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Abstract

Biological invasions pose a global challenge, threatening both biodiversity and human well-being. Projections sug-
gest that as invasions increase, the financial costs associated with management and the ecological harm they cause
will also escalate. Here, we examined whether long-term biomonitoring strategies were adequate to identify and track
benthic aquatic non-native macroinvertebrate species by using the German subset (151 time series; 129 of which
reported non-native species) of the currently most comprehensive European long-term dataset of 1816 macroinver-
tebrate community time series from 22 European countries. The detection of aquatic non-native species was directly
linked to the availability of long-term sites and thus, monitoring effort, having identified the spatio-temporal occur-
rence of 32 non-native species. The available long-term monitoring site data were mostly concentrated in the western
part of Germany, predominantly covering the Rhine River and its tributaries. The spatially biased network of long-term
monitoring sites, therefore, naturally skews the detection and reporting of aquatic non-native species toward this area
and underestimates Eastern and Southern regions, impeding the comprehension of invasion dynamics. However,
based on the available data, we found that the absolute number of non-native species increased and the proportion
of non-native species relative to native species decreased over time. This indicates complex ecological interactions
between native and non-native species and underlines the value of long-term data for investigating invasion dynam-
ics. Considering the value of comprehensive monitoring networks, a spatially biased network delays the applica-

tion of management and mitigation plans, possibly worsening the ecological and economic effects of biological
invasions in Germany. The results provided here indicate the disadvantages of biased datasets, but simultaneously
underline the enormous potential of a dense network of long-term monitoring. Our results also highlight the urgent
need to increase and diversify long-term biomonitoring efforts throughout Germany to cover the main freshwater
resources and their connections where the introduction risk of non-native species is the highest. Centrally collating
such data would provide a profound basis for the monitoring of spreading aquatic non-native species and could
serve the implementation of national biosecurity efforts.
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Introduction

The phenomenon of biological invasions, caused by
direct human actions and propelled by anthropogenic
disruptions within natural habitats, presents a global
challenge that affects both biodiversity and human well-
being [23, 66]. The introduction of non-native species
ranks among the principal causes of biodiversity diminu-
tion, accounting for the majority of species extinctions
[5], numerous ecological disturbances [58], and mone-
tary losses [15]. Mirroring the upward trajectory of inva-
sion rates [24, 62], increasing financial costs and growing
ecological threats are expected in the future [3, 24].

Freshwater ecosystems are particularly threatened by
non-native species introductions due to their covering
nature (i.e. hiding non-native species from detection; [29,
49, 60] as well as substantial human alterations and uses
facilitating non-native species introductions [31, 74].
Management strategies in Europe currently aim to tackle
biological invasions through a blend of policy initiatives
and practical measures. At the national level, individual
European countries have increasingly relied on 'black-’ or
‘deny-lists’—although these lists face valid criticisms [13,
67]—as essential tools for prioritising non-native species
for management efforts [6, 17, 19, 55]. Recognizing the
benefits from e.g. canalisation for global trade [9, 51], the
interconnected nature of river systems extending beyond
national borders [18] continues to play a crucial role in
the continental (i.e. European) dispersal of non-native
species [4, 41]. Both international and regional coop-
eration are therefore pivotal [38], with significant legisla-
tion such as the EU Regulation on Invasive Alien Species
(1143/2014) being crucial for safeguarding Europe’s
biodiversity and reducing economic losses. However,
especially for the management or biosecurity measures
for aquatic invasions, the basis remains congruent data,
stemming from continuously surveying aquatic ecosys-
tems. Despite being a demanding and costly endeavour
[73], established long-term monitoring sites remain an
indispensable tool for the understanding and mitigation
of biological invasions at regional [25] or national levels
[33, 34] which are vital not only for preserving biodi-
versity but also for safeguarding economic interests and
public health in the face of ongoing socio-economic chal-
lenges [43].

Germany stands out among European countries due to
its robust economy, high levels of economic activity, and
strategic position at the centre of European trade and
travel networks [70]. Particularly in research-intensive
Germany [45, 78], the effective identification and man-
agement of aquatic non-native species could be facilitated
using existing biodiversity long-term monitoring sites
[47]. Using data from just the Rhine River, Haubrock and
Soto [25] emphasised the value of sustained monitoring
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efforts in detecting aquatic non-native species over space
and time, highlighting the link between increasing non-
native and decreasing native biodiversity. Yet, despite the
evident threat biological invasions pose to Germany’s
economy [23], there remains a notable deficiency in the
availability of comprehensive data on the presence and
ecological as well as economic impacts of non-native spe-
cies. This knowledge gap is particularly surprising con-
sidering (1) the rich scientific history of Germany [40]
and (2) the presence of approximately 1080 non-native
species in this country, with only about 10.7% being rec-
ognised as invasive [26]. Furthermore, the most thorough
recent compilations, such as the Established Alien Spe-
cies in the European Union [30] and the Global Invasive
Species Database (GISD; [56]), indicate that only 8.1% of
the non-native species in Germany are considered inva-
sive based on observed impacts as defining criterium [26,
69]. Given these circumstances, it is crucial to evaluate
the effectiveness of long-term biodiversity monitoring for
the identification and tracking of freshwater invasions in
Germany. This evaluation is essential, because it would
help to systematically bridge existing data gaps, provide
a clearer understanding of the ecological and economic
impacts of non-native species, and improve the manage-
ment and mitigation strategies for these invasions.
Considering how the vast European river networking
has facilitated the spread of numerous non-native spe-
cies [27, 68], the presence of aquatic non-native species
is unlikely contained. This, paired with the pervasive
knowledge gaps outlined above, hinders the effective
management of biological invasion and the implemen-
tation of biosecurity measures (including deny-lists [17,
33, 34, 55]). To generate an overview of the efficacy of
long-term monitoring sites in Germany for the detec-
tion and tracking of aquatic non-native species, we use a
recently collated database of European long-term benthic
macroinvertebrate time series [22]. We aimed to iden-
tify whether available data (1) covers all major German
river networks and (2) if available long-term biomoni-
toring data can comprehensively identify and track the
introduction of aquatic non-native species in Germany
over space and time. While we acknowledge the prob-
able existence of several shortcomings in every database,
including the database collated by Haase et al. [22] (i.e.
inadequate sampling information [28]), we hypothesised
that while (i) the network of available long-term bio-
monitoring sites in Germany may not cover the extensive
river network exhaustively, opening the door for non-
native species spreading undetected, (if) long-term data
can effectively identify non-native species in freshwater
ecosystems and track freshwater invasion in German riv-
ers, even those dating back decades. This research will
contribute to the growing body of studies investigating
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the temporal dynamics of freshwater invasions and the
relationship between invasion dynamics and long-term
biodiversity monitoring.

Methods

Data compilation

We investigated the adequacy of long-term biomonitor-
ing approaches for detecting non-native species in Ger-
many (Supplementary Table 1) using the recently collated
and to date most comprehensive European long-term
database by Haase et al. [22]. This database contains
1816 macroinvertebrate community time series from
rivers and streams in 22 European countries. The data
were collected for purposes such as research projects or
regulatory biomonitoring that meet the following cri-
teria: (i) each time series contained the abundance of
macroinvertebrate taxa, (ii) sampled in a minimum of 8
(not necessarily consecutive) years, and (iii) had consist-
ent sampling effort per site (see [22] for further details).
Although macroinvertebrate community sampling pro-
tocols varied among time series, they were kept consist-
ent over time within each time series. The nativeness of
species in Haase et al. [22] was assessed at the country
level by consulting two open databases: the Global Alien
Species First Record Database [62] and the Invasive Spe-
cies Compendium (CABL www.cabi.org). In case of a
mismatch in the species’ non-nativeness among country
assessments, we followed the Global Alien Species First
Record Database [62] classification as the most reliable
and updated database to date. For a comprehensive expla-
nation of the data used, see Haase et al. [22]. Although
data from the Water Framework Directive-compliant
freshwater ecosystem monitoring has previously been
used to investigate invasion dynamics in Germany [26],
the majority of sites were sampled only once based on
the available data. Furthermore, the duration and num-
ber of samples per site in those that were sampled multi-
ple times are sporadic and highly variable. Consequently,
this data would only allow a space-for-time analytical
approach and would not be compatible with the data
from Haase et al. [22].

Statistical analyses
To evaluate if long-term biodiversity monitoring of
aquatic ecosystems covered all major rivers in Germany
and could effectively be used for the detection of ben-
thic non-native macroinvertebrate species (henceforth
referred to as ‘non-native species’), we first investigated
the spatio-temporal distribution of long-term sites in
Germany and compared these with those that reported
non-native species (hypothesis ).

We then analysed trends in the reporting of non-native
species over space and time with regard to the availability
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of long-term monitoring sites to evaluate whether long-
term data reported in Haase et al. [22] can track non-
native species in Germany (hypothesis i). This was
achieved using a series of Generalised Additive Models
(GAMs) using the mgcv library in R [77]. Every model
contained the respective response variable (i.e. the raw
and the relative non-native species abundance) and the
explanatory variables: ‘year’ to infer temporal trends,
‘longitude and latitude’ using a spherical spline to cor-
rect for spatial autocorrelation, ‘site_id’ to correct for
site-specific effects, and the number of sites sampled per
year to account for differences in the intensity or scale of
sampling across different locations and times. To assess
correlations among predictors [16], we employed the var-
iance inflation factor (VIF) analysis using the vif function
from the R package car [20]). We retained all predic-
tors as none expressed any collinearity (threshold=7).
Moreover, we analysed the relationship between occur-
ring non-native species over time and monitoring sites as
well as the cumulative occurrence of different macroin-
vertebrate groups over time using a series of Pearson’s
product-moment correlations using the cor.test function
of base R. In addition, we investigated the occurrences
of four prominent Ponto-Caspian non-native species (i.e.
the two most frequently reported species Dreissena poly-
morpha and Corophium curvispinum, and the two non-
native species not as frequently reported over space and
time, Eriocheir sinensis and Jaera istri). Note that one
occurrence does not reflect the number of sites, but the
number of individual years a species was reported. All
analyses were performed in R version 4.2.3 [61].

Results
In total, the database from Haase et al. [22] contained
151 German long-term monitoring sites reporting long-
term macroinvertebrate data from 1968 to 2021 (Fig. 1a).
From these, 129 sites (81.13%) reported non-native spe-
cies, covering the period 1971-2019. These sites were
predominantly situated along the Rhine River catchment
and to some degree the Ems. Several sites were placed in
the Weser River catchment, but not in the Weser River
itself. Only one site was on the river Elbe (Fig. 1b).
German long-term data reported in Haase et al. [22]
contained occurrence information for 32 non-native spe-
cies (Supplementary Table 1). The most often reported
non-native was Dreissena polymorpha (n=1157 occur-
rences), followed by Corophium curvispinum (n=610
occurrences), Dugesia tigrina (n=>515; synonymous to
Girardia tigrina), Dikerogammarus villosus (n=439),
Gammarus tigrinus (n=393), Potamopyrgus antipo-
darum (n=263), Jaera istri (n=221), Corbicula flu-
minea (n=217) and Echinogammarus ischnus (n=165).
All other species occurred less than one hundred times
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Fig. 1 Distribution of German long-term biodiversity monitoring sites collated in Haase et al. [22] (a) and the subset reporting non-native species
(b). The colour gradient indicates the year a non-native species was first recorded in the respective site

(Supplementary Table 1). Whereas the yearly raw abun-
dance of non-native species reported in German long-
term biodiversity monitoring sites increased from on
average ~30 individuals in 1971 to~305 individuals in
2019 by+917% (Fig. 2a; Supplementary Table 2), their
relative abundance as a fraction of the invaded commu-
nities decreased over time by~5% (from~16% in 1971
to~11% in 2019), reflecting a decline of~31% (Fig. 2b;
Supplementary Table 3). Both trends over time were
found to be significant (p<0.05). Moreover, site ID and
coordinates were found to be significant as well (p <0.05),
suggesting site-specific and spatial factors affecting the
raw and, respectively, the relative abundance over time.
The number of unique sites sampled per year, however,
only significantly affected the relative abundance of non-
native species. It suggests that the increase in the number
of unique sites sampled per year is associated specifically
with changes in the relative, but not the raw abundance of
non-native species (Supplementary Table 2, 3). It should
be acknowledged that the adjusted R-squared and the
deviance explained of both models was very low (<0.01;
0.2%), indicating that the predictors were not effective in
explaining the variability in the data.

The applied Generalised Additive Model identified a
bell-shaped progression in the reporting of non-native

species per year over time (despite being corrected for
sampling effort), driven by the number of unique sites
sampled per year and reaching the highest value in 2002
with 16 reported non-native species (Fig. 3a; Supple-
mentary Table 4). Concomitantly, the number of sites
monitoring biodiversity per year increased in a compa-
rably bell-shaped progression (Fig. 3b). The increase in
unique sites was significantly correlated with the number
of unique non-native species reported per year (p <0.001;
t=5.09; df=46; R*=0.60) as well as the cumulative
total number of non-native species reported over time
(p<0.951; t=-0.06; df=15; R*=-0.02).

The cumulative number of reported non-native species
(i-e. their first occurrence in long-term biodiversity moni-
toring over time) increased steadily. The first reported
non-native species, Physella acuta, occurred in 1971. By
1980, the number of reported non-native species had
increased to five, increasing to 12 in 1983 and 17 in 1986.
In 2000, the number of non-native species reached 25,
totalling 32 reported non-native species in 2012 (Fig. 4).

Using the two most often reported non-native species
D. polymorpha (Fig. 5a) and C. curvispinum (Fig. 5b), we
identified their first occurrences in the lower Rhine River
close to the Germany-Netherlands border, followed
by their spread along the entire Rhine River in the early
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Additive Model. Please see Supplementary Fig. 1 for the distribution of individual data points
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Fig. 3 The trend in the total number of non-native species reported over time but corrected for sampling effort according to the applied
Generalised Additive Model (a) and the number of unique sites (b; red) and unique non-native species reported per year (b; blue)

1990s. Following the simultaneous emergence of addi-
tional reports along the Rhine River in the 2000s, more
appeared westwards towards the Weser River and iso-
lated occurrences in the Elbe River in the 2010s. While E.
sinensis appeared less frequently, its oldest occurrence in
the lower Weser catchment indicates spread going back

to the 1990s, with one report in the Elbe and three in the
Rhine River, whereas the latest observation was indicated
close to the lower Weser catchment in the period 2006—
2010 (Fig. 5c¢). Jaera istri was identified predominantly in
the Rhine River (aside from one report in the Elbe). Con-
trasting D. polymorpha and C. curvispinum, occurrences
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of J. istri indicated spread outgoing from the upper Rhine
River in the period 1991-1995 downwards, with the lat-
est report in the lower Rhine River as early as 2006—-2010.

Discussion

This study, leveraging the database collated by Haase
et al. [22], provides crucial insights into the efficacy of
existing long-term monitoring sites from German rivers
and streams for detecting non-native species [25, 39]. We
found that while the long-term data successfully captured
several introductions of non-native macroinvertebrate
species dating back decades, the network of monitoring
sites did not comprehensively cover Germany’s extensive
river network, particularly missing significant rivers such
as the Danube. Moreover, the analysis indicated a strong
correlation between research efforts and the detection of
non-native species (thereby also the detection of native
species), highlighting the critical role of continuous
and expanded biomonitoring to detect non-native spe-
cies introductions and understand invasion dynamics in

Germany and subsequently manage biological invasions
effectively.

We also identified opposing trends in the absolute (raw)
and relative abundances of aquatic non-native macroin-
vertebrates since the 1970s. While the absolute number
of non-native specimens increased over time, the relative
abundance of these species decreased, suggesting that
native specimens proliferated even more. This could be
explained by higher productivity of aquatic ecosystems
driven by increased temperatures and eutrophication
[8], but could also indicate a possible resilience of native
species or adaptive responses to changing environmental
conditions [48, 50]. Raw and relative abundances are a
critical metric for the assessment non-native species and
their temporal dynamics (as discussed previously [26,
68], but can also highlight an increase in raw numbers of
non-native species, thus reflecting a stable or even thriv-
ing native biodiversity [63]. Our findings therefore also
indicate that ecosystems may have the capacity to sup-
port higher overall biomass and diversity, where native
species are not necessarily outcompeted by non-native
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ones but coexist, possibly due to niche differentiation
or other ecological mechanisms [12]. Finally, the inverse
nature of the trends in raw and relative abundance identi-
fied here also suggests that management strategies focus-
ing solely on the presence of non-native species without
considering the overall community structure and func-
tion may overlook important aspects of ecosystem health
and resilience [7].

Trends in the raw abundance of non-native species dif-
fered from those in their richness, with the latter show-
ing a bell-shaped distribution peaking around 2006. This
peak could be attributed to the opening of the Rhine-
Main-Danube Canal in 1992 [4], which facilitated an
influx of non-native species from the Ponto-Caspian
region, leading to a temporary surge in non-native spe-
cies richness as new species were introduced and estab-
lished. Additionally, other factors such as changes in
monitoring intensity, improvements in detection meth-
ods, and shifts in regulatory policies might have contrib-
uted to this pattern. The subsequent decline in richness
after the peak could, however, also indicate a satura-
tion point where the ecosystems reached their carrying
capacity for non-native species, thus leading to a ‘boom-
bust’ sigmoidal dynamic [68], while it is unlikely that this
bell-shaped distribution reflects successful management
and mitigation efforts reducing the establishment of non-
native species (see e.g. [2]). Our findings, however, also
underscore the dynamic nature of biological invasions
and highlight the importance of long-term time series
in understanding and managing these events. The early
detection and subsequent spread of D. polymorpha and
C. curvispinum along the Rhine River demonstrate the
rapid and extensive dispersal capabilities of certain non-
native species once they establish in a new environment.
The less frequent but notable occurrences of E. sinensis
(being among the oldest captured in the data from [22])
and /. istri further emphasize the variability in invasion
success and spread among different species. The histori-
cal monitoring data from Germany’s freshwater ecosys-
tems, therefore, do provide invaluable insights into the
temporal and spatial patterns of these invasions, reveal-
ing critical periods and locations of introduction and
expansion, despite being limited.

The dataset from Haase et al. [22] provides a compre-
hensive overview of the long-term macroinvertebrate
data from 151 riverine long-term biodiversity moni-
toring sites, yet primarily focuses on the Rhine River
catchment and, to a lesser extent, the Ems and Weser
catchments. Notably, major river systems like the Elbe
are under-represented or even absent as in the case of the
Danube. This is a considerable shortcoming considering
that monitoring data from e.g. the River Elbe revealed
a poor ecological quality due to high pollution [59, 75,
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76]. Ecological disturbances are of critical importance
for biological invasions, as they increase the potential
for non-native species introductions and their respective
outgoing spread through these river systems [21]. How-
ever, despite data being scarce before the German reunifi-
cation, this lack of data [64] could have been exacerbated
by the strict criteria for data to be included in Haase et al.
[22], e.g. a minimum of 8 sampling years within a period
of 15 years. This criterium might have resulted in numer-
ous sites not being included (i.e. from the Integrated
European Long-Term Ecosystem, critical zone and socio-
ecological Research; eLTER; [46]) or others such as data
obtained in the light of the Water Framework Directive-
related monitoring activities [52].

The potential for non-native species to spread across
the German river network is significantly heightened by
the interconnected nature of these waterways, particu-
larly with artificial links such as the Rhine-Main-Danube
Canal opened in 1992, facilitating the spread of Ponto-
Caspian species into European, and particularly German
waters, a phenomenon termed "Ponto-Caspianization”
[68]. This man-made canal especially serves as a direct
link between several major basins, potentially accelerat-
ing the dispersal of non-native species across ecologi-
cal barriers [4, 68]. The geographical concentration of
monitoring sites in West Germany is due to several fac-
tors, including the responsibility of the Bundesanstalt fiir
Gewdsserkunde (BfG), which has focused on the Rhine
for decades due to its location in Koblenz and the Rhine’s
status as the main navigable river in Germany due to its
connection to the Rhine-Main-Danube canal. This sug-
gests a regional bias that could lead to an underestimation
of non-native species richness in the national context.
This spatial bias implies that the reported increase in
non-native species, from the initial detection of Physella
acuta in 1971 to a total of 32 species by 2012, might not
fully capture the scope of biological invasions across Ger-
many’s riverine ecosystems [53]. Indeed, the Global Alien
Species First Record Database [62] lists 243 non-native
macroinvertebrate species in Germany’s freshwater eco-
systems, indicating that long-term data (originating from
purely riverine ecosystems) used in this work identified
only 13.2% of this non-native group. Despite data from
Haase et al. [22] encompassing only data from rivers and
streams, this percentage is low, but could indeed reflect
the lack of lentic ecosystems, regional differences, or sites
not coinciding with invasion hotspots [14]. Moreover, the
significant trends observed in the raw and relative abun-
dance of non-native species, alongside the bell-shaped
progression of reporting and monitoring efforts, indicate
a dynamic interplay between human activity, monitor-
ing intensity, and non-native species proliferation [10, 35,
44]. Therefore, while the study sheds light on important
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trends and patterns, it also emphasizes the need for more
comprehensive monitoring efforts [37, 71] that include
all major German river systems and account for anthro-
pogenic influences like canal constructions, to better
understand and manage the impacts of non-native spe-
cies on Germany’s biodiversity.

Higher research effort generally translates into higher
species detection rates, suggesting that the intensity and
scope of investigation directly influence the likelihood of
identifying non-native species [36, 54]. Despite poten-
tial shortcomings in detecting non-native species with
the currently employed long-term biomonitoring efforts
[28], there exists a clear connection between the num-
ber of unique sites reporting non-native species and the
total number of reported non-native species. The cur-
rent distribution of long-term monitoring sites, which
predominantly focuses on the western part of Germany,
inherently skews the detection and reporting of non-
native species towards this region, leaving the Eastern
and Southern parts of the country under-monitored. It
can, therefore, be assumed that the observed decline in
total non-native species richness in recent years may
not accurately reflect real trends but rather indicate a
monitoring effort-linked lag time in the reporting of non-
native species and the nature of our dataset, underscor-
ing (a) the critical need for continuous and expanded
surveillance to capture a more accurate picture of species
introductions and dynamics over time (b) the value of
increasing the number of monitoring sites in the future
to monitor their population growth and spread.

Biosecurity and management efforts [1, 42] are needed
to mitigate the threat posed by biological invasions, in
particular in the face of staggering introduction rates [3,
65] and implemented regulations like EU Regulation No.
1143/2014 "on the prevention and management of the
introduction and spread of invasive alien species" or of
the EU Biodiversity Strategy for 2030, which contains the
commitment to manage established invasive alien spe-
cies. Highlighting the critical role of sustained research
efforts in shedding light on the presence and spread of
non-native species within aquatic ecosystems, the find-
ings demonstrate that increased research activity, as evi-
denced by the number of unique sites and the volume of
data collected over time, is fundamentally linked to the
enhanced detection and understanding of non-native
species richness. Such correlations highlight the impor-
tance of comprehensive and continuous biomonitoring
programs to accurately assess and mitigate the impacts
of non-native species on local biodiversity and ecosystem
health [11, 32, 72]. Having identified spatio-temporal pat-
terns in the occurrence of non-native species, this lack
of spatially more coherent and comprehensive coverage
across the entire German river network risks allowing
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non-native species to establish and spread largely unde-
tected. Such a scenario not only hinders our understand-
ing of invasion dynamics and ecosystem health across
Germany, but also delays the implementation of effective
management and mitigation strategies tailored to these
underrepresented regions, potentially exacerbating the
ecological and economic impacts of biological invasions,
thus minimizing the effectiveness and reliability of deny-
list approaches [17, 55]. Thus, only with a coherent net-
work of sites monitored consistently over time, changes
in biodiversity and drivers of its deterioration (including
non-native species), can be adequately assessed. Consid-
ering the large research and development expenditure
(reaching 112.6 billion € in 2021, 3.13% of the national
GDP; www.destatis.de) and the high scientific productiv-
ity in Germany [57], it is likely that the observed spatial
coverage of long-term sites, and thus the detection rate
of non-native species, might be even lower in other coun-
tries, underlining the importance of the so-far collected
data concomitant to the need to extend the existing long-
term monitoring network.

Conclusion

The findings presented here underline the critical need
for expanding and diversifying long-term biomonitoring
efforts across Germany, especially at the intersections
of major rivers and canals where the risk of non-native
species introduction and spread is particularly high.
Such an expansion is not only crucial for achieving a
more comprehensive and representative understanding
of the current state and trends of aquatic ecosystems,
but also indispensable for the early detection of newly
arriving non-native species. Moreover, long-term trend
analysis, afforded by extensive monitoring efforts, holds
invaluable potential for describing temporal trends in
non-native species abundance and distribution, facilitat-
ing prompt and well-informed management strategies.
Consequently, to safeguard biodiversity and maintain the
ecological integrity of Germany’s aquatic ecosystems, it is
essential to invest in and commit to more geographically
extensive and strategically placed long-term biomonitor-
ing sites.
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