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Abstract

About 20 years after the market introduction of the first GM plants, we review whether or not uncontrolled spread
occurred. We summarise cases documented in the scientific literature and derive conclusions for the regulation of
the authorisation of new events. Several cases documented in North and Central America and Japan show that
transgenes have spread beyond cultivation areas. Important examples are bentgrass (Agrostis stolonifera), oilseed
rape (Brassica napus) and cotton (Gossypium hirsutum). Several factors can be identified as relevant for transgene
dispersal in the environment. Grasses (Poaceae), in particular, show a high potential for persistence and
invasiveness, and wild relatives that can cross with the crop plants are a major factor in the unintended spread of
the transgenes. There are significant uncertainties in predicting which transgenes will escape and how they will
interact with the environment. For example, climate change is likely to have a major impact on the invasive
potential of some plant species. The uncontrolled spread of transgenes is therefore a remaining challenge for
regulators. We discuss some of these issues in the context of EU regulations since these regulations explicitly refer
to the precautionary principle in the assessment of uncertainties. We found the that the precautionary principle as
established in EU Directive 2001/18 can only be applied where efficient measures are available to remove
genetically engineered organisms from the environment should this become necessary. If a removal from the
environment would not be practically feasible, undesirable developments could not be mitigated.
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Introduction
There have been many known cases of transgenes
moving into the environment since the large-scale com-
mercialisation of genetically engineered plants started
around 20 years ago. Ellstrand [1] or Marvier and van
Acker [2] provide an overview of the history of many
such cases. Due to the circumstance that the vast major-
ity of cultivated plants are not genetically isolated from
the populations of wild relatives, there was a high likeli-
hood that transgenes could not be ‘kept on leash’ [2].
Our review investigates whether there is evidence that
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transgenes have actually moved into natural populations.
We survey results of according field research and discuss
factors favouring gene flow. According to these factors,
we identified additional cases where transgene escape is
likely to occur in the future. Further, we explore the
need for regulatory initiatives, especially in regard to
the precautionary principle. Though we briefly address
issues such as transgenic contamination of seeds and the
food chain, we focus on the presence of genetically
engineered cultivars and their offspring that can carry
transgenes outside areas of intended presence, either as
feral plants or as introgression into wild populations.
We do not examine socio-economic effects, such as
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those relevant to crop purity, organic agriculture and trait
segregation in food production. These issues would require
a separate investigation as a follow-up to this review.

Evidence that transgenes have escaped from
agricultural fields
We examined publications referring to various regions
where genetically engineered plants are grown, both
within and outside of the EU and in particular consider-
ing regions where wild relatives are native and thus gen-
etically engineered plants might introgress into natural
populations.
We concluded that there is sufficient scientific evi-

dence to show that genetically engineered creeping bent-
grass (Agrostis stolonifera) has escaped spatio-temporal
control in the US. Gene flow to the related species
Polypogon monspeliensis has occurred. Further, we
concluded that there is a high likelihood of gene flow
into natural populations from transgenic cotton (Gossy-
pium hirsutum) in Mexico and transgenic oilseed rape
(Brassica napus), at least in Canada and Japan.
We did not include cases such as the contamination

of cultivated regional maize varieties and landraces in
Mexico (see for example [3,4]). These cases are causing
a high level of concern because Mexico is the centre of
origin and diversity for this crop. However, since maize
populations mainly occur in cultivation and outcrossing
from transgenic maize to wild relatives (such as teosinte)
under field conditions is not published in the literature,
these cases do not fall under the selection criterion
applied for the three case studies in this review, which
focuses on persistence in wild populations.

Case study: creeping bentgrass in the US
In 2002, the Scotts Company (Marysville, OH, USA)
started field trials with genetically engineered creeping
bentgrass (A. stolonifera) in central Oregon (USA) near
the city of Madras. The 2002 field trial comprised an
area of 160 ha. In 2004, it was found that transgenes
from bentgrass which had been made tolerant to herbi-
cides containing glyphosate as the active ingredient had
introgressed into wild growing bentgrass populations via
pollen flow [5]. Outcrossing in wild bentgrass popula-
tions and the sexually compatible species Agrostis gigan-
tea took place at distances of up to 14 km; cross-
pollination by using trap plants was even found at a
distance of 21 km [5]. In 2003, a storm caused wide-
scale dispersal of transgenic bentgrass pollen. Attempts
to remove all genetically engineered plants failed. During
the years that followed, transgenic bentgrass was found
all over the investigated area [6]. Tests conducted along
irrigation canals showed that more than half of the in-
vestigated plants contained the glyphosate tolerance
gene cp4epsps [7]. Currently, transgenic bentgrass can
be found along irrigation canals, in roadside ditches,
grassland and in fields. Genetically engineered bentgrass
also escaped from a second field trial in Idaho [8].
Several years after the end of the field trial, transgenic
plants were found in Canyon County (Idaho) as well as
Malheur County in nearby Oregon. Apparently, trans-
ports were the reason for the dispersal [8]. According to
a recent publication, even interspecific hybridisation
with related species takes place. Hybrids were identified
as rabbitfoot grass (P. monspeliensis) that had intro-
gressed into feral transgenic bentgrass [9]. Bentgrass is a
perennial plant with many compatible related species
[10]. Bentgrass as well as several relatives has invasive
traits and are considered to be weeds [5,11]. Field trials
in the 1990s have shown that herbicide tolerance genes
can introgress into related species like Agrostis canina,
Agrostis capillaris or Agrostis castellana [12]. A. stoloni-
fera is wind-pollinated and produces large amounts of
low-weight pollen. Up to 100,000 pollens per square
meter were detected at a 2- to 3-km distance from bent-
grass fields [13]. Propagation may also take place by sto-
lons [14]. An additional problem in the US bentgrass
case is the fact that Oregon is the main production area
for bentgrass seeds [14]. Bentgrass seed from Oregon is
also exported to the EU and to other regions [15].

Case study: transgenic cotton in Mexico
Mexico and India are the centres of origin for cotton
species, which are the basis for nearly all commercial
cotton varieties cultivated today. In Mexico, wild cotton
(G. hirsutum) populations are found mainly in the
coastal regions of the southern states. Based on genetic
differences, eight metapopulations can be distinguished.
In a pilot study published in 2011 [16], Wegier et al.
were able to show that transgene constructs from genet-
ically engineered cotton have spread into these popula-
tions. Genetically engineered cotton has been planted in
Mexico since 1996. According to industry sources,
161,500 ha of herbicide-tolerant and Bt cotton varieties
were grown in 2011 [17]. The vast majority of commer-
cially grown transgenic cotton is cultivated in Northern
and Central Mexico, several hundred kilometres away
from the regions where wild cotton is found. Neverthe-
less, every fourth sample proved positive for one or
more transgenic constructs, and half of the populations
were affected by transgenic introgression. In many - but
not all - cases, the affected spots were located in relative
geographical proximity of regions where some genetic-
ally engineered cotton is grown. There were also positive
samples in locations more than 750 km away from
transgenic cotton fields. In several samples, stacked
constructs with up to four transgenes were found which
are not present in any commercialised genetically engi-
neered cotton event worldwide. Therefore, it can be
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assumed that several individual transgenes have hybri-
dised with each other over time and have spread further
within the wild cotton populations. The question of how
these transgenes disperse in the wild populations is in-
teresting: Cotton is considered to be mainly autogamous,
and outcrossing via pollen is relatively rare [18,19].
Nevertheless, there are experimental results showing
that pollination by honey bees and bumble bees can in-
crease cotton yields [20] and pollinators contribute
to extent and distance of outcrossing [18,19,21].
Outcrossing has been measured at distances of up to
1,625 m [21]. Thus, the findings of Wegier et al. [16]
showing that outcrossing has taken place are not entirely
surprising. A potential cause for the spread of transgenic
cotton could probably be the transport of cotton seed
from the USA, which is used as livestock feed. US cotton
seed is not milled before export to Mexico and thus re-
mains fertile. Nevertheless, it is not yet fully understood
how transgenes introgressed.

Case study: oilseed rape in Canada and Japan
Canada was the first country to approve the commercial
cultivation of genetically engineered herbicide-tolerant
oilseed rape. Currently, herbicide-tolerant oilseed rape is
grown on eight million hectares in Canada [22].
Main cultivation areas are the provinces of Manitoba,

Alberta and Saskatchewan. The spread of genetically
engineered oilseed rape became public when a study
claimed that nearly all of the conventional Canadian
seed supply of oilseed rape contained transgenes [23].
Several studies published later on found that throughout
the main cultivation areas, feral populations had devel-
oped along the edges of fields and roadsides [24-26].
Japan receives a significant part of Canada's oilseed
rape exports [27-29]. So, seeds have to be transported
over long distances to Canadian overseas ports (e.g.
Vancouver). Unsurprisingly, wild-growing populations of
herbicide-tolerant oilseed rape were found around Van-
couver [24]. Eighty-eight percent of feral oilseed rape
populations examined in the province of Manitoba con-
tained glyphosate-tolerant traits [25]. Eighty-one percent
of the plants were tolerant to glufosinate. About 50% of
the plants were tolerant to both herbicides. According to
the authors, the populations are self-sustaining. In a
follow-up to this study [26], it was found that 93 out of
100 tested feral oilseed rape plants growing along field
edges or on roadsides in Manitoba were positively tested
for transgenic constructs. Feral genetically engineered
oilseed rape is also present in Québec [30]. According
to this publication, all feral populations that were
tested contained hybrids with Brassica rapa. Persistence
of such hybrid populations over time was confirmed
[31]. A long-term survey showed that feral hybrid popu-
lations of B. napus × B. rapa had decreased fitness, but
nonetheless persisted over six consecutive years. Spread
of transgenes by way of B. rapa is probable in eastern
Canada because of the extensive cultivation of commer-
cial varieties of this Brassica species [32].
In Japan, the cultivation of oilseed rape is of only

minor importance [29]. However, there is large-scale cul-
tivation of related Brassica species such as B. rapa and
Brassica juncea [29] which easily hybridise with oilseed
rape [33]. The cultivated forms of the two species are
used as root or leafy vegetables. Both species are present
as wild species or feral forms of cultivated varieties. For
example, monitoring of the port areas showed that feral
oilseed rape coexists with wild populations of B. juncea
[28]. About 90% of the two million tons that are
imported to Japan each year are from Canada [27,28].
The first studies on the presence of transgenic oilseed
rape in Japan were published in 2005 [34]. Plants that
proved resistant to glyphosate or glufosinate were found
in the proximity of ports like Kashima, Chiba, Nagoya
and Kobe as well as along transportation routes to in-
dustrial sites where oilseed rape is processed. Transgenic
oilseed rape plants that had hybridised with each other
and were tolerant to both herbicides were detected [35].
Follow-up studies found feral populations along other
transportation routes [29] and in areas close to all other
major ports [28,36]. Obviously, the percentage of trans-
genic oilseed rape in feral populations is constantly
growing. In 2008, 90% of all tested plants in the proxim-
ity of the port of Yokkaichi were found to be genetically
engineered. The first hybrid between B. napus and B.
rapa was found in Yokkaichi [35]. In addition, it was
found that the properties of feral transgenic oilseed rape
plants have changed under the influence of climatic
conditions. From an ecological perspective, it should be
of some concern that plants with greater height were
found. These plants have also become perennial [28].
This is a major change in the biology of the plants, as

oilseed rape and all other Brassica species cultivated in
Japan are annual. Perennial forms of oilseed rape might
have a significant impact on population dynamics. Per-
ennial plants could potentially have a higher probability
of spreading their genetic condition because they persist
for a longer period. This could be seen as a factor sup-
porting a higher fitness.
The centre of origin of the Brassica genus is assumed

to be in the Mediterranean region. Based on a complete
combination of two genomes (B. rapa × Brassica olera-
cea), B. napus occurs mainly as a cultivated plant, but
still maintains significant characteristics of a wild plant.
Disturbed soil promotes the establishment of B. napus
beyond the fields, whereas dense vegetation will hinder
establishment [37]. However, wild-growing B. napus is
found primarily in habitats where wild relatives of the
Brassica genus and related genera grow [37]. Also, many
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related species which can hybridise with oilseed rape
occur in environments such as road verges, industrial
sites or feral sites [37]. Gene flow to wild relatives is
possible and likely to happen, even if B. napus itself only
has a reduced potential to spread in a densely vegetated
environment.

Survey of other related cases of gene flow
From existing data, it can be concluded that maize (Zea
mays) in Mexico [3,4,38-41] and oilseed rape (B. napus)
in the USA [42], Australia [43,44] and Europe [45-47]
are likely to have escaped regulatory control, but it is
unclear to which extent gene flow to wild relatives has
already occurred. Finally, in the cases of rice (Oryza
sativa) in China [48,49], black poplar (Populus nigra) in
China [50-52] and papaya (Carica papaya) in Thailand
[53], it can be expected that transgenes will introgress
natural populations, though evidence is not yet available.
Relevant publications are summarised in Table 1. Other
cases such as Vitamin A rice (Golden Rice) in the
Table 1 Overview of case studies of uncontrolled spread of g

Plant species Country Commercial
cultivation

Cases in
field
sites

Cases
beyond
field sites

State
resea

Creeping
bentgrass (Agrostis
stolonifera)

USA No n.i. Yes Confir
severa
public

Black poplar
(Populus nigra)

China Yes Yes n.i. Concl
studie
missin

Cotton (Gossypium
hirsutum)

Mexico Yes n.i. Yes Pilot s

Maize/corn (Zea
mays)

Mexico No Yes n.i. Confir
severa
public

Oilseed rape
(Brassica napus)

Australia Yes Yes Yes Concl
studie
missin

Oilseed rape
(Brassica napus)

Canada Yes Yes Yes Confir
severa
public

Oilseed rape
(Brassica napus)

Europe No n.i. Yes Relev
are m
missin

Oilseed rape
(Brassica napus)

Japan No No Yes Confir
severa
public

Oilseed rape
(Brassica napus)

USA Yes Yes Yes Pilot s

Papaya (Carica
papaya)

Thailand No Yes n.i. Concl
studie
missin

Rice (Oryza sativa) China No Yes n.i. Concl
studie
missin
Philippines which are likely to cause gene flow into the
environment were not included, since quantitative gene
flow investigations and publications are not available.

Conditions favouring the escape of transgenes
In many cases, a higher degree of domestication will lead
to a lower potential to survive under natural conditions
[54]. However, some domesticated grasses (Poaceae) still
have a high potential for persistence and invasiveness.
The history of rice provides some useful examples in this
context: Rice was domesticated twice after a period of
de-domestication [55]. Creeping bentgrass in the USA is
a further example [5-9]. This issue is highly relevant in
the context of agrofuels, where grass species with a high
degree of invasiveness such as Miscanthus (Miscanthus
x giganteus) and switchgrass (Panicum virgatum L.) are
cultivated. In the case of sorghum (Sorghum sp.) which
has wild weedy relatives within the group of Poaceae,
this is an issue that needs to be considered [56,57]. Fi-
nally, genetically engineered rice such as the so-called
enetically engineered plants (n.i. = not investigated)

of
rch

Likelihood of persistence and
invasiveness in the regions concerned

References

med by
l
ations

Very likely to persist and invade because
bentgrass shows invasive potential

[5-9]

usive
s still
g

Only very few investigations about potential
gene flow into wild poplar

[50,51],
overview in
[52]

tudy Very likely to persist because of gene flow
into wild relatives

[16]

med by
l
ations

Persistence very likely because of informal
seed exchange and the gene flow
between fields

[3,4,38-41]

usive
s still
g

No conclusive publications [43,44]

med by
l
ations

Persistence and further spread very likely
because of confirmed gene flow to related
species

[23-26,30-32]

ant studies
ostly
g

No information about crosses into wild
relatives yet

[45-47]

med in
l
ations

Gene flow into related species likely to have
occurred

[27-29,34-36]

tudy No information about crosses into wild
relatives. Unnoticed gene flow with wild
species is likely.

[42]

usive
s still
g

Gene flow into de-domesticated papaya
could cause persistence

[53]

usive
s still
g

Persistence is likely due to informal seed
exchange and gene flow with weedy rice

[48,49]
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Golden Rice [58] grown in regions where weedy rice
populations exist is likely to show a substantial poten-
tial for gene flow and persistence as well as invasion of
other rice fields. One important reason for this is
permanent gene flow between the cultivated and the
weedy rice [59,60].
There are also examples which show that hybrids be-

tween wild and domesticated plants surprisingly show a
higher degree of fitness than wild relatives and can
even display invasive qualities: The wild coconut has
been completely replaced by cultivated varieties [61].
Another important example in the USA is a spontaneous
hybrid between wild radish (Raphanus raphanistrum)
and cultivated (Rapahanus sativus) radish, which devel-
oped invasive hybrids. The so-called California wild
radish shows a higher degree of fitness than the two
parental species [62].
The probability of transgenes spreading uncontrolled

into the environment can be increased if gene flow oc-
curs into related, non-domesticated species which are
known to be self-sustaining [63-66]. Wild species, from
which our agricultural plants originate, and wild relatives
do exist - at least at regional level - for all relevant crop
plants. In this context, the centres of origin with a high
degree of genetic diversity are of specific concern [67].
These are the regions where the agricultural varieties
were originally domesticated. Gene flow, persistence and
proliferation of transgenes in these regions are fostered
by several factors. The plants are adapted to the environ-
mental conditions in these regions and can cross with
wild relatives. In many of these regions, there are estab-
lished informal systems for seed exchange among small
farmers that can lead to unnoticed transferrals of con-
taminated seeds. There are several examples showing
that genetically engineered plants have already arrived
in the centres of origin (for available literature, see
Table 1; no publications available on field trials with
‘Golden Rice’):

� Bt maize (corn) in Mexico
� Bt and herbicide-tolerant cotton in Mexico
� Bt rice in China
� ‘Golden Rice’ in the Philippines
� Bt poplar in China.

Environmental risks
There is a considerable and partly irreducible uncer-
tainty about potential environmental concern and poten-
tial damage which could be caused by an uncontrolled
spread of transgenes. Some risks are obvious:

� The control of weedy species can become more
complicated with the proliferation of genetically
engineered plants with herbicide tolerance. This
could increase the pesticide use in the environment
and the shift to more toxic substances. It can lead to
higher workload for farmers and to an increase in
operational costs.

� Genetically engineered organisms, which are no
longer allowed on the market for economic or
ecological reasons, cannot be removed efficiently if
they proliferate in the environment. They can also
contaminate harvests and cause substantial
economic damage.

� The biodiversity in the centres of diversity is an
important genetic resource for plant breeding.
Future plant breeding might be hampered
substantially if transgenes spread into these
resources.

According to Snow et al. (2005), the following environ-
mental risks have to be taken into account [68]: (1) creating
new or more vigorous pests and pathogens; (2) exacerbating
the effects of existing pests through hybridization with re-
lated transgenic organisms; (3) harm to non-target species,
such as soil organisms, non-pest insects, birds, and other
animals; (4) disruption of biotic communities, including
agroecosystems; and (5) irreversible loss or changes in species
diversity or genetic diversity within species.
In general, the overall long-term impact on ecosystems

is hard to predict. In this regard, transgenic plants can
be compared to alien species. Even if the biological char-
acteristics of a species are known, its potential to persist
or invade under new environmental conditions very
often cannot be predicted [69]. Some of the alien species
only persist in distinct local regions and do not spread
substantially over a longer period of time (i.e. lag phase),
but even after many years, they may still become inva-
sive. It is also difficult to predict the ecological impacts
of invasiveness [69]. The fact that climate change and
disturbed ecological systems can foster invasiveness [70]
could cause even further uncertainty.
The comparison between the spread of genetically

engineered organisms and the invasive potential of alien
species also shows major differences. In the case of gen-
etic engineering, one must consider both the adaption
and spread of a new species within an ecosystem and
the spread of technically inserted genetic information
within the pool of genes of a species that has already
adapted to its environment. The dynamics of prolifera-
tion within established species can be different from the
pattern of the ecological potential of alien species within
a new environment.
In the context of genetic engineering, specific atten-

tion should be given to the genetic stability and func-
tionality of the inserted DNA. Unlike alien species,
genetically engineered crops contain technical DNA
constructs, very often composed from elements such as
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promotors and stop codons, that are not subject to the
natural self-regulation of gene expression in the plant
cells. Under the influence of climate change or in their
interaction with other stress factors, this can have unex-
pected effects in the crops [71-73] that may also imply
new risks for the environment.
Consequently, it is very difficult to predict the long-

term ecological impact of transgenes that escape
spatio-temporal control, and it may be exacerbated by
genetic re-arrangements and newly occurring muta-
tions in combination with environmental (biotic as
well as abiotic) changes. Therefore, risk assessment
must take evolutionary dimensions into account.
Evolutionary processes make it possible to turn events
with a low probability of ever happening into events
that may feasibly happen [74].
For example, outcrossing into wild species could be

enhanced by climate or other environmental change.
There are cases published showing that especially hy-
brids of cultivated species with wild species develop a
higher fitness under stress [75]. A higher amount of
gene flow for oilseed rape under extreme climatic condi-
tions was reported [76]. The study shows that there was
a change in the time for flowering, resulting in matching
of flowering between species.

Precaution, spatio-temporal control and EU
regulatory aspects
Where there are uncertainties, the precautionary
principle provides a rational management strategy for
the admission of transgenes. In the EU, the precaution-
ary principle is part of the regulatory system. It has to be
taken into account before decisions on experimental
release or commercial cultivation are made (EU Directive
2001/18) [77]. The European Food Safety Authority (EFSA)
is in charge of implementing this requirement. That is why
we have chosen the EU regulation and its implementation
by EFSA as the background for the discussion on whether
the release of genetically engineered plants into the envir-
onment can be allowed if they cannot be controlled in
spatio-temporal dimension.
In this context, it is important to understand that en-

vironmental risk assessment in the EU is an iterative
process. If new information on the genetically engi-
neered plants and their effects on human health or the
environment becomes available, the risk assessment may
need to be readdressed in order to determine whether
the risk characterisation has changed and whether it is
necessary to amend the risk management. The EU
Directive 2001/18 foresees the monitoring of environ-
mental impact (Article 20), and the admission of a
specific GMO has to be renewed after 10 years. Its out-
come should indicate whether the genetically engi-
neered organism can remain on the market or whether
the authorisation should expire (Article 17). Articles 8
and 23 cover cases where stopping the release of a gen-
etically engineered plant may be deemed a matter of
urgency immediately after new information about risks
becomes available.
In conclusion, the EU can allow the import, release

and commercial growing of plants inheriting transgenes.
However, there is a caveat. If new information becomes
available, the authorisation can be revoked. Then, the
release of the transgenes must be terminated. However,
if genetically engineered plants have escaped spatio-
temporal control by dispersing in natural self-sustaining
populations, they might no longer be retrievable as stip-
ulated [78]. Thus, it needs to be discussed how genetic-
ally engineered organisms of different categories are to
be regulated which

(a) can persist and invade the environment if they
unintentionally escape their containment;

(b) have a high likelihood of persisting and spreading
for a longer period of time, with or without
crossing with wild relatives;

(c) have a known probability to become invasive after
release into the environment.

Persistence and invasiveness are crucial for risk assess-
ment as performed by EFSA [79]. However, clear regula-
tory criteria are missing on how to deal with genetically
engineered organisms, which are likely to be impossible
to retrieve from the environment [78]. The EFSA Guid-
ance for environmental risk assessment [79] does not
foresee the rejection of applications for genetically engi-
neered plants, just because they are persistent and/or in-
vasive. In fact, EFSA does not consider these biological
characteristics to be a risk per se. The application is only
likely to be rejected if it is already known at the time of
the application that that the genetically engineered plant
will lead to a reduction in biodiversity or impair eco-
logical functions: The risk assessment should conclude on
(1) the impact of the GM plant and/or hybridising rela-
tives in the production system, particularly through in-
creased weediness and more intense weed control; (2) the
impact of the GM plant and/or hybridising relatives in
semi-natural and natural habitats, through change in in-
vasiveness or reduction of biodiversity or ecological func-
tion; (3) why any anticipated harm may be considered
acceptable; and (iv) what risk management measures
may be required to mitigate any harm. [79], p.49.
This seems to be in conflict with the precautionary

principle and EU Directive 2001/18. As previously
mentioned, the EU Directive 2001/18 foresees that
emergency measures must be taken if new information
is made available about serious risks (Article 8 and
Article 23). Furthermore, market authorisation has to be
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monitored and reassessed after 10 years (Article 15.4
and Article 17). If there is new information on adverse
impacts, the market authorisation can be terminated. If
a genetically engineered organism no longer has author-
isation, it must be removed from the market (Article 4
(5)) - and thus also from the environment. The release
of genetically engineered organisms which cannot be
controlled in spatio-temporal dispersal conflicts with
these provisions. The precautionary principle as estab-
lished in Directive 2001/18 is operational only if efficient
measures exist that can assure the removal of the genetic-
ally engineered organism from the environment is feasible
if required becomes a matter of urgency. Therefore,
spatio-temporal control is a prerequisite for implementing
precaution.
This finding is not only relevant for the EU. We be-

lieve that, in general, precautionary measures are an
appropriate and necessary answer to the uncontrolled
spread of transgenic plants. The regions where this is
happening should discuss introducing the precautionary
regulation in this context in order to protect biodiversity
on the long term.

Conclusions
There is scientific evidence that GM plants exist which
have escaped spatio-temporal control and introgressed
into natural populations. The centres of origin of the
respective plants are amongst the regions of particular
concern.
Measures should be taken immediately to reduce un-

controlled further spread of transgenes into the environ-
ment. In the midterm, adequate regulations should be
put in place that will prevent new problems in this
context.
The cases as documented highlight current gaps in

knowledge and make stricter regulation imperative in re-
gard to experimental releases, transport and commercial
cultivation of genetically engineered organisms if

(a) they can persist and invade the environment after
unintentional escape from containment;

(b) there are major doubts about whether the
transgenes can be retrieved from the environment
within a reasonable period of time if urgency
requires;

(c) it is already known that the transgenes will persist
and/or show invasive behaviour after release into
the environment.
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