substance by a single number. The full information
about the relation between concentration and toxicity
(effect) is described by the concentration-response rela-
tion (see example in Fig. 1a). A major concept of effect
quantification is the no observed effect concentration
(NOEC). It is the result of comparing observed effects
in treated groups to the effects observed in the control
group. The other major effect quantification is the effective
concentration value (EC.). It denotes the concentration
which causes an effect of xx %. Depending on its applica-
tion, EC,, has been varyingly labelled as effective dose
(ED,,), lethal concentration/dose (LC,,/LD,,), benchmark
dose (BMD), or virtual safe dose (VSD, for very small xx)
(OECD 2013 [11]). Both concepts differ clearly with regard
to their properties and interpretation.

NOEC, the controversial legacy
As stated by the guidance for the implementation of
REACH (Registration, Evaluation, Authorisation and
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Fig. 1 Sample size calculation. Logistic distribution of a concentration-response relationship (line) with a confidence interval (dotted lines around).
a Difference between SL and TR xx at the dose-response curve (green arrow) marks the basic distance for calculation of the sample size. The confidence
interval of SL is not shown. b Calculation of the sample size with the two different distributions of SL (light grey line) and a treated group (dark grey line).
Under the restrictions of alpha and beta (red marked areas) will the optimal number of individuals be estimated (green line). /Y immunity, SL spontaneous
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Restriction of Chemicals), the NOEC is ‘the highest
tested concentration for which there is no statistical sig-
nificant difference of effect when compared to the con-
trol group’ [12]. Similar to other statistical tests, the
test sequence leading to the NOEC will detect a
substance-related effect with a given safety only if it
has a certain size. The detectable size and the probabil-
ity of detection depend on sample size, the number of
concentration points, and their allocation. Changing
the sample size may shift the NOEC value over the
whole range of tested concentrations, e.g. if a test se-
quence is repeated with the identical set of concentra-
tions, but with a different number of replicates per
concentration, the highest concentration tested (for
few replicates) or the smallest concentration (for many
replicates) or a concentration somewhere in between
may result as NOEC [13]. The high importance of
sample size becomes evident when looking at a simple
example: if a concentration causes one of 20 organisms
to show an effect, but only 10 organisms are tested, it is
not very likely that the experimenter will see an effect at
all. Generally, an existing effect may be accidentally
missed due to a too small sample size, an unfortunate
choice of concentrations or just by chance [14].

The abbreviation NOEC contains the wording of a ‘no
observed effect’ [15], and the NOEC only indicates a con-
centration which could not be shown to cause a response.
However, in some cases, NOEC seems to be misunderstood
as indicating a concentration that produces generally no ef-
fect, particularly when no effect was observed in the actual
experiment. But a true effect greater than zero may be un-
detected in an experiment simply because of a small sample
size. It would be seen in an experiment with larger sample
size. A power calculation would unveil this situation. In a
NOEC analysis involving only few replicates, the detection
of a small effect cannot be expected due to the small statis-
tical power of a statistical test on binary effects with few
replicates [14]. As a NOEC is typically reported without the
circumstances of its genesis, a user cannot comprehend
whether a high NOEC is either due to weak toxicity or to
an experiment with few replicates [15]. Moreover, NOECs
from two experiments with different concentration patterns
and varying replicate numbers can hardly be compared.
Guidelines try to establish a minimum of experimental
standards; nevertheless, resulting NOECs fluctuate still be-
tween concentrations generating 10 and 30 % effect [16].
NOECs are therefore considered as highly problematic in
the scientific discussion [17, 15, 18].

Parametric modelling

The EC,, calculation relies on a parametric assumption
about the concentration-response relation (concentration-
response curve) underlying the data. EC,, links the pre-
specified effect level to the effective concentration [19].
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Presumably, the most frequently used target effect value is
the mean effective concentration (ECsp), which relates to a
mean response of 50 % [20]. Different from NOEC, a confi-
dence interval (CI) can be calculated for both the whole
curve and for every EC,, value. The width of the CI for
EC,, is affected by the number of replications and the con-
centration allocation pattern. This can be exploited to set
up an optimal experimental design that makes best use of
the experimental effort. The EC,, concept is commonly
preferred over NOEC because of its fewer problematic at-
tributes [12], in particular, for the fact that the expected
value of EC,, does not depend on sample size and that a
confidence interval can be given.

Target shift to small effect sizes for threshold calculations
The effects of much smaller sizes than 50 % need to be
detected to determine concentrations acceptable for
health level and environmental conservation. There-
fore, the target of the experiment is shifted towards
smaller effects. The detection of small effects is necessary
for employment and environmental protection to define
concentration thresholds that should not be exceeded in
order to keep the amount of adverse effects (response) due
to exposure below the tolerable level [21, 22]. All ECs
should be calculated from a concentration-response curve
fitted to observed response data. Approximate calculations
of EC,, for small xx lead to diverging results as a con-
sequence if controversial safety or assessment factors
become necessary to apply [23]. Concluding the EC,,
from ECs, is an unsafe operation, as the difference be-
tween EC,, and ECso depends on the slope of the
concentration-response curve, which is unknown and
cannot be concluded from ECso. The NOEC is by def-
inition neither related to the size of an effect nor to a
concentration-response curve; therefore, no EC,, can
reasonably be concluded from the NOEC. Small re-
sponses just above zero are generally hard to detect by
a statistical test and proving the probability of a detect-
able response at zero requires an infinitely large num-
ber of biological objects in the test. As an example, if
the substance effect increases and consequently the ef-
fect rate rises by 0.000001 (= 0.0001 %), the experimen-
tal group must contain at least 1/0.000001 = 1,000,000
objects to make the expected increase in response (by only
one object) visible. In reality, experiments are designed
with much smaller sample sizes simply for logistic reasons.
This means that only concentrations with an effect clearly
above zero can be detected, whereas the exact meaning of
‘clearly above zero’ needs to be calculated during planning
and design of the experiment. It depends on sample size
as well as on concentration-response relation. The re-
quired effect size, in order to fulfill the aim of the experi-
ment, needs to be assessed for each particular problem. It
defines the tolerable level mentioned above. Typically, a



Keddig et al. Environmental Sciences Europe (2015) 27:15

substance effect in the range of 1 to 10 % is set as tolerable
level. This directs the focus on effect concentrations like
ECOl, ECOS; and Eclo.

Changes in experimental design as a first step

In the discussion about how thresholds should be derived,
the danger of using an insufficient data set has been identi-
fied as a basic point [17]. Actual norms and guidelines are
optimized in regard to economic advisements [24]. Redu-
cing time and equipment-dependent costs (including the
number of organisms) when estimating a concentration-
effect relationship seems to be more honoured than safely
protecting the environment [25]. An example for a ques-
tionable proceeding is designing an experiment with high
concentrations causing high effects and extrapolating the
obtained data to the low effect situation. As fewer bio-
logical objects are needed, this approach has the advantage
of being easier and more cost-efficient than an experiment
with low doses, in which a higher number of objects is
needed to generate effects [26]. The extrapolation strategy
increases the random error of the estimated EC [17]. An
adjustment for low risk effects is not considered in the pro-
cedure of OECD guidelines, which is typically proposed
only for the optimal determination of ECsj.

We recommend determining EC, for small xx by organ-
izing the FET according to the purpose of detecting small ef-
fects and then to estimate EC,, from a fitted concentration-
response curve. When developing an optimal design for
small effect detection, it should be recalled that the FET is
used in laboratory experiments, which gives full control over
the experimental conditions, ie. the number of different
concentrations, the concentrations themselves, and the
number of biological objects per concentration. This free-
dom will be exploited when developing an optimal design.
Only small modifications of the standard FET are necessary
to adjust to the shifted target question. The main steps in
designing a FET experiment are choosing appropriate effect
quantification, followed by setting up an optimal plan for
the sample size, the number of concentrations, and the con-
centration allocations. In this context, optimal means deter-
mining the concentration of interest with a given precision
while using as few organisms as possible.

Results and discussion

Before developing an experimental design for a toxicity
test, a decision must be made on how to quantify the
toxic effect. Both concepts presented, the NOEC and the
EC,,, have their merits and disadvantages.

The interpretation of a NOEC without additional in-
formation is not statistically sound. The NOECs state
that when comparing the response of a control group to
that of a group exposed to the NOEC concentration, no
significant difference in response could be found. This
may have two reasons: either there was really no
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difference in responses, or there was a difference in re-
sponses that could not be detected by the test due to the
(too small) group size. As the number of cases per group
is typically neither reported nor generally standardized,
the effect size that may have been undetected is unknown
and cannot be calculated. Therefore, there is a danger of
underestimating the effect potential when using the
NOEC compared to an effect-based analysis [17]. EC,,
has a clear interpretation as it is always an estimate of the
concentration which causes a response of xx %.

The major criticism regarding the EC,, concept is the
need of specifying a mathematical model for the
concentration-response relation. Such a model is not
needed for the NOEC. However, a library of standard
concentration-response models exists, from which an
appropriate problem-specific model can be selected. For
the example of the FET, a binary four-parameter logistic
model (see Fig. 1a and Appendix) has been found suit-
able [27-29]. The EC,, concept does not rely on using
the logistic model; it can be adapted to every other
strictly monotone concentration-response model. Also,
non-parametric approaches can be used [26].

Different from the NOEC approach, a CI can be calcu-
lated for EC,, as a measure of precision. The width of
the EC,, confidence interval depends, among others, on
the value of xx. In contrast to the NOEC, EC,, itself
does not depend on the design of the experiment, which
makes interlaboratory comparisons of EC,, more con-
sistent than comparing NOEC values [14], even if differ-
ent experimental designs are involved.

When setting up a design for an experiment to determine
acceptable concentrations in health prevention and envir-
onmental conservation, the main insight is that concentra-
tions of small effects such as ECy;, ECys, EC; are relevant.
Designs optimized for detecting ECs, are not suitable, but
it is straightforward to build a design optimized for any spe-
cified effect size xx. There is no way to do so if a NOEC is
used as risk quantification, because the NOEC concept
means to search for an effect of zero, not for an effect of
size xx > 0. Considering the advantages and disadvantages
of both risk quantification concepts, we concluded using
the EC,, concept. NOECs are still used and generated by
other authors [18, 30] despite their adverse properties and
the debate to abandon them, which has been ongoing for
more than 30 years. NOECs are not generated in this pack-
age because of the described reasons above.

The procedure for designing an experiment according
to the strategy outlined in the ‘Methods’ section is im-
plemented in the open-source statistic software R as the
software package toxtestD, which is described below.
Power consideration is part of the package, as requested
since quite some time [31].

The need of a good experimental design is a well-
communicated issue, but only a few publications on the
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FET made reference to this [32], as well as current publica-
tions to concentration-response relationships [33]. The
chosen procedure affects the sample size and the selection
of concentrations in the experiment. Sample size will be a
balance between contrasting interests: a high precision of
the estimated EC, which requires a high number of bio-
logical organisms in the test, and the ethical and the eco-
nomic aspects, which require using few objects. Even
though embryos are not considered to be living organisms
and are therefore not protected by animal welfare regula-
tions [34], they are animals by ethical considerations [35].
Both interests ask for avoiding experiments which are
uninformative because of too few test organisms. Fol-
lowing the suggested design, the experiments should be
organized such that the effect of interest can be de-
tected with reasonable precision without involving
more biological organisms than necessary. We expli-
citly recommend following the suggested steps. Espe-
cially, the first step should be designed as single
experiment for determining the spontaneous lethality
(SL). The SL is an indication for the health of the breed
and describes the response rate under control condi-
tions. It should be determined with precision because it
serves as a baseline for subsequent calculations. As the
health status of breed may depend on lab conditions,
the design of the experiment may be lab-specific. This
give a serious baseline for the further experiments, the
detection of the group size per concentration, and the
allocation of concentrations for the main experiment.
The consideration of SL is precisely important in FET.
With the general approach described in this paper, the
user is free to choose the necessary adjustments de-
pending on the purpose and object.

The methods implemented in the package apply not only
for the analysis of FET data but also to all other dose-
response analysis tasks involving a binary target quantity.
In all these cases, test designs can be developed which in-
clude a properly defined EC,, by specifying the risk type
and a reasonable power by regarding the error types I
and 1II (see ‘Methods” section for more explanations).
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Conclusions

The quality of biological test procedures like the FET relies
on using it in an appropriate experimental design. Test re-
sults are used for risk assessment and risk management. It
is highly desirable that underlying tests are run transpar-
ently, with a sufficient number of objects warranting small
error rates. Ethical considerations require concomitantly
that samples larger than required to attain the accepted
error rates should be avoided. This paper discusses stand-
ard approaches of risk quantification, concluding that the
effect-oriented EC,, concept for effect quantification is
more favourable than the test-oriented NOEC concept. We
therefore propose the effect size-oriented approach ad-
justed to small target effects. We suggest a way to organize
an experiment according to this conclusion. Realizing such
an experimental design is facilitated by the R software pack-
age toxtestD, which has been introduced in this paper. It
organizes the design process in three steps. Being an
open-source product, it is available for everybody and allows
designing proper experiments also for non-statisticians. The
procedure will be specific for the target quantity to be deter-
mined with the user-required precision and safety for the
quantities of interest.

Methods

Basic considerations for an optimal test design

Error types

For calculation of the optimal test conditions, it is neces-
sary to consider different error types as mathematical
principals such as significance, power, and precision. In
general, considering two concentrations (i.e. negative
control and a test concentration >0), the associated ob-
served effects are random values from two different dis-
tributions with concentration-specific mean values
(Fig. 2). If the test concentration has no effect, both dis-
tributions and their means are identical. If the test con-
centration has an effect, the associated mean is higher
than the control group mean. The two distributions will
in general show a certain overlap. If the test concentration
in an experiment generates a result in the overlapping

a (type | error)

N

(). The dotted lines mark the mean values of each distribution

Fig. 2 Error type | and type II: Two distributions with an overlapping area (@), red marked area of type | error (b), green marked area of type Il error

-- treated group
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range, it cannot safely be concluded from this result that
the test concentration has a systematic effect greater than
the control group. The observed value has a considerable
probability also under control conditions (Fig. 2a). This
means that two different errors may occur when assessing
response data from control and test concentrations. A
type I error occurs if an effect is interpreted as a concen-
tration effect although it is an effect of the negative con-
trol (Fig. 2b). The probability a of a type I error, also
known as the level of significance (the p value), reflects
the risk of the producer [36]. To keep the danger of a type
I error small, the empirical significance level is computed
in an actual statistical test procedure, and only if this
probability is small (smaller than or equal to a pre-
specified «), it is concluded that the test concentration
had a systematically higher effect than the control condi-
tion. The default value for a is 0.05 or 5 %. The other error
that might occur in a statistical test is that a systematically
higher response from the test concentration is not recog-
nized as such, so that an existing effect remains un-
detected (Fig. 2c). This is the type II error, the probability
of which should also be restricted to a reasonable value. It
reflects the risk of the consumer. A typical value for the
accepted type II error is =020 or 20 %. The
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complementary probability of the type II error (= 1 - f5),
which is the probability of detecting a systematic differ-
ence between responses, is also known as the power or
quality of the test. Consideration of the type II error seems
to be much less common than considering the type I error
[37], possibly because it demands an extra effort, but it is
a constitutional component of experimental design. The
probabilities of both errors depend (among others) on the
group sizes involved. Increasing group sizes is the only
way to reduce both error probabilities, and consequently,
the crucial step in sample size planning is finding the min-
imal group sizes for which the accepted sizes of both er-
rors are not exceeded (Fig. 1b). The distributions shown
in Figs. 2 and 1b get narrower with increasing group size,
which decreases the zone in which values from both
groups overlap so that observations can more safely be at-
tributed to one of the groups.

The present proposal uses a =5 % and =20 % as de-
faults for accepted errors. Both values are not fixed but
are frequently used in experimental design. They may be
changed, but the user should be careful when relaxing
these defaults, as too liberal requirements make the test
procedure ineffectual. It should be kept in mind that
with a 8 close to 50 %, the user will declare a truly

ER
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Fig. 3 Risk types and their conversions: 7 total risk (TR), 2 added risk (AR), 3 extra risk (ER). IY immunity, SL spontaneous lethality, xx target
value (shown example =10 %); converted values, max AR =[100 — SL]; TR xx =xx =10 %; AR xx =[SL +xx] =SL+ 10 %; ER xx =xx/100 -
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existing effect with a probability of 50 % as not existing.
This situation is equivalent to tossing a coin to obtain
the test result. Obviously, a power analysis compliant to
the individual target is a fundamental component in ex-
perimental design [17].

Risk types

There are various ways of defining the response per-
centage (the xx part in EC,,), differing by the way how
the spontaneous and the immune level are incorpo-
rated. Three different common types of risks are con-
sidered here. They differ in the way of how the
concentration-related increase in the response is
expressed. They will further be named as risk types.
Each risk type (Fig. 3) has its own interpretation of xx
and its specific value for EC,,, and it may also require
its own specific experimental design. The risk types
used here are extended versions of the US Environmen-
tal Protection Agency (EPA) definitions [38], whereas
the extension consists in the additional consideration
of immunity (IY) [28, 29]. Immunity describes the
phenomenon that within a population, a subpopulation
shows by chance no reaction at all. The EPA definitions
result by setting IY =0 %.

1. Total risk (TR): The total risk is the total response
expressed as percentage of affected biological units
among all treated units. Spontaneous lethality and
immunity are ignored. Example: A desired xx =10 %
will force estimation of the concentration that
generates an effect of 10 % (Fig. 3 (1)).

2. Added risk (AR): The reference frame is restricted
below and above by spontaneous lethality and
immunity. Only the response above the SL counts
as an effect. Using AR, the total response associated
with a target effect of size xx and a spontaneous
lethality SL is xx + SL. Example: A desired AR of xx
=10 % and SL=3.5 %, IY =7 %, prompts estimating
the concentration producing an effect of 10 % above
the SL, equivalent to a total response of 13.5 %. The
immunity parameter does generally not affect the
EC,x value but restricts its possible maximum to
[100 % - SL - IY] (Fig. 3 (2)).

3. Extra risk (ER): The reference frame is the interval
from SL to [100 % - IY]. Example: A desired ER with
xx=10 % and SL=35 %, IY=7 %, will force
estimating the concentration which generates a total
response of [SL+0.01-xx-(100 %-SL-1IY)] =
35 %+0.01-10-(100 %-35 % -7 %)=1245 %
(Fig. 3 (3)).

The total response associated with a target effect of xx
and using ER as risk type is smaller than or equal to the
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total response associated with the same xx, but with risk
type AR.

Proposed software solution (toxtestD) for an optimal test
design

To consider all our proposals, we implemented a pack-
age with a set of functions in R code [39], which do ex-
perimental design as outlined above in a user-friendly
way. The R software is an open-source software. The
package requires only a few inputs by the user. Sophisti-
cated statistical understanding or modelling experiences
are not necessary (though useful). Even though the
concept is drafted for the fish embryo toxicity assay,
it is possible to transfer the procedure in principle to
all other toxicological questions, in which a continu-
ous concentration equivalent generates a yes/no (bin-
ary) response per single study object. The package
toxtestD should already be consulted during the plan-
ning phase of a test series. It contains the functions
spoD, setD, and doseD which cover identification of
the spontaneous lethality, the estimation of the neces-
sary number of test organisms, and a concentration
design according to the user’s requirements. Examples
for the application of all these functions are available
after installation of the package by the command help
(toxtestD) [40].

Determination of the spontaneous lethality by spoD

The first task when designing the experiment is calculat-
ing the sample size for determining the SL. The neces-
sary sample size depends on the required precision of
the estimated SL. It should be recalled that because SL
will be calculated from data containing random vari-
ation, the resulting SL will also be a quantity with ran-
dom error.

The function spoD offers two services. In the planning
process, the total number of individuals or eggs to test is
calculated, together with a proposal for partitioning the
total data set into subgroups in order to identify the
amount of biological variation in the separated tests.
The calculations will be done for the denoted rate and
additionally for the worst case in the interval given for
the predicted SL. The optimal number of biological
units is calculated by using an exact binomial test with
a and f5 as specified. The previous mentioned random
error can be quantified by a CI (see Appendix for cal-
culation details), which contains the true value of SL
(the response that would hold if no random fluctu-
ation were present) with large probability, typically
95 %. We propose that as a default requirement, the
limits of the CI for the SL should differ from the esti-
mated SL by no more than + 2.5 % (further on denoted
by maxClI).
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In the analysis process (initiated by setting analysis =
TRUE), the spontaneous lethality together with its 95 %
confidence interval and the biological variation are
computed from the user’s data. Biological variation
becomes visible when comparing spontaneous rates
from several experiments under control conditions. A
X~ test is applied to check whether these rates vary ac-
cording to binomial variation under the hypothesis of
the same true spontaneous rate for all experiments. A
significant result signals the presence of biological
variation between experiments. If present, its standard
deviation is reported. It is recommended to determine
the spontaneous lethality very early under separate
test conditions.

Specifications by the user

Subprocess planning

n: The maximal number (integer) of test organisms, with
which the laboratory is willing to cope. Limiting the
number is necessary to avoid non-essential calculations
and thereby save computing time. The programme will
invite the user to increase the number if the number is
not high enough to estimate the SL with the given preci-
sion requirement.

SL.p: (optional SLmin, SLmax): To gain an optimal number
of test objects for the determination of the true
spontaneous lethality, the user needs at least a rough
idea about the SL prior to test planning. This estimate is
inserted in SL. It is possible to specify the SL either as
single number or as an interval between 0 and 100 %.
The maximum tolerated spontaneous lethality by OECD
is 10 %. Datasets with higher SL should be discarded [9].

bio.sd.p (optional): The standard deviation of SL consists
of normal random variation and a biological variation
due to biological effects like season, daytime, or
wellbeing. The default value of 2.008 % for bio.sd.p
was determined from empirical data sets collected
over 10 years by the Thiinen Institute, Hamburg,
Germany (U. Kammann and S. Schubert, personal
communication) [41]. The value refers exclusively to
dead eggs and lethal malformations (pursuant to the
definition in DIN ENISO 15088) after 96 hpf in water
in per cent [4, 9]. If not specified otherwise, this
default will be used for determining the optimal
number of partitions.

maxClI (optional): It is the maximally accepted absolute
difference in per cent between mean SL and its
confidence limits; default, 2.5 %.

print.result: If omitted, the result is written to a text file
called ‘01_spontaneous lethality.txt’” in the calling
directory. If a file name is given in double quotes, the
result is written to that file. Nothing is written if
FALSE is chosen.
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Subprocess analysis

analysis: The default value is FALSE, indicating that the
function does planning. To analyse the own dataset,
choose analysis = TRUE.

SLdataset: This is the R data frame containing the experi-
mental data. It needs two columns titled ‘n’ and
‘bearer’. In column n, the total number of observations
of each single experimental run is listed. The column
bearer comprises the number of organisms which are
carriers (in the case of FET the counts of dead or lethal
malformed eggs) within each single experimental run.
Each row contains the outcome from one single
experimental run.

Determination of the optimal number for each
experimental run by setD

The second task should be the calculation of the optimal
number per experimental run. The proposed calcula-
tions in setD involve a robustness consideration as it is
done in the third task. We propose for every concentra-
tion in the FET a sample size such that a test for a con-
centration effect of size xx at the sought concentration
EC,« would detect this effect with a high (pre-specified)
probability. Requiring a specified quality of the test leads
to the necessary sample size per concentration. Two
distributions will be estimated, one assuming SL as
true response level, the other using SL + xx defined
above (Fig. 1). The estimation of these two distribu-
tions bases on binomial probability. The default of the
distance is xx % in respect to a posterior target of EC,,.
Additionally the distance depends on the reference frame.
In consequence, it is necessary to choose the convenient
risk type (see section ‘Risk types’). The procedure in-
creases the number of cases per concentration until the
overlapping area of the two distributions corresponds to
the specified levels of error types I and II (Fig. 1b).

Specifications by the user

nmax: Number (integer) of the maximum available
number of organisms that can be tested in each
treatment within an experimental run. The estimation
of the optimal number will only start when this
number is high enough to generate the response of at
least one organism (nmax-p > 1). If the chosen nmax
is too small, a warning message is issued

SL.p: SL is calculated in per cent from own experimental
data by the process spoD

immunity.p: A population of biological objects might contain
a subpopulation which shows no reaction at all
Consequently, a reaction of 100 % will never be reached
[42]. We call this effect immunity in our procedure. To
account for this kind of non-response, the size of the
immune subpopulation can be specified as percentage of
the total population. The concentration-response curve
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then has [100 % —IY] as maximum. Please choose risk.
type = 3 to include immunity in all calculations

risk.type: Please choose one of three risk types. Each
type defines a specific reference frame for the
concentration-response curve (for detailed information
see the ‘Risk types’ section)

target.EC.p: The target response in per cent (e.g. 10 %, to
calculate EC,(). Note that the interpretation of
target.EC depends on the risk.type setting

plot: There are three possibilities:
plot = FALSE: no plots
plot =‘single: creates only one plot showing the
two distr-ibutions under SL and under treated
conditions with the optimal number of cases.
Additionally, the real rates of error type one and two
are given (see Fig. 1b). The special setting for risk.type
is not included into this plot
plot="all: In addition to the single plot, this option
provides an estimation for all possibilities of target
values. This gives an impression which possibilities of
detection exist under the chosen conditions. This
option may need a lot of computer capacity and time. It
should not be activated in general.

alpha.p & beta.p: See explanations in ‘Error types’ section

print.result: If omitted, the result is written to a text file
called ‘02_sample size.txt’ in the calling directory. If
a file name is given in double quotes, the result is written
to that file. Nothing is written if FALSE is chosen

Allocating concentration points by doseD

The third task, defining the concentration allocation for the
main experiment, is guided by an idea of robustness similar
to the second task. From a formal point of view, only as
many concentration points as unknown parameters in the
dose-response model are needed. It would however be
unwise to involve only this minimum because it would not
allow model checks. Concentration allocation needs at least
a vague idea about position and scale of the concentration-
response curve. Concentration-finding experiments, pilot
studies, literature data, and similar sources are used to
obtain these planning assumptions. Given an initial as-
sumption, we propose the following concentration alloca-
tion strategy: calculate EC;p, EC5g, ECoo from the planning
assumptions, assuming a logistic concentration-response
relation and involving SL and IY, if the selected risk type re-
quires so. The control concentration of zero and these
three concentrations plus target concentrations, given by
the EC,, values of the experimenter’s interest, constitute
the concentration allocation pattern for the main experi-
ment. Two-sided Cls with 95 and 99 % coverage probability
will be calculated for the concentration-response curve. If
more than four concentration points are chosen and there
is an even number of free points, these will be allocated
symmetrically around the chosen EC,, value. If two free
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points are available, these are located at the limits of the
95 % CI If an even number of 4 or more free points is
available, these are allocated equidistantly in the 99 % CI.
For an odd number of free points, 1 point is located at EC,
and the others are allocated according to the rule for an
even number. Note that the 1 of EC;4, ECsy, ECqy can be
used twice as an experimental concentration, if the user’s
target coincides with one of these. The strategy prefers
low concentrations if several targets are specified by
the user. This pattern is a robust strategy which fo-
cuses on the main interest of finding EC,, but does
not rely too strongly on the planning assumptions. If
previous experience suggests that the planning as-
sumptions are realistic, concentrations could be allo-
cated more closely around the presumed EC,,.

Specifications by the user

DP: The results from pre-tests must be given as a data
frame with the columns ‘name; ‘organisms;, ‘death; ‘con-
centration’ and ‘unit, which will be needed for the cal-
culations of the dose scheme

immunity.p: immunity in per cent (see also settings of
spoD)

SL.p: SL is calculated in percent from the user’s experimental
data by the function spoD

target.EC.p: effect in %, which is of special interest. It is
possible to denote more than one target in the same
calculation. For example: if EC; and EC,y are of
special interest, then target. EC=c¢ (5,10) may be
chosen, and the dose points will be allocated around
both targets

nconc: number of different concentrations the user is
willing to test in each cycle

text: text = TRUE adds extended information in the plot

risk.type: Please choose one of three possible risk types.
Each type defines another reference frame for
concentration-response curve and target estimation
(for detailed information see the ‘Risk types’ section).
A plot for each risk type will be created separately

print.result: If omitted, the result is written to a text file
called ‘03.dosestrategy.txt’ in the calling directory. If
a file name is given in double quotes, the result is
written to that file. Nothing is written if FALSE is
chosen.

Appendix

This appendix summarizes the main formulae that are
proposed as part of the design procedure and are also
incorporated in the R package.

The basic data in a concentration-response experi-
ment is the number n of examined objects and the
number r of responding objects. The empirical re-
sponse rate is the ratio p=r / n. It is frequently
expressed as a percentage by multiplying p by 100.



Keddig et al. Environmental Sciences Europe (2015) 27:15

This appendix, however, uses only rates, not percent-
ages, for easier notation.

A CI is a way to express how precisely the response
rate pyyue of the whole population is estimated by an
empirical rate. A confidence interval CI = (piows Phign)
for an empirical rate is obtained from observed n and
r by [43]:

V'Fz(n-r+1),2r,1-a/2
r+ (n=r 4+ 1)-Fa(u_ri1) 2r1-a/2
(r +1)-Fa(r41) 2(n-r).1-a/2
n=r+ (r + 1)-Fa(r1) 2(n-r) 1-a/2

Prow =

Prigh =

The F terms in both equations are the quantiles of
the F distribution with degrees of freedom and associ-
ated probability as given in the subscripts. The value of
a controls the coverage probability. The calculated
interval contains the value pg ., which holds for the
whole population under study, with probability 1 - a.
This statement must be understood in a strategic sense:
If the actual experiment is replicated many times and
the CI is calculated for each replicate, then the popula-
tion rate pu. will be contained in (1 — a)-100 % of the
calculated Cls.

The equation for the CI makes use of the fact that the
number r of responses has a binomial distribution,
which means that the probability of observing r re-
sponses among n examined subjects is as follows:

n\ . -
Pr(rvnvptrue> = (7’) 'ptrue'(l_ptrue)n "

Different concentrations x; of a substance generate
their specific pyue(x;) values. A concentration-response
(or dose-response) curve relates the probability p.,. to
the dose x involved. This relation will always be a non-
linear one, because the concentration or dose may be
any value >0 and the associated pu. must lie in the
interval [0,1]. The present proposal uses the four-
parameter logistic curve as concentration-response
curve:

1-SL-TIY

Purue®) = SL+ 0

The terms a and b in this equation control location
and scale (slope) of the concentration-response relation.
The values for these terms are estimated from I experi-
ments with doses x; and numbers (7;, r;) of examined
and responding objects by a maximum likelihood ap-
proach by maximizing
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I
logé(a,bln,r,x) = Zn,w logp,e(@, b|x)
+ (I’l,‘—r,‘) ’ log(l_ptrue(a7 b|x))

The optimization is done iteratively by a Newton-—
Raphson approach. EC,, is obtained while using the esti-
mates for (a, b) by

1 In 71_SL_IY 1)+4+a

b xx—SL '

All calculations listed here are contained in the R
package described.

ECwk =
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