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Abstract 

Floods are the most common and costly disasters worldwide, while spatial flood risk assessment is still challeng-
ing due to fewer observations and method limitations. In this study, the flood risk zonation in the Nile districts 
of the Damietta branch, Egypt, is delineated and assessed by integrating remote sensing with a geographic informa-
tion system, and an analytical hierarchy process (AHP). Twelve thematic layers (elevation, slope, normalized difference 
vegetation index, topographic wetness index, modified normalized difference water index, topographic positioning 
index, stream power index, modified Fournier index, drainage density, distance to the river, sediment transport index, 
and lithology) are used for producing flood susceptibility zonation (FSZ) and six parameters (total population, distance 
to hospital, land use/land cover, population density, road density, and distance to road) are utilized for producing 
flood vulnerability zonation. Multicollinearity analysis is applied to identify highly correlated independent variables. 
Sensitivity studies have been used to assess the effectiveness of the AHP model. The results indicate that the high 
and very high flood risk classes cover 21.40% and 8.26% of the area, respectively. In 14.07%, 27.01%, and 29.26% 
of the research area, respectively, flood risk zones classified as very low, low, and moderate are found. Finally, FSZ 
is validated using the receiver operating characteristics curve and area under curve (AUC) analysis. A higher AUC value 
(0.741) in the validation findings demonstrated the validity of this AHP approach. The results of this study will help 
planners, hydrologists, and managers of water resources manage areas that are susceptible to flooding and reduce 
potential harm.

Keywords Flood risk assessment, AHP, Sensitivity analysis, Multiple criteria decision analysis (MCDA), Remote sensing 
and GIS, ROC, AUC 

*Correspondence:
Mohamed Zhran
mohamedzhran@mans.edu.eg
1 Public Works Engineering Department, Faculty of Engineering, 
Mansoura University, Mansoura 35516, Egypt
2 Department of Wildlife, Fisheries and Aquaculture, College of Forest 
Resources, Mississippi State University, Mississippi State, MS 39762, USA
3 Geology and Geophysics Department, College of Science, Abdullah 
Alrushaid Chair for Earth Science Remote Sensing Research, King Saud 
University, 11451 Riyadh, Saudi Arabia
4 School of Surveying and Land Information Engineering, Henan 
Polytechnic University, Jiaozuo 454003, China
5 Shanghai Astronomical Observatory, Chinese Academy of Sciences, 
Shanghai 200030, China
6 Department of Geography, Rampurhat College, Birbhum, 
Rampurhat 731224, India

7 New Era and Development in Civil Engineering Research Group, 
Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, 
Iraq
8 Institute of Energy Infrastructure, Universiti Tenaga Nasional, 
43000 Kajang, Malaysia
9 Urban Innovation and Sustainability, Department of Development 
and Sustainability, Asian Institute of Technology (AIT), Pathum 
Thani 12120, Thailand
10 Department of Geography and Environmental Sustainability, College 
of Humanities and Social Sciences, Princess Nourah Bint Abdulrahman 
University, P.O. BOX 84428, 11671 Riyadh, Saudi Arabia
11 Geodynamic Department, National Research Institute of Astronomy 
and Geophysics, Helwan 11421, Egypt

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12302-024-01001-9&domain=pdf


Page 2 of 25Zhran et al. Environmental Sciences Europe          (2024) 36:184 

Introduction
A natural disaster is a significant unfavorable occur-
rence brought on by Earth’s natural processes. These 
can include earthquakes, tsunamis, volcanic eruptions, 
floods, storms, tornadoes, etc. [1]. Flooding is by far 
the most common natural hazard. In recent decades, it 
has significantly harmed the environment and caused 
socioeconomic harm in many regions of the world 
[2–4]. Floods are the most damaging natural catastro-
phes in the world, with the greatest number of fatalities 
and property destruction [1]. A flood is an excessive 
flow of water that submerges land, can destroy urban 
and agricultural regions, and sometimes even results in 
fatalities [5, 6]. To maintain long-term socioeconomic 
progress, geographers, hydrologists, hydrogeologists, 
and policymakers have found that assessing flood risk 
zonation (FRZ) has become an intriguing and creative 
issue in recent times [7]. The FRZ is dependent on the 
flood susceptibility zonation (FSZ) and flood vulner-
ability zonation (FVZ) of the relevant study region. 
Therefore, it is essential to model FSZ and FVZ to build 
the FRZ evaluation [8].

Multi-criteria decision analysis (MCDA), which was 
frequently utilized to simulate various types of FSZ, FVZ, 
and FRZ, is one of the most appropriate methods [7, 9]. 
Numerous techniques for mapping the susceptibility of 
natural hazards like floods have been developed, such as 
frequency ratio (FR) [10–12], Analytical Hierarchy Pro-
cess (AHP) [3, 8, 10, 13, 14], Fuzzy Analytical Hierarchy 
Process (FAHP) [15], Vise Kriterijumska Optimizacijaik 
Ompromisno Resenje (VIKOR), Technique for Order 
Preference by Similarity to Ideal Solution (TOPSIS), and 
Evaluation Based on Distance from Average Solution 
(EDAS) [16].

Remote sensing (RS) and geographic information sys-
tems (GIS) have been effective over the past few decades 
in managing substantial hydrological information to 
produce more precise maps of flood susceptibility [17]. 
Furthermore, advancements in RS and GIS technology 
have facilitated the rapid identification of FRZ across 
large regions. Flood mapping using the AHP and GIS has 
gained popularity [10]. Furthermore, since its introduc-
tion by Saaty in 1971, the AHP has been widely applied 
as a helpful tool for multiple-criteria decision-making or 
a weight estimate approach in a variety of scenarios con-
nected with human needs and interests [18]. The goal of 
AHP is to help decision-makers choose the option and 
set of criteria that best fit their objectives [19]. AHP is 
a convenient method for producing FRZ. This process 
results in a flood risk map that displays the spatial distri-
bution of flood risk as well as the risk’s intensity, which 
ranges from very high to very low.

Susceptibility is a characteristic that can be used to 
indicate a system’s weakness or element exposed to a 
threat [20]. The term vulnerability describes the poten-
tial effects or damage, of an event occurrence [16]. In 
contrast to susceptibility, which is primarily focused 
on the physical environment, vulnerability is primarily 
defined by the socioeconomic restrictions of the hazard-
ous occurrence, as few recent studies [21, 22] have clearly 
shown. The first step in anticipating and reducing the 
risk of future floods is to conduct a flood analysis. In this 
study, flood susceptibility and vulnerability are analyzed. 
Flood risk is determined by multiplying or adding the 
sum of the components of susceptibility and vulnerabil-
ity. Many factors are generally responsible for FRZ, such 
as elevation, slope, drainage density, total population, 
population density, distance to river and so on [8].

Any model’s cross-validation process has certain debat-
able research gaps, especially in the area of the crite-
ria ratings that frame the model’s outputs. The AHP 
method’s sensitivity studies, which apply to any other 
study area, served as the foundation for the study’s 
construction.

In the Nile Delta, ground levels are decreasing une-
venly, with the northeastern region suffering a faster rate 
of subsidence than other areas [23]. Gebremichael et al. 
[23] reported that there are high subsidence rates (up to 
8.9 mm/year) over the north central and northeastern 
Delta. Gebremichael et  al. [23] reported that there are 
also high subsidence rates (up to 9.7 mm/year) in the 
southern delta (Menoufia governorate). Hence, these 
are the main causes leading to flooding in these areas. 
In addition to changes in land use (encroachments on 
watercourses) and inadequate flood protection manage-
ment. Additionally, Coastal subsidence may exacerbate 
flooding caused by sea level rise. In general, the Damietta 
Nile branch meet the Mediterranean Sea at Ras El Bar. 
Hence, there is a relation between seal level rise and river 
flooding.

The Egyptian Meteorological Authority stated on 
March 11, 2020, that heavy rainfall and maybe flooding 
would occur between March 12 and 14, 2020. Govern-
ment, public, and private sectors have been disrupted 
due to the government’s request for residents to stay 
inside their houses and the closure of many important 
provincial routes. The total number of affected families in 
El-Qalyubia, El-Menofia, El-Gharbyia, El-Dakahlyia, and 
Damietta is 35, 149, 35, 10, and 3, respectively [24].

There was no study conducted in the study area and its 
surroundings by other researchers covering FSZ, FVZ, 
and FRZ using modern technology such as GIS and 
remote sensing in the study area. This study fills that gap 
and may be useful for flood risk mitigation. The main 
purposes of this paper are: (1) delineation of FSZ, FVZ, 
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and FRZ in the Nile districts of the Damietta branch of 
Egypt by integrating RS and GIS with the AHP after per-
forming a multicollinearity test on the flood parameters; 
(2) evaluating the AHP’s performance using sensitivity 
analysis, and (3) validating the model’s accuracy using the 
receiver operating characteristic curve (ROC). In gen-
eral, the results of this research will aid decision-makers, 
engineers, and local authorities in managing flood risks. 
Additionally, they will also aid in the creation of a stra-
tegic plan for urban growth and serve as a resource for 
future flood risk mitigation.

Study area
Damietta branch in Egypt, one of the two main branches 
of the River Nile, passes through five governments: 
El-Qalubia, El-Menofia, El-Gharbyia, El-Dakahlyia, and 
Damietta. With an average width of 200 m and an average 
depth of 12 m, Damietta branch extends about 242 km. 
The Nile districts of the Damietta branch are located 
between latitudes 30º 6’ N to 31º 31’ N and longitudes 
30º 29’ E and 32º5’ E. The average annual precipitation 
in Damietta is about 9.18 mm [25]. The specific details of 
the research area in this study are illustrated in Fig. 1. The 
study area has approximately a population of 24 million 

Fig. 1 Map of the study area: a Egypt map, b Nile districts of the Damietta branch, and c Damietta branch with flooded and non-flooded points
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(Census 2021). The elevation ranges from −  60 to 179 
m. The research area’s slope varies from 0º to 46.75º, and 
about 59.15% of the study area was flat (0º–2º). Figure 1 
combines the study area map with the flood inventory 
map. To prepare a flood inventory map, 658 flooded 
points and 265 non-flooded points have been chosen 
for additional investigation. The historical flood data are 
not available in this area, so we prepared the flood points 
using Synthetic Aperture Radar (SAR) data processing 
through Google Earth Engine platform. Changes in land 
use (Encroachments on watercourses) and ineffective 
flood prevention management are the major causes of 
flooding in these areas.

Methodology
Datasets
For the research region, 30-m resolution digital 
elevation model (DEM) data were acquired from the 
NASA Earthdata website (https:// search. earth data. 
nasa. gov; accessed on 15 June 2023). DEM was used 
to construct maps of the topographic factors such 
as elevation, slope, sediment transport index (STI), 
topographic positioning index (TPI), topographic 
wetness index (TWI), and stream power index (SPI). 
Additionally, the Landsat 8 satellite images obtained 
from the United States Geological Survey (USGS) 
are used to produce the NDVI and MNDWI. Landsat 
8 satellite images are radiometrically corrected in 
the GIS platform and prepared for estimating the 

parameters NDVI, and MNDWI. Using Sentinel 
satellite images, LULC are produced. MFI is prepared 
using the gridded data (0.5 × 0.5) of the rainfall data 
from NASA Power. The OpenStreetMap website’s 
data were used to construct the spatial layers for road 
density, distance to hospital, and distance to road. 
Total population and population density are estimated 
based on 2021 census obtained from central agency 
for public mobilization and statistics. Table 1 presents 
the source and description of the parameters used 
in the study. These data are used to determine Flood 
susceptibility parameters (FSP) and Flood vulnerability 
parameters (FVP). The principle of our method used 
in the study is illustrated in Fig.  2. FSP and FVP 
must be estimated to identify FRZ according to the 
methodology shown in Fig. 2.

Flood susceptibility parameters (FSP)
Twelve thematic layers are used for producing FSZ. 
Figures 3 and 4 present the distribution of the 12 FSPs 
used in this study.

Elevation
As water flows from higher to lower altitudes, it tends to 
accumulate [16]. Hence, elevations are a significant factor 
in identifying which locations are susceptible to floods 
[26]. Flooding has an inverse relationship with elevation 
[27]. The elevation map is estimated from the DEM [28]. 

Table 1  Source and description of the parameters used in the study

Parameter Description Source

Elevation, slope, TWI, TPI, SPI, STI, drainage density 
and distance to river

Derived from ASTER DEM
(30m × 30m) and prepared the
thematic layer using ArcGIS

United States Geological Survey
(USGS)
obtained from:
https:// earth explo rer. usgs. gov

NDVI and MNDWI Using Landsat 8
(30m × 30m), all the layers were
prepared after mosaicing and atmos-
pheric correction of the image

USGS
obtained from:
https:// earth explo rer. usgs. gov

LULC Using Sentinel-2 (10m ×  10m) Copernicus Open Access Hub
Retrieved from:
https:// scihub. coper nicus. eu/

MFI MFI Gridded rainfall
(0.5 × 0.5)
NetCDF

NASA Power LARC 
(0.5 × 0.5)
https:// power. larc. nasa. gov/

Lithology Digital lithological map of the district The Regional Centre for Mapping of Resources 
for Development (RCMRD) https:// rcmrd. afric ageop 
ortal. com/

Distribution of population, total population number
Population density

Census of Egypt, 2021 Central Agency for Public Mobilization and Statistics

Distance to hospital, distance to road and road 
density

Adopting the data from OpenStreetMap OpenStreetMap
Retrieved from:
www. opens treet map. org

https://search.earthdata.nasa.gov
https://search.earthdata.nasa.gov
https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
https://scihub.copernicus.eu/
https://power.larc.nasa.gov/
https://rcmrd.africageoportal.com/
https://rcmrd.africageoportal.com/
http://www.openstreetmap.org
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In the study area, the elevation varies from − 60 to 175 
m, as shown in Fig. 3a.

Slope
The slope is another significant FSP since it directly influ-
ences the amount of surface runoff in any region [3, 27]. 
Steep slopes are less likely to cause flooding than flatter 
terrain; in other words, the risk decreases with increasing 
slope [29]. The slope map is produced from DEM. The 
slope of the target area varies from 0º to 46.75º, as illus-
trated in Fig. 3b.

Topographic wetness index (TWI)
Water movement overland is regulated by the TWI, 
which describes the geographical distribution of wet-
ness [12]. The TWI, which is determined by combining 
the specific area of a basin and the slope angle of the 
region (in degrees) ( B ), is widely used to measure the 
topographic effect on hydrological processes [30]. DEM 
determines TWI. The region with a higher TWI rating 
indicates a higher probability of a flood occurrence [13]. 
Equation  (1) was used to calculate the TWI, which is 
related to water flow [31]:

where a describes the upslope area (per unit contour 
length). Moreover, here a =

A
L , where A is the total basin 

area, and L is the length of the contour [12, 31]. TWI dis-
tribution in the target area varied from 3.43 to 17.24, as 
presented in Fig. 3c.

(1)TWI = Ln
( a

tanB

)

Topographic positioning index (TPI)
TPI generally illustrates the altitudinal difference of each 
cell to the average altitude of surrounding cells in a spe-
cific radius [32]. The primary data for estimating TPI is 
DEM. TPI has a significant influence on runoff. For the 
investigations on flood susceptibility, TPI is chosen [8, 
32]. The TPI is determined using Eqs. (2) and (3), where 
z0 is the central point, z is the average elevation sur-
rounding the central point, and R is the predetermined 
radius. TPI values ranged from − 4.66 to 4.41 in the tar-
get area, as presented in Fig. 3d:

Normalized difference vegetation index (NDVI)
NDVI is considered a significant FSP [17, 33]. NDVI 
represents the normalized difference between the near-
infrared band (NIR) and red light (Eq. (4)):

The NDVI is used to identify regions covered in and 
not covered in vegetation. NDVI ranges from −  1 to 1. 
Regions with high vegetation cover less vulnerable to 
runoff from rainfall [29]. The spatial distribution of NDVI 

(2)TPI = z0−
−

z

(3)z =
1

nR

∑

i∈R

Zi

(4)NDVI =
NIR− RED

NIR+ RED

Fig. 2 The overall methodology adopted in this research
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varied from − 0.37 to 0.7 in the target area, as presented 
in Fig. 3e.

Modified normalized difference water index (MNDWI)
In this study, MNDWI is used as an FSP instead of the 
normalized difference water index (NDWI) as proposed 
by [8, 16]. In comparison to the NDWI, the MNDWI can 
effectively remove information about built-up regions 
and improve open water features when displaying them 
in locations with a higher concentration of built-up land. 
Consequently, Eq. (5) is used to estimate MNDWI [34]:

(5)MNDWI =
Green −MIR

Green +MIR

where MIR is as a middle infrared band. The MNDWI 
varies from − 0.69 to 0.59 in the target area, as shown in 
Fig. 3f.

Drainage density (DD)
Floods are mostly caused by the DD [7, 8]. The drain-
age network’s length per unit area is represented by DD 
[10]. It has an impact on peak flow occurrences [32], run-
off rates, and infiltration [16]. The DD is an important 
parameter for flood occurrence. The runoff rate is critical 
when the DD is high, causing an increase in flood volume 
[32]. DD (km/km2) was estimated with the line density 
tool. DD can be computed from Eq. (6):

Fig. 3 Distribution of six FSPs used in this research: a elevation, b slope, c TWI, d TPI, e NDVI, and f MNDWI
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where L describes the total length of the drainage chan-
nel in the watershed (km) and A describes the total area 
of the watershed  (km2). The DD map in the target area 
ranged from 0 to 0.4 km/km2, as revealed in Fig. 4a.

(6)DD =
L

A

Distance to the river (DR)
One major parameter influencing the likelihood of flood-
ing is the DR [3, 27, 35]. In locations close to the main river 
channel and flow accumulation path, flooding is more 
likely to occur [10, 27, 36]. On the other hand, areas further 
from rivers are less susceptible to flood damage. The DR is 
estimated in ArcGIS Pro 2.8.4 using the Euclidean distance 
method. The DR in the target area ranged from 0 to 5734 
m, as described in Fig. 4b.

Fig. 4 Distribution of another six FSPs used in this research: a DD, b DR, c SPI, d STI, e MFI, and f lithology
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Stream power index (SPI)
The SPI displays the stream flow’s erosive power [37]. It is 
the product of the catchment area ( Ai ) and slope ( β ) and 
estimates the force of the water flows at a specific water-
shed. Greater SPI values indicate increased potential for 
flooding in the region’s rivers [16]. The SPI is computed 
using Eq. (7) [38]:

The equation mentioned above was used to produce 
the SPI map from the DEM. The spatial distribution of 
SPI in the target area varied from 0 to 44,143.58, as pre-
sented in Fig. 4c.

Sediment transport index (STI)
Another important flood susceptibility metric is the 
STI. It is connected to any region’s runoff features. 
Lower STIs are connected to areas that are more 
susceptible to flood and vice versa [39]. The STI is 
computed through Eq.  (8), where Fa is the flow accu-
mulation and Sα is the slope raster, obtained from DEM, 
and δx and δy stand for the constant [8, 16, 39]. The STI 
map in the target area ranged from 0 to 1133.86, as 
described in Fig. 4d:

Modified Fournier index (MFI)
The MFI is used to represent rainfall intensity. The most 
frequent cause of floods is intense rainfall. Given that 
higher MFI values are associated with areas that are very 
susceptible to flooding, it was regarded as a crucial flood 
conditioning variable [7]. MFI is obtained by Eq.  (9) [7, 
40]:

where Pi describes the monthly average of precipitation 
for month i (mm), and P describes the average annual 
precipitation (mm). The MFI in the target area ranged 
from 7 to 23 mm/year, as described in Fig. 4e.

Lithology
Lithology is one of the significant factors in the 
determination of the FSZ [7]. It impacts the properties 
of the drainage network in any area, as well as soil 
permeability and hydrological processes. There is less 
drainage density in areas with extremely permeable 

(7)SPI = Ai ∗ tanβ

(8)STI =







�

Fa
δx

�

∧2

�

sign(Sα)
δy

�

∧2







(9)MFI =

12
∑

i=1

P2
i

P

subsoil or very resistant rocks [35, 41]. Consequently, it 
is assumed that a crucial flood conditioning parameter is 
the local lithological structure [8]. The lithological map of 
the study area is presented in Fig. 4f.

Flood vulnerability parameters (FVP)
Six parameters are used for producing FVZ. Vulnerability 
is controlled and influenced by physical/natural factors. 
Figure 5 introduces the distribution of the six FVPs used 
in this study.

Total population (TP)
One key metric used to evaluate flood vulnerability is 
population [8]. The growing population causes an accel-
eration of environmental vulnerability. The population 
census in this study was conducted in 2021. The total 
population of the target area is approximately 24 million 
(2021 census), as observed in Fig. 5a.

Population density (PD)
PD is a crucial factor in assessing social vulnerability 
since floods may have a negative impact on people’s phys-
ical and psychological health [14]. The ratio of residents 
to land area is known as population density, and it serves 
as an indicator of the economic growth of metropolitan 
areas [29]. High population density areas are particularly 
susceptible to flooding threats. The population density of 
the target area is depicted in Fig. 5b.

Land use land cover (LULC)
LULC is another crucial influencing factor that contrib-
utes to flood risk [7, 10, 42]. LULC affects surface runoff, 
rate of evapotranspiration, evaporation, and infiltration 
[7, 37]. A vegetated region minimizes the amount of sur-
face runoff. It increases the progress of the infiltration 
process. In contrast, a built-up area severely hinders the 
infiltration of water into the ground and speeds up the 
surface flow [9]. Based on Sentinel satellite images, these 
LULC classifications are established. Most of the area is 
classified as vegetation covers as shown in Fig. 5c.

Distance to hospital (DH)
A key factor in determining an area’s vulnerability is how 
easily accessible medical facilities are, as well as how 
close they are to people’s homes [8]. The impacts of a dis-
aster can be significantly reduced if every affected person 
has instant access to the hospital [14]. The distance to the 
hospital is obtained from the open street map data web-
site. The distance to the hospital map of the target area is 
introduced in Fig. 5d.
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Distance to road (DTR)
A further essential factor in estimating FVZ is the DTR. 
Because roads act as manufactured barriers to floodwa-
ters, they prevent flooding [11]. The distance to the road 
is obtained from the open street map data website. The 
DTR of the study area is presented in Fig. 5e.

Road density (RD)
The density of the road network is the proportion of road 
km to the regional area, which is a measure of urbani-
zation [29]. High road density considerably slows down 
the progress of flood damage [11]. The road density 
is obtained from the open street map data website. In 
Fig. 5f, we can observe the road density map in the study 
area.

Fig. 5 Distribution of six FVPs used in this research: a TP, b PD, c LULC, d DH, e DTR, and f RD.
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Multicollinearity checks
Multicollinearity (MC) is the phenomenon of correlation 
among two or more independent variables [43]. The cur-
rent study analyses the use of MC analysis to identify sig-
nificantly related independent variables. MC analysis is 
a crucial tool for evaluating the efficacy of susceptibility 
and vulnerability parameters.

In this study, MC was measured by the variance infla-
tion factor (VIF) and tolerance (T) for each susceptibility 
and vulnerability parameter. A tolerance of less than 0.10 
and a VIF of 10 or above indicates MC problems [44]. Arc-
GIS 10.5 was also utilized to create and extract the random 
points in each theme layer for the MC study. The MC test 
was run using SPSS software.

Equations (10) and (11) were used to determine the VIF 
for any predictor variable (Myers and Well, 2003):

R2
i  is the determination coefficient of the equation of 

regression.

Weighting and ranking of each layer by AHP
Saaty initially presented the AHP multicriteria decision 
approach in 1980, and it is now a helpful and common 
technique [18]. The AHP approach is applied to evalu-
ate the weight of several layers. In this study, 12 FSPs were 
used to generate the FSZ, and six FVPs were applied to cre-
ate the FVZ. We developed a pairwise comparison matrix 
(PCM) based on FSP and FVP, which was considered the 
initial step. Determining the normalized weights is the sec-
ond step in this approach. Hence, each thematic layer was 
given a relative weight based on Saaty’s scale of 1 to 9. Each 
layer’s relative weight has been established using a litera-
ture review, field experience, research in similar geographic 
areas, and the study by Mitra et  al. [8]. PCM is used to 
compute parameter weight, class weight, and the consist-
ency ratio (CR) value.

Consistency analysis
By calculating the CR using Eq. (12), the judgments made 
about the PCM of thematic layers and subclasses within 
those layers were validated [45]:

(10)VIF of the ith variable (VIFi) =
1

Ti

(11)Tolerance of the ith variable (Ti) = 1− R2
i

As listed in Table 2, the values of the random index (RI) 
used to compute consistency were taken from Saaty’s 
standard, and the consistency index (CI) values were com-
puted using Eq. (13):

where �max is the maximum eigenvalue of the judgment 
matrix, and n is the number of criteria. In this study, the 
RI value is 1.48 for FSP since 12 parameters were pro-
vided and 1.24 for FVP since six parameters were used. 
A CR < 0.1 demonstrates an appropriate decision to con-
tinue the AHP analysis, according to [45].

Overlay analysis
The preparation of FSZ and FVZ is the important aim of 
this study. Equations (14) and (15) were used for the prepa-
ration of FSZ and FVZ as follows:

where WS
i  and WV

i  are the weights of FSP and FVP, 
respectively. RS

i  and RV
i  are the ranks of the subclasses of 

each thematic layer of FSP and FVP, respectively.
The main task of this study is modeling FRZ depending 

on FSZ and FVZ, as presented in Eq. (16):

Sensitivity analysis
To validate the allocated weight of AHP, the consequences 
of the sensitivity analysis are needed [43]. Single param-
eter sensitivity analysis (SPSA), map removal sensitivity 
analysis (MRSA), and Stillwell ranking technique (SRT) are 
employed in this study.

Single parameter sensitivity analysis (SPSA)
The reason for this sensitivity test is that the flood 
parameters have arbitrary integer values assigned to them 

(12)CR =
CI

RI

(13)CI =
(�max − n)

n− 1

(14)FSZ =

n
∑

i=1

WS
i × RS

i

(15)FVZ =

n
∑

i=1

WV
i × RV

i

(16)FRZ = FSZ × FVZ

Table 2 Saaty’s random index [45]

n number of criteria, RI random index

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59
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[46]. The SPSA compares the weighting factor for each layer 
with the empirical weighting (EW) factor to determine the 
efficacy of each layer on the FSZ and FVZ maps [43, 47]. In 
this study, the effective weight (W) for FSZ and FVZ maps 
was determined using Eqs. (17) and (18):

where W is the effective weight, Pr and Pw are the rate 
and weight values of every layer, respectively.

Map removal sensitivity analysis (MRSA)
MRSA is used to determine the effects of removing any 
of the layers used for the determination of FSZ and FVZ 
maps. Each time a layer is removed, a new FSZ and FVZ 
maps arise from overlaying the remaining layers, and a sen-
sitivity index (SI) related to an omitted layer is estimated 
using Eqs. (19) and (20) [43, 48]:

where FSZ and FVZ relate to all layers, and FSZ′ and 
FVZ′ denotes the FSZ and FVZ obtained by excluding 
one layer. N is the number of FSZ and FVZ layers maps, 
and n is the number of FSZ′ and FVZ′ layers maps.

Stillwell ranking technique (SRT)
SRT involves two weights, namely, rank sum weight 
( Wi(RS) ) and reciprocal rank weight (Wi(RR)) , which are 
utilized to compare with the AHP approach. The Wi(RS) 
and Wi(RR) are calculated using Eqs. 21 and 22, as pro-
posed by Stillwell in 1981 [49]:

For rank sum weight:

For reciprocal rank weight:

Here, Wi represents each parameter’s normalized 
weight, n is the number of parameters. The parameters 

(17)W =
PrPw

FSZ
× 100

(18)W =
PrPw

FVZ
× 100

(19)SI =

∣

∣

∣

(

FSZ
N

)

−

(

FSZ′

n

)∣

∣

∣

FSZ
× 100

(20)SI =

∣

∣

∣

(

FVZ
N

)

−

(

FVZ′

n

)∣

∣

∣

FVZ
× 100

(21)Wi(RS) = (n− Rj + 1)/

n
∑

k=1

(n− Rk + 1)

(22)Wi(RR) =

1
Rj

∑n
k=1

(

1
Rk

)

are ranked in ascending sequence, Rj is each parameter’s 
direct rank, and each weight is normalized by the sum of 
∑n

k=1 (n− Rk + 1) for all parameters.

Accuracy assessment
For validation purposes, the ROC is utilized [8, 13, 50]. 
The false-positive rate, which expresses the number of 
samples in the flood risk map where floods have not hap-
pened, is shown along the x-axis of an ROC curve graph. 
The number of samples in the flood risk map where 
floods have occurred is expressed by the true positive 
rate, which is shown along the y-axis. An indicator of the 
model’s quality is the area under the curve (AUC) [8, 51]. 
The AUC has a range of 0 to 1. A higher AUC value indi-
cates the model’s superior quality.

Results and discussion
Multicollinearity analysis
In this study, 5000 random points were used for both FSP 
and FVP during the MC analysis. MC analysis results are 
listed in Table 3. From the analysis, it was found that STI 
(0.988) has the highest tolerance value, followed by SPI 
(0.949), whereas MFI (0.259) has the lowest tolerance 
value. The VIF values range from 1.012 (STI) to 3.854 
(MFI). The results show that the VIF is less than 10, 
and the tolerance value exceeds 0.1 for all FSP and FVP. 
The results listed in Table 3 clearly show that there is no 

Table 3 MC statistics of FSP and FVP

Susceptibility 
parameters

VIF Vulnerability parameters VIF

Elevation 1.535 No. of population 1.124

Slope 2.044 Population density 1.061

TWI 2.169 LULC 1.124

TPI 1.256 Distance to hospital 1.118

NDVI 1.354 Distance to road 1.095

MNDWI 1.898 Road density 1.135

DD 1.157

DR 1.163

SPI 1.054

STI 1.012

MFI 3.854

Lithology 1.565

Table 4 The consistency check results of FSP

n number of criteria, RI random index, �max , the maximum eigenvalue, CI 
consistency index, CR consistency ratio

n RI �max CI CR Consistency

12 1.48 13.26 0.11 0.08 CR < 0.1 (yes)
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Table 5 Weightage of each factor and sub-factor of FSP

Parameters AHP weight Reclass class Class range Flood level Area  (km2) Area (%) Rating

Elevation 0.267 1 − 59–9 Very high 5921.32 59.48 0.416

2 10–24 High 3352.17 33.67 0.262

3 25–50 Medium 373.45 3.75 0.161

4 51–95 Low 265.53 2.67 0.099

5 96–179 Very low 42.73 0.43 0.062

Slope 0.192 1 0–2 Very high 5875.96 59.15 0.444

2 2–5 High 3269.31 32.91 0.262

3 5–7 Medium 481.34 4.85 0.153

4 7–9 Low 182.59 1.84 0.089

5 9–46.75 Very low 124.55 1.25 0.053

TWI 0.087 1 3.43–5.67 Very low 290.28 2.92 0.053

2 5.68–7.22 Low 4500.91 45.21 0.089

3 7.23–9.46 Medium 4650.74 46.72 0.153

4 9.47–12.65 High 505.91 5.08 0.262

5 12.66–17.24 Very high 7.35 0.07 0.444

TPI 0.015 1 − 4.66––1.18 Very high 1191.03 11.91 0.489

2 − 1.17–0 High 3997.49 39.97 0.261

3 0 Medium 4.86 0.05 0.138

4 0.01–2.20 Low 4704.63 47.04 0.073

5 2.21–4.41 Very low 103.64 1.04 0.038

NDVI 0.028 1 − 0.37–0.01 Very high 478.65 4.81 0.416

2 0.02–0.14 High 2664.62 26.77 0.262

3 0.15–0.18 Medium 1240.15 12.46 0.161

4 0.19–0.37 Low 3332.84 33.48 0.099

5 0.38–0.70 Very low 2238.57 22.49 0.062

MNDWI 0.063 1 − 0.69–0.18 Very low 2721.65 27.34 0.056

2 − 0.17–0.12 Low 4508.37 45.29 0.096

3 − 0.11–0 Medium 2095.22 21.05 0.157

4 0.01–0.16 High 136.92 1.38 0.257

5 0.17–0.59 Very high 492.67 4.95 0.434

Drainage density (km/km2) 0.123 1 0.00–0.11 Very low 1443.77 15.00 0.050

2 0.12–0.16 Low 2900.58 29.00 0.088

3 0.17–0.21 Medium 2729.66 27.00 0.151

4 0.22–0.27 High 2009.78 20.00 0.259

5 0.28–0.40 Very high 871.13 9.00 0.451

Distance from river 0.122 1 0–200 Very high 784.47 7.88 0.503

2 201–500 High 1132.82 11.38 0.260

3 501–1000 Medium 1807.01 18.15 0.134

4 1001–2000 Low 3199.37 32.14 0.068

5 2001–5734 Very low 3031.23 30.45 0.035

SPI 0.015 1 0–25,000 Very high 5484.12 55.09 0.503

2 25,001–243,200 High 4447.94 44.68 0.260

3 243,201–885,678 Medium 12.97 0.13 0.134

4 885,679–3,206,497 Low 5.72 0.06 0.068

5 3,206,498–7,235,901 Very low 4.45 0.04 0.035
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MC problem among the different parameters for both 
susceptibility and vulnerability.

Flood susceptibility zones
To prepare the FSZ, each thematic layer from the 12 FSP 
is classified into five categories. Tables SM1 and SM2 in 
the supplementary material (SM) list the PCM for FSP 
by AHP and the normalized weight for FSP for this study, 
respectively. The consistency check results of the FSP 
are summarized in Table 4. Table 5 lists the weightage of 
each factor and sub-factor of FSP.

The area with low elevations ranging from −  59 m to 
9 m represents 59.48% of the target area and represents 
a very high flooding impact, as described in Table  5, 
as water moves from higher to lower. As a result, areas 
with very low elevations are more susceptible to floods. 
The area with high elevations varying from 96 to 179 
m, which represents 0.43% of the study area, was classi-
fied as having a very low flooding impact. The elevation 
assigned about 27% of the AHP weight as the highest 
weight in all flood susceptibility parameters.

The slope is assigned about 19% of the AHP weight. 
About 59.15% of the study area was flat (0º−2º), and 
this represents a very high flooding impact, as reported 
in Table  5. As a result, locations with the lowest slopes 
get the most floods. Areas with a higher TWI are more 
susceptible to floods than other subclasses. Subsequently, 
the rating for higher values of TWI is higher than for 
lower values, as mentioned in Table 5. Zero TPI areas are 
flat, and negative TPI areas are areas with low elevations; 
hence, areas with zero or negative TPI are more 

susceptible to flooding. Hence, the rating for lower values 
of TPI is higher than for lower values (Table 5).

Areas with negative NDVI values indicate a high prob-
ability of flooding. Consequently, higher ratings were 
allocated for lower values of NDVI (Table 5) because an 
increase in vegetation cover decreased the probability 
of flooding. Higher values of MNDWI indicated water 
regions. Accordingly, higher ratings were allocated for 
higher values of MNDWI (Table 5) due to an increase in 
water area, increasing the probability of flooding.

The DD assigned about 12% of the AHP weight as the 
third highest weight in all flood susceptibility param-
eters after elevation and slope. The rating for higher val-
ues of DD is higher than for lower values (Table 5). The 
DR assigned about 12% of the AHP weight to the DD. 
Higher ratings were allocated for lower values of DR 
(Table 5) due to areas near the river being more suscep-
tible to floods. The stronger the flow, the higher the SPI 
value. Areas with lower SPI values are more susceptible 
to flooding than other subclasses. Subsequently, the rat-
ing for lower SPI values is higher than for lower values, 
as mentioned in Table 4, due to lower SPI being linked to 
slow water flow.

The rating for lower values of STI is higher than for lower 
values (Table  5). Thus, the lower STI is more susceptible 
to flooding. Higher ratings were allocated for higher 

Table 5 (continued)

Parameters AHP weight Reclass class Class range Flood level Area  (km2) Area (%) Rating

STI 0.015 1 0.00–0.01 Very high 5721.93 57.48 0.503

2 0.02–3.96 High 4084.55 41.03 0.260

3 3.97–11.07 Medium 124.81 1.25 0.134

4 11.08–22.14 Low 16.95 0.17 0.068

5 22.15–1,133.86 Very low 6.96 0.07 0.035

MFI 0.044 1 7–10 Very low 1321.29 13.29 0.053

2 11–13 Low 2520.77 25.35 0.089

3 14–15 Medium 2224.21 22.37 0.153

4 16–18 High 2260.28 22.73 0.262

5 19–23 Very high 1615.72 16.25 0.444

Lithology 0.028 1 Colluvium Very high 82.26 0.83 0.505

2 Aeolian sediments High 390.81 3.93 0.262

3 Alluvium–saline Medium 329.40 3.31 0.128

4 Water Low 234.49 2.36 0.069

5 Alluvium–fluvial Very low 8903.13 89.57 0.036

Table 6 The consistency check results of FVP

n RI �max CI CR Consistency

6 1.24 6.10 0.02 0.02 CR < 0.1 (yes)
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values of MFI (Table  5). As a result, higher MFI means 
high susceptibility to flood. One of the key elements in the 
determination of the FSZ is lithology. It is categorized into 
five categories based on water holding capacity. The very 
high flood hazard (FH) class is connected to colluvium. 
In contrast, the high FH class is associated with aeolian 
sediments, the medium FH class is alluvium–saline, and 
the low FH class is with water. Very low F.H. classes are 
with alluvium–fluvial.

Flood vulnerability zones
To prepare the FVZ, each thematic layer from the six vul-
nerability parameters is classified into five categories. 
Tables SM3 and SM4 in the SM list the PCM for FVP by 
AHP and the normalized weight for FVP for this study, 
respectively. The consistency check results of the FVP are 
summarized in Table 6. Table 7 lists the weightage of each 
factor and sub-factor of FVP.

Population is related to flood vulnerability. The rating 
for higher values of population is higher than for lower 
values, as reported in Table  7. The total population is 
assigned about 29% of the AHP weight as the highest 
weight in all flood vulnerability parameters. Population 
density is related to flood vulnerability since more 
people are exposed to risk in densely populated areas. 
Subsequently, the rating for higher values of population 
density is higher than for lower values, as mentioned in 
Table  7. The population density is also assigned about 
29% of the AHP weight as the highest weight in all 
flood vulnerability parameters.

In the investigation of flood vulnerability, the LULC is 
crucial. The LULC of the study area is presented in five 
classes, i.e., water body (6.28%), vegetation (71.27%), 
agricultural area (1.04%), bare ground (1.93%), and 
built-up area (19.48%). Built-up areas are classified as 
high-risk for flooding vulnerability, as listed in Table 7. 

Table 7 Weightage of each factor and sub-factor of FVP

Parameters AHP Weight Class Range Flood level Area  (km2) Area in % Rating

Total population 0.292 1 0 Very low 1298.53 13.06 0.047

2 0–2000 Low 2624.89 26.40 0.085

3 2001–4000 Moderate 2611.59 26.27 0.150

4 4001–10,000 High 3031.39 30.49 0.259

5 10,001–572,545 Very high 374.53 3.77 0.459

Population density 0.292 1 0 Very low 1298.53 13.06 0.047

2 1–500 Low 582.65 5.86 0.085

3 501–1000 Moderate 1135.65 11.42 0.150

4 1001–2000 High 3130.31 31.49 0.259

5 2001–10,286,700 Very high 3793.80 38.16 0.459

LULC 0.176 1 Water body Very low 625.03 6.28 0.035

2 Vegetation cover Moderate 7094.54 71.27 0.134

3 Agricultural area High 103.97 1.04 0.260

4 Bare ground low 191.85 1.93 0.068

5 Built-up area Very high 1939.45 19.48 0.503

Distance to hospital (m) 0.107 1 0–2000 Very low 295.48 2.97 0.049

2 2001–5000 Low 1254.34 12.60 0.082

3 5001–8000 Moderate 1818.47 18.27 0.149

4 8001–10,000 High 1249.18 12.55 0.267

5 10,001–36,393 Very high 5337.36 53.62 0.454

Distance to road (m) 0.075 1 0–500 Very low 1566.34 15.73 0.056

2 501–1000 Low 1255.45 12.61 0.096

3 1001–1500 Moderate 1055.98 10.61 0.157

4 1501–2000 High 894.25 8.98 0.257

5 2001–7699 Very high 5182.82 52.06 0.434

Road density 0.059 1 0.00–0.82 Very High 3246.26 32.61 0.426

2 0.83–1.51 High 4177.69 41.97 0.259

3 1.52–2.55 Medium 1715.29 17.23 0.159

4 2.56–4.22 Low 603.84 6.07 0.097

5 4.23–6.99 Very low 211.83 2.13 0.059
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The maximum rating is assigned to the longest distance 
to the hospital, as given in Table  7. The higher rating 
is assigned to the longest distance to the road, as 
exhibited in Table 7. RD varies from very low at 0–0.82 
to very high at 4.23–6.99 as listed in Table 7.

AHP model output
FSZ
The weighted overlay method is applied to produce FSZ 
from the 12 reclassified layers of FSP, as highlighted 
in Fig. 6a. FSZ map is categorized into five categories: 
very low, low, medium, high, and very high. The area of 
FSZ for each class is listed in Table 8.

FVZ
The weighted overlay method is applied to produce 
FVZ from the six reclassified layers of FVP, as pre-
sented in Fig. 6b. Five categories are used for categoriz-
ing the FVZ map: very low, low, medium, high, and very 
high. The FVZ area for each class is given in Table 8.

FRZ
The production of FRZ maps utilizing FSZ and FVZ maps 
is the main result of this study. The FRZ map is catego-
rized into five classes: very low, low, medium, high, and 
very high. The FRZ area for each class is given in Table 8. 
Groups with very high and high flood risk covered 82.6% 
and 21.40% of the research region, respectively. 14.07%, 
27.01%, and 29.26% of the region were found to have very 
low, low, and moderate zones in danger of flooding. The 

Fig. 6 a FSZ, b FVZ and c FRZ maps of the target area

Table 8 Area of FSZ, FVZ, and FRZ of the study area

Level FSZ FVZ FRZ

Area  (km2) Area (%) Area  (km2) Area (%) Area  (km2) Area (%)

Very low 1619.77 16.44 1851.62 18.64 1384.42 14.07

Low 2530.17 25.69 2361.14 23.77 2658.68 27.01

Medium 2823.32 28.66 2689.95 27.08 2880.07 29.26

High 2093.74 21.26 2307.62 23.23 2106.18 21.40

Very high 783.00 7.95 724.63 7.29 813.21 8.26
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very high and high-risk areas are El-Dakahlyia and Dami-
etta. Most of El-Qalubia lies in low risk.

The equal interval, quantile, geometrical interval, and 
natural break methods revealed the percentage-wise 
distribution of susceptibility classes and vulnerability 
classes, as shown in Fig. 7. For the FSZ, the geometrical 
interval approach produced the very low class, and the 
equal interval method produced the greatest medium 
and low classes. In contrast, the quantile deviation 
methodology produced the maximal coverage area of 
the very high and high flood susceptibility classes. In 
the FVZ, the quantile deviation methodology revealed 
the highest levels of flood risk for the very high and 
high classes. At the same time, the geometrical interval 
method represented the very low class, and the equal 
interval method represented the medium and low classes.

Fig. 7 a Classification of FSZ, b classification of FVZ

Table 9 Statistics of SPSA of FSP

Parameters Empirical 
weight (%)

Effective weight (%)

Min Max Mean SD

Elevation 26.7 5.23 68.41 37.27 7.92

Slope 19.2 4.03 71.89 28.75 5.69

TPI 1.5 0.14 7.57 1.21 0.88

TWI 8.7 0.99 26.74 4.50 1.50

NDVI 2.8 0.40 9.53 1.83 1.14

MNDWI 6.3 0.78 16.95 2.92 1.55

DD 12.3 1.49 39.64 8.33 5.39

DR 12.2 1.12 41.54 6.02 5.64

STI 1.5 0.11 8.69 2.54 0.94

SPI 1.5 0.11 8.69 2.52 0.95

MFI 4.4 0.53 17.82 3.49 2.27

Lithology 2.8 0.21 13.53 0.62 0.89
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Sensitivity analysis of the AHP method
To validate the AHP-provided weights using the APH 
approach, the implementation of sensitivity analysis is 
necessary [43, 47].

SPSA
Table 9 presents the result of the SPSA method for FSP. 
According to our findings, there are some differences 
between the W and the EW. The effective weights used 
in the SPSA (Table 9) reveal that elevation and slope were 
underestimated in the FSZ. Conversely, TPI, TWI, NDVI, 
MNDWI, DD, and DR were overestimated in the FSZ. 

Additionally, the results of effective weight estimation 
for SPI, STI, and MFI show a little discrepancy in the W 
values compared to the EW values, as can be seen from 
Table  9. Figures  8 and 9 illustrate the W map of twelve 
FSPs. SPSA revealed that elevation and slope layers were 
the most significant factors in the determination of FSP.

Table 10 demonstrates the result of the SPSA method 
for FVP. Our results show some differences in the W 
compared to the EW. The W used in the SPSA (Table 10) 
reveals that the total population and LULC were 
overestimated in the FVZ. Conversely, PD, DH, RD, and 
DTR were underestimated in the FVZ. Figure 10 shows 

Fig. 8 The effective weight (W) of six FSPs utilized in this research: a elevation, b slope, c TWI, d TPI, e NDVI, and f MNDWI
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the W map of the six FVPs. SPSA revealed that PD and 
TP thematical layers were the most significant factors 
in the flood vulnerability determination. As can be seen 
from Table 10, the road density was the lowest weight of 
the six FVPs.

MRSA
The MRSA results for FSP estimated by removing one 
parameter at a time are listed in Table  11. The higher 

variation index values were found after removing the 
Distance from the river layer, followed by TWI and 
lithology. The highest mean SI variation value (1.259%) is 
found when removing distance from the river. However, 
the lowest mean SI variation value (0.634%) is noticed 
when removing the slope. Figs. SM1 and SM2 in the 
SM describe the sensitivity index of the twelve FSPs 
used in this study. The proportion of FSZ maps that 
were created significantly varied as a result of removing 

Fig. 9 The effective weight (W) of another six FSPs used in this research: a DD, b DR, c SPI, d STI, e MFI, and f lithology
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Table 10 Statistics of SPSA of FVP

Parameters Empirical weight (%) Effective weight ( %)

Min Max Mean SD

Total population 29.2 4.255 66.199 19.267 7.968

Population density (persons/km2) 29.2 4.533 75.029 32.399 13.252

LULC 17.6 1.619 68.680 14.638 9.309

Distance to hospital (m) 10.7 1.250 49.611 15.622 9.409

Road density 5.9 0.934 31.862 7.690 4.018

Distance to road (m) 7.5 0.967 40.357 10.260 7.295

Fig. 10 The effective weight (W) of six FVPs used in this study: a TP, b PD, c LULC, d DH, e DTR, and f RD.
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each theme layer, as highlighted in Fig. SM3 in the SM 
and Table  12. Table  12 indicates the percentage of FSZ 
changes as each parameter is removed. MRSA further 
showed that the removal of the elevation and slope layers 
increases the very low FSZ area by 42.95% and 24.73% 
and the low FSZ area by 17.32% and 7.18%, respectively, 
as tabulated in Table  12. The largest increases of the 
very low, low, medium, high, and very high flood-prone 
areas are detected in the removal of elevation (42.95%), 
elevation (17.32%), slope (10.42%), distance from the 
river (11.02%), and NDVI (6.41%), respectively. The very 
low, medium, high, and very high flood-prone areas also 
decrease the most in exclusion of the MFI (−  3.37%), 

Distance from the river (− 15.21%), elevation (− 38.30%), 
and elevation (− 44.02%), respectively.

The MRSA results for FVP estimated by removing one 
parameter at a time are listed in Table  13. The higher 
variation index values were found after removing the 
Distance to the hospital. The highest mean SI variation 
value (2.87%) is found when removing the distance to the 
hospital. However, the lowest mean SI variation value 
(− 6.13%) is noticed when removing the total population 
despite the considerable "theoretical" weight attached to 
it. Fig. SM4 in the SM describes the sensitivity index of 
the six FVPs used in this study. Fig. SM5 in the SM shows 
the FVZ with the removal of each parameter.

Table  14 indicates the percentage of FSZ changes as 
each parameter is removed. MRSA further revealed that 
the removal of the LULC layer decreases the very low 
FSZ area by 43.52% and increases the very high FSZ area 
by 70.60%, as tabulated in Table  14. When population 
density (24.72%), total population (11.66%), LULC 
(57.09%), and total population (70.60%) are removed, 
the greatest increases are found in the low, medium, 
high, and very high flood-prone areas. The very low, 
low, medium, and high flood-prone areas also decrease 
the most in exclusion of the LULC (−  43.52%), LULC 

Table 11 Statistics of MRSA of FSP

Parameter removed SI variation (%)

Min Max Mean SD

Elevation 2.49E−06 4.283 0.822 0.635

Slope 3.93E−06 5.177 0.634 0.442

TPI 3.76E−01 1.401 1.036 0.115

TWI 3.38E−05 1.646 1.243 0.158

NDVI 1.32E−01 1.433 1.065 0.127

MNDWI 7.40E−04 1.537 1.109 0.152

DD 2.58E−06 2.094 1.091 0.442

DR 5.52E−07 2.356 1.259 0.429

STI 3.36E−01 1.295 0.875 0.091

SPI 2.89E−01 1.199 0.877 0.091

MFI 6.59E−07 1.917 1.001 0.232

Lithology 1.21E−04 1.566 1.183 0.112

Table 12 The percentage of FSZ changes as each parameter is 
removed

‘ + ’ indicates increased by area and ‘ − ’ indicates decreased by area

Parameters 
removed

FSZ (%)

Very low Low Medium High Very high

Elevation 42.95 17.32 0.45 − 38.30 − 44.02

Slope 24.73 7.18 10.42 − 32.98 − 23.23

TPI 2.44 1.15 0.94 − 4.41 − 0.37

TWI 0.16 0.97 5.18 − 7.74 − 1.45

NDVI 2.39 0.48 − 3.27 − 0.42 6.41

MNDWI − 2.74 0.75 − 3.32 3.46 5.97

DD 20.88 4.51 − 6.90 − 7.10 − 13.87

DR 12.41 3.04 − 15.21 11.02 − 10.13

STI 4.23 4.16 1.90 − 9.13 − 4.59

SPI 4.34 4.08 1.63 − 9.45 − 2.73

MFI − 3.37 0.78 2.59 0.55 2.02

Lithology − 1.48 1.54 − 2.16 0.51 5.90

Table 13 Statistics of MRSA of FVP

Parameters removed SI variation (%)

Min Max Mean SD

Total population − 35.4033 7.1047 − 6.1259 2.3925

Population density − 10.5007 9.7207 − 2.3050 3.6852

Distance to hospital − 22.9092 5.4086 2.8678 2.2893

LULC − 27.2932 8.9878 − 4.5407 2.5453

Road density − 20.9755 6.2315 − 2.9369 1.3728

Distance to road − 79.7511 12.4246 − 2.8645 2.0838

Table 14 The percentage of FVZ changes as each parameter is 
removed

‘ + ’ indicates increased by area and ‘ − ’ indicates decreased by area

Parameters 
removed

FVZ (%)

Very low Low Medium High Very high

Total population − 40.00 0.94 11.66 − 8.56 70.60

Population density − 3.47 24.72 − 4.62 − 20.05 8.40

Distance to hos-
pital

− 19.84 − 3.69 3.24 2.72 42.06

LULC −  43.52 − 30.42 8.41 57.09 7.68

Road density − 19.84 − 3.69 3.24 2.72 42.06

Distance to road − 14.08 − 8.09 6.60 11.15 2.26
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(− 30.42%), population density (− 4.62%), and population 
density (− 20.05%), respectively.

Stillwell ranking methods
Tables  15 and 16 present a side-by-side comparison of 
the weightage assigned to criteria for FSZ using two 
different methods: Saaty’s method from 1980 and Still-
well’s method from 1981. The focus here is on assessing 
any variations in the criteria ranking and the resulting 
weights when applying these two distinct techniques. 
Upon examination of the tables, it is noted that no nota-
ble variations exist in the ranking of criteria between 
Saaty’s method and Stillwell’s method. In other words, 
the order of importance or preference assigned to the cri-
teria remains relatively consistent across both methods.

However, it is noted that the weights associated with 
each criterion may undergo some modifications when 
utilizing Stillwell’s techniques. The adjustments in 
weights are determined by applying the rank sum weight 
(Eq.  21) and reciprocal rank weight (Eq.  22) formulas 

as outlined in Stillwell’s methodology. Despite these 
modifications, the overall ranking of criteria in terms of 
importance appears to be largely unchanged. In essence, 
the analysis suggests that while Stillwell’s method may 
introduce some adjustments to the weights of criteria, 
the fundamental order of importance among the criteria 
for FSZ and FVZ remains similar when compared to 
Saaty’s method. This information provides insights into 
the consistency or stability of the criteria ranking across 
different evaluation methodologies.

Validation of the model
Using the flood inventory map and ROC-AUC, the study 
statistically verified the AHP result. The ’ArcSDM’ tool 
inside the ArcGIS platform was utilized to compare 
the map of FSZ with flooded points and non-flooded 
locations in order to determine the ROC-AUC. Figure 11 
introduces the ROC curve and speedometer, showing 
the AUC for the AHP result. An AUC can evaluate 

Table 15 Comparison of weights for FSZ using various methods

Parameters Saaty 1980 Stillwell 1981

Pairwise Rank sum (RS) Rank reciprocal (RR)

Direct rank AHP n− Rj + 1 Wi(RS) 1

Rj
Wi(RR)

Elevation 1 0.267 12 0.20 1 0.25

Slope 2 0.192 11 0.18 0.5 0.12

TWI 5 0.087 8 0.13 0.20 0.05

TPI 9 0.015 4 0.07 0.11 0.03

NDVI 8 0.028 5 0.08 0.13 0.03

MNDWI 6 0.063 7 0.11 0.17 0.04

Drainage density 3 0.123 10 0.16 0.33 0.08

Distance from river 4 0.122 9 0.15 0.25 0.06

SPI 9 0.015 4 0.07 0.11 0.03

STI 9 0.015 4 0.07 0.11 0.03

MFI 7 0.044 6 0.10 0.14 0.04

Lithology 8 0.028 5 0.08 0.13 0.03

Table 16 Comparison of weights for FVZ using various methods

Parameters Saaty 1980 Stillwell 1981

Pairwise Rank sum (RS) Rank reciprocal (RR)

Direct rank AHP n− Rj + 1 Wi(RS) 1

Rj
Wi(RR)

Total population 1 0.292 5 0.08 1 0.25

Population density 1 0.292 5 0.08 1 0.25

LULC 2 0.176 4 0.07 0.50 0.12

Distance to hospital 3 0.107 3 0.05 0.33 0.08

Distance to road 4 0.075 2 0.03 0.25 0.06

Road density 5 0.059 1 0.02 0.20 0.05
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the accuracy of the prediction model’s outcomes. The 
accuracy of the model increases with increasing AUC 
values and vice versa. An AUC value equal to or less than 
0.5 denotes that the model is unsuitable for the study, 
while an AUC value near 1 denotes the ideal model with 
the maximum accuracy. This study found that the AHP 
technique’s observed accuracy is 0.741 (74.10%). As a 
result, the model effectively generates the FRZ map, and 
it is regarded as a successful conclusion.

Discussion
Flooding is a major global problem due to its potential to 
cause substantial losses to people’s livelihoods, houses, 
and economies. The present study effectively deline-
ated FSZ, FVZ, and FRZ in Nile districts of the Dami-
etta branch of Egypt using an integrated RS and GIS 
approach-based AHP technique. Also successfully deter-
mined the most effective parameters using single param-
eter sensitivity analysis, map removal sensitivity analysis 
and Stillwell ranking techniques.

The AHP method, known for its reliable effectiveness, 
was utilized to calculate pairwise comparisons and 
determine the priority of flood danger characteristics 
based on the weighted coefficients. Expert judgment 
has been used in several research to establish the 
conditioning parameters’ weighting. Elevation, slope, 
TWI, drainage density, and distance to the river were 
identified as the most effective parameters for mapping 
flood susceptibility. In contrast, the distribution of the 
people, population density, LULC, and distance to the 
hospital were the most significant vulnerability factors, 

consistent with the finding of Mitra et al. [8]. Osman and 
Das also identified elevation, slope, drainage density, and 
river proximity as important factors in preparing flood 
prediction map [52]. Bui et al. emphasized that the areas 
close to the river are more susceptible to flooding, and 
it has been demonstrated that increasing the distance 
from the river can significantly lower the flood risks [1]. 
The agreement between these studies and our findings 
showed the robustness our methodology.

However, the causes of the most disagreement and 
uncertainty are often the criteria ratings or weights. 
Therefore, sensitivity analysis is essential to validate the 
weights assigned for AHP [43, 47]. Our study used three 
different sensitivity analyses, confirming the results of 
AHP such as Stillwell ranking techniques, single param-
eter sensitivity analysis and map removal sensitivity anal-
ysis. The single parameter sensitivity analysis shows the 
deviation between the empirical and effective weights, 
whereas map removal sensitivity analysis illustrates the 
sensitivity index among all parameters. This result con-
firms the results of Mitra et  al. (2022), which evaluated 
the APH with sensitivity analysis [16].

Five primary flood risk groups were prepared, such 
as very high, high, moderate, low, and very low risk 
zones using natural breaking technique. Compared 
to the widely used natural breaks, where some classes 
may have a limited or excessive number of values, the 
quantile classification approach, which divides the values 
into groups that include an equal number of values, is 
preferable [53]. The model’s accuracy would probably rise 
with more factors, but this also depends on the research 
region and the availability of the datasets containing the 

Fig. 11 ROC curve and speedometer showing the AUC 
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input conditioning factors. Furthermore, in addition to 
the availability and choice of conditioning factor datasets, 
the output of susceptibility maps may also be influenced 
by the better resolution of the input datasets [53].

Although flooding cannot be completely avoided, it 
may be minimized by adopting the appropriate safety 
measures. This objective necessitates accurate diagnosis 
of susceptible, vulnerable, and risky regions, which is the 
main concern for design reasons. The basis for additional 
analysis, such as risk and hazard mapping, is provided by 
flood susceptibility maps [54]. Disaster management and 
planning authorities may utilize the study to determine 
which regions are most likely to flood and to take the 
appropriate preventative and corrective action to lessen 
the damage that floods cause. Flood-prone locations can 
be identified, and the necessary structural and non-struc-
tural solutions can be implemented to mitigate losses 
associated with floods by mapping FRZ [55].

However, the current approach’s limitations include 
the lack of temporal variations and real-time flood data. 
One of the primary limitations of the current study was 
that, although some other studies, like Tehrany et al. [56] 
and Khosravi et al. [55] had done the same, the identifi-
cation of non-flooding locations was done using Google 
Earth rather than a field survey. The study’s limitations 
are implied by the MCDA approach, which may be fur-
ther adjusted by utilizing high-resolution data and other 
methods that are appropriate for this area. The high 
resolution of LIDAR DEM would have also had a major 
influence on the models’ performance and predictive 
capability, thus more study should be conducted using 
that data rather than ASTER DEM. By using machine 
learning approaches, the research may also make bet-
ter judgments by having a greater understanding of the 
locations that are risk-prone, susceptible to flooding, and 
vulnerable. In order to improve flood prediction, future 
research recommendations include a thorough compara-
tive analysis that evaluates the simplicity and accuracy 
of various machine learning, data mining, multivariate, 
bivariate, and multicriteria decision-making models and 
their ensembles. As with every research, there is a chance 
of inaccuracy and uncertainty in the current study’s find-
ings because of factors such as flood-influencing factors. 
Further study is necessary for each of these factors to 
show how these uncertainties affect the final flood sus-
ceptibility maps. Future studies should take these uncer-
tainties into account by selecting additional flood factors, 
including daily or sub-daily rainfall, and categorizing the 
flood factors in cooperation with stakeholder [57]. Addi-
tional sensitivity analyses might be included in the study 
to enhance the model evaluation.

Conclusions
This study utilized the AHP technique and sensitivity 
analysis for delineating flood risk zonation in Nile dis-
tricts of the Damietta branch of Egypt based on flood 
susceptibility and flood vulnerability. Furthermore, 12 
susceptibility parameters are used for producing FSZ, 
and six vulnerability parameters are used for producing 
FVZ. Using GIS software, the final flood risk map is pro-
duced by combining vulnerability and hazard zonation.

The findings indicate no multicollinearity problem 
between the various susceptibility and vulnerability 
parameters. In this study, elevation (27%), slope (19%), 
drainage density (12%), distance to the river (12%), and 
TWI (09%) were the most prominent factors in esti-
mating the FSZ. Furthermore, the FVZ was primarily 
determined by three factors: total population (29%), 
population density (29%), and LULC (18%). In this 
study, the AUC is used to assess the effectiveness and 
performance of the AHP approach with a 74.1% accu-
racy rate.

According to the results, the area covered by the high 
and very high flood risk classes was 21.40 and 8.26%, 
respectively. Within the research region, the very low, 
low, and moderate flood risk zones were found at 14.07, 
27.01, and 29.26%. The very high and high-risk areas 
are El-Dakahlyia and Damietta. Most of El-Qalubia 
lies in low risk. Thus, in order to enhance the area, a 
sufficient flood risk plan is needed. Additionally, it is 
advised that high-risk areas adjust their flood defense 
strategies. When comparing Stillwell’s technique to 
Saaty’s method, the study indicates that although cer-
tain modifications to the criterion weights may be pro-
duced, the fundamental order of significance between 
the FSZ and FVZ criteria does not change.

Lastly, this study offers promising results about our 
understanding of mapping and assessing flood risk 
zones. However, there are a few limitations that should 
be mentioned. Experts’ weight assignments to the fac-
tors in the MCDA may lead to bias in the final maps. 
Moreover, the majority of the variables were taken from 
medium-resolution remote sensing data, which may 
have reduced the accuracy of the flood prediction.

Using high-resolution data and other appropri-
ate techniques, the MCDA technique may be further 
refined to address the limits of the research. Addi-
tional sensitivity analyses might be incorporated 
into the study to enhance the model evaluation. In 
addition, using parameters derived from LiDAR by 
employing advanced machine learning techniques is 
recommended to enhance understanding of flood sus-
ceptibility, vulnerability, and risk-prone areas, the study 
might potentially lead to more informed conclusions. 
For future studies, this research must be coupled with 
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hydraulic modeling to provide 2D maps for both depth 
and velocity. Decision-makers can thus use this map 
as a guide for possible preventative actions, improved 
land use planning, and flood risk management in the 
context of climate change. To effectively execute risk-
reduction methods, land-use planners and government 
authorities might benefit from having an accurate FSZ, 
FVZ, and FRZ.
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