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Abstract 

The release rate of  CO2 gas can be influenced by peatlands’ physical properties, such as water level and soil mois-
ture, and rainfall. To anticipate the unstable condition which is when the peatland emit more carbon, we developed 
the Generalized Space Time Autoregressive (GSTAR) model in predicting these physical properties for the follow-
ing weeks. As the innovation in modelling, the spatial weight matrix was based on three-dimensional coordinates 
with a modification on the height factor. The data we used are real-time data of water level on the peatlands 
in Pulang Pisau Regency, Central Kalimantan Province from 20 February 2021 to 18 March 2023. We then used Ordi-
nary Kriging interpolation on the prediction results to create contour maps on different dates. There were empty data 
on several dates, especially from 24 March until 3 August 2022. To fill the empty data, we used linear interpolation 
and then we added white noise to the interpolation results. From the data, the water level has a downward trend 
pattern from around November to September and an upward trend pattern from October to November. Furthermore, 
we found that the best model for water level was GSTAR (2;0.1) with a modified matrix a = 0.1 and b = 1.1 . Based 
on the predicted water level, there is a risk of changes in the properties of the peatlands in several areas in Pulang 
Pisau Regency.
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Introduction
One of the most important roles of peatlands on the envi-
ronment is their function as the largest carbon storage. 
On a global scale, peatlands can store twice as much car-
bon as other forests in total. Peatlands accumulate vast 
amounts of carbon in the long term over thousands of 
years, because the absorbed carbon through plant photo-
synthesis is not all released back into the atmosphere as a 
consequence of incomplete decomposition. However, the 
condition changes dramatically for peatlands in unstable 
conditions, because they could release huge amounts of 
carbon that has been stored. The unstable condition can 
be caused by drainage and fires, which commonly occur 
on degraded peatlands [6]. This condition could affect the 
global carbon cycle and contribute positively to global 
warming.

The rate of carbon input and release from the peat-
land is significantly affected by the water level position 
[5, 13, 15, 16, 35]. A shallow water level position leads to 
the shorter residence time of plant litter or organic mat-
ter in an unsaturated zone that supports carbon accu-
mulation. Contrastingly, a deeper water level increases 
the thickness of the unsaturated zone, which results in a 
more significant carbon release from the peatland [17]. 
Furthermore, a deep water level position could produce 
peatland fire [33] and leads to the unstable condition of 
the peatland. Therefore, modelling and predicting the 
water level are crucial to anticipate the unstable condi-
tion of the peatland.

The water level can be modelled by deterministic or 
stochastic approaches. The deterministic models [5, 
17, 35] do not capture the uncertainties of the system 
that could influence the model outputs. Contrastingly, 
the stochastic models involve uncertainties that might 
improve the model capability and accuracy, particularly 
for complex systems including peatland water level. 
Tamea et  al. [32] developed a stochastic model of the 
water level for the wetlands that can describe a long-term 
probability distribution of water level depth in tempo-
rarily inundated sites. However, this model ignores the 
influence of spatial interactions on the water level posi-
tion, which becomes a significant limitation. The field 
observation from Lewis et al. [14] showed that the water 
level is located in a deeper position at the margin com-
pared to the centre on the peatland due to the variations 
in hydraulic conductivity and bulk density. This condition 

is also supported by the simulation from Mahdiyasa et al. 
[15, 16], who found the spatial variability of the peatland 
water level through the fully coupled mechanical-ecohy-
drological model.

To overcome these problems, we propose a novel 
stochastic approach through the Generalized Space 
Time Autoregressive (GSTAR) combined with Krig-
ing to provide the future value and spatial interpola-
tion of water level position. The GSTAR model can be 
employed to predict the future outcome of random 
variables that are affected not only by past observations 
but also by observations in neighbouring regions [4, 
8, 22]. The GSTAR is the extension of the Space Time 
Autoregressive (STAR) model [29], because it allows 
the autoregressive parameters to vary across locations. 
The specific characteristic of GSTAR is the inclusion of 
a weight matrix that captures the spatial relationship 
between different locations [27].

The GSTAR model has rapidly developed both in 
theory and application. On the theoretical side, the 
development of weight matrices has been carried 
out using various approaches, including the kernel 
approach [37] and minimum spanning tree [24]. In 
application, the GSTAR model has been explored for 
economic [26], oil palm production [21], commod-
ity prices [10], tea production [36], criminal cases 
[18], coffee berry borer attack [30], Dengue Fever 
cases [22], layer peat soil [12], rainfall [34], copper 
and gold grades [28], toll gates density [25], COVID-
19 cases [8], and climate data [31]. Those applica-
tions considered the spatial dependency among time 
series observations in many locations and used the 
two-dimensional weight matrices. Here, by consid-
ering that the current water level can be seen as the 
impact of the previous water level in same locations as 
well its neighbour locations, then the GSTAR model-
ling be applied. Furthermore, since the peatlands have 
the thickness variable, it is deemed necessary to use a 
three-dimensional weight matrix.

The location for this study is the Pulang Pisau Regency, 
Central Kalimantan Province, Indonesia. The region 
features a mix of lowlands and wetlands, with a signifi-
cant portion of its land covered by peatlands. Similar 
to the other area of Central Kalimantan, Pulang Pisau 
experiences a tropical rainforest climate, with mon-
soon season. One of the most significant issues in the 
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Central Kalimantan area is the peatland fires. For exam-
ple, around 20324 peatland fires were detected in the 
Central Kalimantan in 2015, which becomes the high-
est density of peatland fires in South East Asia [7, 19]. 
The distribution of peatland fires indicate the maximum 
number of fire appear in August until October, which is 
related to the long dry season and strong El Nino phe-
nomenon [9].

This paper, therefore, sets out to (1) develop a three-
dimensional spatial weight matrix for Generalized Space 
Time Autoregressive (GSTAR) that involves the height 
factor, (2) estimate the future value of water level position 
through GSTAR model, and (3) produce water level map 
of the peatland in Pulang Pisau Regency, Central Kalim-
antan Province, Indonesia as the case study.

The spatial weight matrix
Suppose {Yi,t} denotes a process with zero mean at the i-
th location. Suppose {Y t} denotes a process vector with 
zero mean and �kℓ = diag

(
φ
(1)
kℓ , . . . ,φ

(N )

kℓ

)
 where φ(i)

kℓ 
denotes the autoregressive parameter at time lag k and 
spatial lag ℓ for location i . If {Y t} follows the 
GSTAR(p; �1, . . . , �p ) model, we get

 where the vector Y t represents the observation vector at 
N  locations with Y t =

(
Y1,t ,Y2,t , . . . ,YN ,t

)′ ; matrix W (ℓ) 
represents the spatial weight matrix at spatial lag ℓ  
with W (ℓ) =

(
w
(ℓ)
ij

)
 ; the notation εt states the error  

vector at the time t which is a white noise with 
εt = (ε1t , ε2t , . . . , εNt)

′ [37].
The spatial weight matrix 

(
W (ℓ) =

{
w
(ℓ)
ij

})
 serves to 

describe the spatial relationship between locations. The 
elements of the spatial weight matrix w(ℓ)

ij  represent the 
weight of the spatial relationship between location j and 
location i . Determining the value of w(ℓ)

ij  is strongly influ-
enced by the spatial lag order definition.

In this paper, we defined a spatial lag order which 
resembles a layered rhombus. This definition is a devel-
opment of the square grid system [3] and the geographic 

Y t =
∑p

k=1

∑�k

ℓ=0
�kℓW

(ℓ)Y t−k + εt ,

location definition [26]. Suppose si represents the i th ref-
erence location’s square in the grid with its two-dimen-
sional coordinates, namely ( pi,qi ), for i = 1,2, . . . ,N  . 
Assume there is only one location in si . Neighbours 
ordered ℓ = 1 from the location located in si are locations 
with squares directly adjacent to si . This makes neigh-
bours of order ℓ = 1 located in squares with their two-
dimensional coordinates, namely (pi − 1, qi) , (pi + 1, qi) , 
(pi, qi − 1) , or (pi, qi + 1) . For order ℓ = 2, 3, . . . , neigh-
bours of order ℓ are all neighbours of order ( ℓ− 1 ) from 
neighbours of order ( ℓ− 1 ) of the location located in si 
other than the reference location itself. As an alternative 
definition, a location located in sj is an ℓ th order neigh-
bour of a location located in si if

where C is a positive constant. An illustrative example of 
this definition is shown in Fig. 1.

After defining the spatial lag order, we can formulate 
the spatial weight matrix for each respective spatial lag. 

(1)C(ℓ− 1) <
∣∣pj − pi

∣∣+
∣∣qj − qi

∣∣ ≤ Cℓ,

Fig. 1 Illustration of the spatial lag order definition resulting 
from the development for C = 2



Page 4 of 15Mukhaiyar et al. Environmental Sciences Europe          (2024) 36:180 

To accommodate peatlands that have a thickness fac-
tor, a three-dimensional weight matrix was developed. 
In determining the weight value in three dimensions, we 
proposed the following three ways.

1) Three‑dimensional distance inverse matrix 
with modifications to the height element
Let WMod (ℓ) =

{
wMod(ℓ)

ij

}
 represents a three-dimen-

sional inverse distance spatial weight matrix with mod-
ifications to the height element having dimensions 
N × N  with ℓ th spatial lag order. The matrix WMod (ℓ) is 
the normalized form of WSH (ℓ)

=

{
wSH (ℓ)

ij

}
 which is the 

Hadamard multiplication matrix between matrices S(ℓ) 
and H which has the same dimensions as WMod (ℓ).

The matrix S(ℓ) represents the spatial relationship 
between locations in two dimensions with ℓ spatial lag 

order with  where 

With dij denotes the distance between the centre of 
the reference location i and the neighbour j according 
to its position in the plane.

The matrix H represents the spatial relationship 
between locations according to the difference in height 
with  . Thus, the  element represents the 
weight by height of the neighbour j towards the refer-
ence location i , so it can be defined

where a, b ≥ 0 is a fixed parameter, li represents the 
height of the centre of the reference location i , lj repre-
sents the height of the centre of the neighbouring loca-
tion j , dij represents the euclidian distance between the 
centres of locations i and j on the plane, and ⌈ is a con-
stant. In this paper, we define ⌈ as the average distance 

from each pair of reference locations and neighbouring 
locations.

By combining the matrices S(ℓ) and H through ele-
ment-by-element multiplication, we get the matrix

With operator ⨀ represents the Hadamard matrix 
multiplication [20]. After obtaining WSH (ℓ) , WMod (ℓ) 
can be obtained through this equation for the elements

To determine the value of hij , there are two alterna-
tives in determining the value of a and b , and both are

a. Using a = 0.1 and b = 1.1 [20].
b. Using the assumption of the smallest distance value.

Suppose z =
∣∣li − lj

∣∣.
Suppose we define a function

Assume the smallest z is z = 10−4 and the difference 
between 1 and 1

bza
 with z = 10−4 is 10−4 , we then deter-

mine the values of a and b , so that

With a ≥ 0 and b > 1 . Therefore, we obtain

With a ≥ 0 and b > 1 . From this equation, the value 
of b can be obtained by the following equation:

Therefore, it can be defined

(2)wMod(ℓ)

ij =
wSH (ℓ)

ij
∑N

j=1 w
SH (ℓ)

ij

.

f (a, b, z) =
1

bza
, a ≥ 0, b > 0, z > 0.

1

b
(
10−4

)a + 10−4 = 1.

1

b
(
10−4

)a = 0.9999.

b =
1

0.9999(0.0001)a
.
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Since 1
b|li−lj|

a = f  , we obtain

with a a fixed parameter.
From the equation above, for li  = lj and dij ≤ ⌈ , the 

value of 〈ij will decrease following the increase in the 
value of a . This states that the greater the value of a , the 
smaller the weight of location j towards the reference 
location i if locations i and j have different heights. Fur-
thermore, the value a = 0 causes hij = 0.9999 for li  = lj 

f =
1

1
0.9999(0.0001)a

za
= 0.9999

(
0.0001

z

)a

.

and dij ≤ d so wSH
ij

(ℓ)
≈ ∫ (ℓ)ij  . Hence, for a = 0 , the differ-

ence in height has no effect in determining the weight of 
the neighbouring location towards the reference location.

2) Three‑dimensional distance inverse matrix 
without modification

Let WInv(ℓ) =

{
wInv(ℓ)

ij

}
 represents an unmodified three-

dimensional inverse distance spatial weight matrix with 
N × N  dimensions with ℓ th spatial lag order. Then, it can 
be defined that

if location j is the ℓ th neighbour of location i or 
wInv(ℓ)

ij = 0 if otherwise where d∗ij represents the euclidian 
distance between the centres of location i and j in three-
dimensional space. The d∗ij value can be obtained by the 
following equation:

 where (pi, qi) and 
(
pj , qj

)
 , respectively, represent the 

coordinates of locations i and j on the plane, and ri and 
rj , respectively, represent the heights of locations i and j.

Uniform weight matrix
Let WUnif (ℓ) =

{
wunif (ℓ)

ij

}
 denotes a uniform weight 

matrix with ℓ th spatial lag order. Then, it can be defined 
that

(3)w
Inv (ℓ)
ij =

1
d∗ij∑N
j=1

1
d∗ij

d∗ij =

√(
pi − pj

)2
+

(
qi − qj

)2
+

(
ri − rj

)2
,

(4)w
unif

(ℓ)
ij =

{
1

n
(ℓ)
i

, if location j is the ℓth neighbour of location i

0, if location j is not the ℓth neighbour of location i

with n(ℓ)i  denotes the number of locations which are the ℓ 
th neighbours of location i [26].

The GSTAR‑Kriging modelling
In this paper, we analysed the water level using the 
GSTAR model. The GSTAR modelling consisted of model 
identification, parameter estimation, and diagnostic tests. 
Then, we used Ordinary Kriging interpolation to create 
contour maps of the water level on the observed area. 
The flowchart of GSTAR-Kriging modelling be presented 
in Fig. 2 and the detail steps are explained in Algorithm 1.
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Algorithm 1 GSTAR-Kriging modelling
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Data
The data used in this paper are the average daily 
water level at peatland location points in Pulang Pisau 
Regency, Central Kalimantan Province from 20 Feb-
ruary 2021 to 18 March 2023 with 7  days apart. The 
data were obtained from the Peatland and Mangrove 

Restoration Agency of Republic of Indonesia (BRGM 
Indonesia) via the prims.brg.go.id website. In addi-
tion, data on the distribution of peat thickness were 
also taken from the Indonesian Centre for Agricultural 
Land Resources Research and Development (BBSDLP) 
in 2019 from the same site. Information about the 

Fig. 2 Flowchart of GSTAR-Kriging modelling (a) and flowchart of kriging modelling in GSTAR-Kriging modelling (b)
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location points used is shown in Fig. 3 with the location 
names decided by the author. For water level, let loca-
tions 1, 2, 3, 4, 5, and 6, respectively, represent Jabiren, 
Jabiren2, Jabiren5, Jabiren7, Kahayan Hilir, and Pandih 
Batu. The position of the location points used along 
with their thickness level can also be seen in Fig. 3.

From the data obtained, it turns out that there are 
several dates with empty observation values. To over-
come this problem, a linear interpolation was carried 
out to fill in the gaps as seen in Fig.  4. After that, the 
interpolation results were summed with white noise 
or the simulation results of a normally distributed data 
with zero mean and variance according to the data.

The combined numerical summary of the original 
data and interpolated results for water level is shown 
in Table  1. In Fig.  4, the water level tends to fall from 
November 2021 to August 2022 and then rises again as 
we enter October 2022 at all locations except Jabiren2. 
At Jabiren2, water level tends to fall from February 
2022 to August 2022.

The longitude and latitude coordinates of each loca-
tion were then converted according to the Universal 
Transverse Mercator (UTM) coordinate system, spe-
cifically in the 50S Zone. In addition, the elevation 
position of each location was obtained by subtracting 
the midpoint of the thickness range by 7 m (the largest 
number in the peat thickness range), so that a height 
position of 7  m was used as a reference point. Hence, 

with this definition, the coordinates of each location on 
the plane and the altitude position used were obtained, 
as shown in Table 2.

Results and discussion
The GSTAR modelling begins by defining the spatial lag 
order for the lag spatial weight matrix. For that purpose, 
we defined a grid as be shown in Fig.  5. To guarantee 
that each location has at least one neighbour location 
in its second spatial lag order, we use C = 4 for Eq.  (1). 
It also can reduce the possibility of error in the param-
eter estimation process. In Fig. 5, each grid has a size of 
7500m× 7500m.

The candidate models were identified using the 
STACF and STPACF [29]. The obtained models were 
GSTAR(2,0,1) and GSTAR(2;1,1) with modification 
and conventional weight matrices. After obtaining the 
candidate models from the model identification stage, 
parameter estimation and then diagnostic testing can be 
performed. For the diagnostic test, the Inverse of Auto-
covariance Matrix (IAcM) approach was used to test 
stationarity [23], the Ljung–Box test to examine the inde-
pendent nature of the residuals, and the Kolmogorov–
Smirnov test to check for normality with a zero mean of 
the residuals. For the Ljung–Box test and the Kolmogo-
rov–Smirnov test, a significance level of 0.05 was used. 
The candidate models which passed the stationarity test 
and the independence test, be compared according to the 
Mean Squared Error (MSE) using the training data (in 
sample) and the testing data (out sample). In this paper, 
MSE in sample is defined as the average of squared dif-
ference between the training data and model estimation 
of the training data, while MSE out sample is defined as 
average of squared difference between the testing data 
and prediction from the training data. The MSE compari-
son between the GSTAR model candidates is shown in 
Table 3. The smaller the MSE, the better the model and 
the more valid the model is.

From Table  3, GSTAR(2;1,1) with a modified matrix 
a = 0.1 and b = 1.1 has the lowest MSE in sample value, 
while GSTAR(2;0,1) with a modified matrix a = 0.1 and 
b = 1.1 has the lowest MSE out sample value, indicating 
that GSTAR(2;1,1) with a modified matrix a = 0.1 and 
b = 1.1 is the best model in estimating the training data, 
while GSTAR(2;0,1) with a modified matrix a = 0.1 and 
b = 1.1 is the best model in predicting the testing data. 
Because the main objective is to estimate the future value 
of water level, GSTAR(2;0,1) with a modified matrix 
a = 0.1 and b = 1.1 was chosen as the best model for 
water level. This indicates that the water level is affected 
by the values of that location and the values of the neigh-
bouring locations in the past. However, the difference 
in the altitude position between the locations only has 

Fig. 3 Map of the observed groundwater level (GWL) measurement 
location points along with the distribution of peatland thickness 
according to BBSDLP in 2019



Page 9 of 15Mukhaiyar et al. Environmental Sciences Europe          (2024) 36:180  

Fig. 4 Water level graphs in meters of the original data (black) and the interpolated results (red) for Jabiren (a), Jabiren2 (b), Jabiren5 (c), Jabiren7 
(d), Kahayan Hilir (e), and Pandih Batu (f). The green arrows show an increasing trend, while the orange arrows show a decreasing trend
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a significant effect on the weights for water level on the 
spatial weight matrix. The obtained models for water 
level in each location, which is marked with the dark blue 
for Jabiren, green for Jabiren2, brown for Jabiren5, grey 
for Jabiren7, purple for Kahayan Hilir, and blue for Pan-
dih Batu, can be expressed as follows:

In the above equation, black marks positive coeffi-
cients, red marks negative coefficients, and bold marks 
significant coefficients. The above equation indicates 
that water level at Jabiren 7  days prior ( Y1,t ) contrib-
utes positively to the present water level at Jabiren ( ̂Y1,t) 
with coeficient 0.640, while the 14  days prior water 
level at Jabiren ( Y1,t−2 ) and Jabiren2 ( Y2,t−2) contributes 
negatively to the present water level at Jabiren, with 
respective coefficients are –0.013 and –0.506. Overall, 

for each location i = 1,2, . . . , 6 , the 7  days prior water 
level of respective location ( Yi,t−1 ) has the positive and 
biggest influence to the current water level ( Yi,t) . As for 
the neighbour locations have less significant influences 
to its reference locations, except for Jabiren2 which has 
negative and positive contribute to Jabiren and Pandih 
Batu consecutively. As a note, all locations have smaller 
positive contribution to Pandih Batu. From those mod-
els, we suspect that Jabiren2 has important roles to pre-
dict the water level in Pulang Pisau Region.

After testing the significance of the parameters, 
predictions were made for the next 5  weeks using the 
best model. Predictions for water level are shown in 
Fig.  6. From the prediction results in Fig.  6, the water 
level tends to decrease at Jabiren, Jabiren7, and Pandih 
Batu, tends to increase at Jabiren2 and Kahayan Hilir, 
and tends to remain constant at Jabiren5. The results 

indicate that there is heterogeneity in the movement of 
the water level at various points of peatland locations 
in Pulang Pisau Regency. Besides that, the model is 
adequate in estimating the water level at Jabiren2 and 
Jabiren7. However, the model overestimates the water 
level at Jabiren5 and Kahayan Hilir and underestimates 
the water level at Jabiren and Pandih Batu. From Fig. 3, 
Jabiren2, Jabiren5, Jabiren7, and Kahayan Hilir are in 
proximity, with the shortest distance between locations 

Table 1 Numerical summary of water level (m) at the observed location points

Jabiren Jabiren2 Jabiren5 Jabiren7 Kahayan Hilir Pandih Batu

Sample size 109.000 109.000 109.000 109.000 109.000 109.000

Mean 0.123 −0.450 −0.219 −0.382 −0.424 −0.015

Standard deviation 0.249 0.089 0.188 0.201 0.335 0.174

Median 0.119 −0.442 −0.182 −0.356 −0.537 −0.019

Minimum −0.335 −0.715 −0.672 −0.878 −1.073 −0.776

Maximum 1.079 −0.220 0.161 0.083 0.379 0.351

Skewness 0.814 −0.417 −0.736 −0.212 0.483 −0.549

Kurtosis 1.472 0.193 −0.138 −0.796 −0.743 2.053

Table 2 Coordinate of each location in meters (m)

Location name Longitude (m) Latitude (m) Altitude (m)

Jabiren 173642.612 9742898.370 −3.0

Jabiren2 185264.310 9721895.187 −4.5

Jabiren5 187735.042 9711829.913 −4.5

Jabiren7 185273.007 9717911.155 −4.5

Kahayan Hilir 190877.919 9699995.884 −4.5

Pandih Batu 175527.045 9654360.647 −4.5
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is the distance between Jabiren2 and Jabiren7, while 
Jabiren and Pandih Batu are far from other locations. 
There is a possibility that the goodness of the model at 
each location is related to the closeness of the location 
with other locations. From Fig. 6, the model estimation 
is adequate for the locations with the shortest distance 
to another location, overestimate for the locations with 

a distance to another location which is slightly further 
than the shortest distance, and underestimate for the 
locations with the longest distance to another location.

By obtaining the prediction results for each variable, 
we will see the interpolation of the observed values of 
location points that were not observed through ordi-
nary kriging on the observation and prediction dates, 

Fig. 5 Defining the 15 × 6 grid at the observed location points (a) and spatial lag order resulting from the development for C = 4 of reference 
location Kahayan Hilir (b)

Table 3 Selection of the best model for water level (no differencing)

GSTAR order Spatial weight matrix MSE in sample ( ×10
−4) MSE out 

sample 
( ×10

−4)

(2;0,1) Modification a = 0.1 , b = 1.1 206.158 282.716

a = 0 , b =
(0.0001)−a

0.9999
206.164 282.783

Conventional Inverse distance 206.164 282.783

Uniform 206.849 285.527

(2;1,1) Modification a = 0.1 , b = 1.1 203.249 282.842

a = 0 , b =
(0.0001)−a

0.9999
203.254 282.979

Conventional Inverse distance 203.254 282.979

Uniform 203.783 286.604
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Fig. 6 Water level graphs in meters of the original data (training, black and testing, orange), the interpolation results (red), GSTAR(2;0,1) model 
with modified matrices a = 0.1 and b = 1.1 estimation results (green), and the prediction results (blue) for Jabiren (a), Jabiren2 (b), Jabiren5 (c), 
Jabiren7 (d), Kahayan Hilir (e), and Pandih Batu (f). The arrow at the end shows the trend of prediction. The green arrow shows an increasing trend, 
the orange arrow shows a decreasing trend, while the blue arrow shows no trend
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Table 4 Ordinary Kriging parameters for water level with three neighbours

Date Model Maximum distance Lag (h) Nugget Sill Range RMSE

04/03/2023 Linear 53134.665 5000 0.001 0.157 2.9 ×  104 0.052

18/03/2023 Linear 53134.665 5000 0.000 0.151 3.0 ×  104 0.044

01/04/2023 Exponential 88557.775 10000 0.002 0.054 0.326 0.029

15/04/2023 Linear to Sill 53134.665 10000 0.000 0.044 0.174 0.011

Fig. 7 Water level contour maps from data and predicted results on 4 March 2023, 11 March 2023, 18 March 2023, 25 March 2023, 1 April 2023, 8 
April 2023, April 15, 2023, and 22 April 2023
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namely from 4 March 2023 to 22 April 2023. Some set 
of parameters used in ordinary kriging for water level 
is shown in Table  4. Through ordinary kriging, the 
obtained contour maps are shown in Fig. 7.

From the contour maps made using the QGIS appli-
cation, patterns of the water level can be obtained in 
March and April 2023. In Fig.  7, from 4 March 2023 
to 25 March 2023, the water level in all areas tends to 
fall, while from 1 April 2023 to 22 April 2023, the water 
level in the areas around Jabiren and Kahayan Hilir 
fluctuates, while in other areas, it tends to be stable. 
Thus, the area in the middle is always the area with the 
lowest value indicating that the area is drier than the 
other areas. There is a possibility that this was caused 
by growing settlement development due to the exist-
ence of the Trans Kalimantan Road which connects 
Banjarmasin City and Palangka Raya City [1, 11]. This 
development may have caused the soil to harden which 
can cause drying and backfilling in several areas.

If the water level falls below 0.4  m below the ground 
surface, there can also be a change in the characteristics 
of the peatland [2]. In Fig.  7, the peatland area around 
Kahayan Hilir had a change in the characteristics from 4 
March 2023 to 18 March 2023. The peatland around Jab-
iren2 had a change in the characteristics from 11 March 
2023 to 22 April 2023. The peatland around Pandih Batu 
had a change in the characteristics at 22 April 2023.

Conclusion
In this paper, GSTAR modelling has been used to predict 
water level from peatlands in Pulang Pisau Regency, Cen-
tral Kalimantan Province. Some conclusions can be writ-
ten as follow:

1. The water level at almost every location has a down-
ward trend pattern from around November to Sep-
tember and an upward trend pattern from October 
to November.

2. The best model for water level is GSTAR(2;0.1) with 
a modified matrix a = 0.1 and b = 1.1 . It has been 
predicted that in the next 5  weeks, the water level 
will tend to decrease. In addition, in Pulang Pisau 
Regency, the area in the middle is the driest area.

3. Based on the results of the prediction of the water 
level, there is a risk of changes in the properties of the 
peatlands in several areas in Pulang Pisau Regency.

For further research, physical peat variables such as 
humidity and rainfall factors can be involved to meas-
ure the water level. Furthermore, these variables can be 
used to predict the risk of drought that will occur in the 
future.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12302- 024- 00979-6.

Supplementary material 1: Text S1. data collection and analysis methods.

Acknowledgements
This research is a collaboration between the Ministry of Education, Culture, 
Research and Technology and the Education Fund Management Institute 
(LPDP) through the RISPRO UKICIS Funding Program. The authors would 
like to thank Prof. David Large, Dr. Matteo Icardi, and Dr. Bagus Muljadi from 
University of Nottingham, UK, as the partners in UKICIS program. The authors 
would also like to thank to all reviewers who have read and commented on 
our manuscript to make it better.

Author contributions
U.M., A.W.M., and T.P. constructed the models, data analysed, interpreted the 
results, and wrote the main manuscript text; U.S.P., K.N.S., and S.W.I. evaluated 
the space–time, spatial kriging model; I.S., D.N.C., I.I., D. R., and D.T.Q. gave 
insights in the environmental and risk aspect; D.N.C. and D. R. did survey to the 
field for data confirmation; All authors reviewed the manuscript.

Funding
This work was funded by LPDP RISPRO-UKICIS (United Kingdom-Indonesia 
Consortium for Interdisciplinary Sciences) green economy under Grant No. 
4345/E4/AL.04. It was also partially funded by FMIPA ITB through PPMI FMIPA 
2023 and LPPM ITB through Riset Unggulan 2024 (contract number: 959/IT1.
B07.1/TA.00/2024).

Data availability
Sequence data that support the findings of this study were obtained from the 
Peatland and Mangrove Restoration Agency of Republic of Indonesia (BRGM 
Indonesia) via the prims.brg.go.id website (open accessed). The water level 
data are openly available at https:// bit. ly/ Pulan gPisa uWate rLevel.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
All authors declared that they have no competing interests.

Received: 17 April 2024   Accepted: 16 August 2024

References
 1. Alamgir M, Campbell MJ, Sloan S, Suhardiman A, Supriatna J, Laurance 

WF (2019) High-risk infrastructure projects pose imminent threats to 
forests in Indonesian Borneo. Sci Rep 9(1):140. https:// doi. org/ 10. 1038/ 
s41598- 018- 36594-8

 2. Barani AM, Dariah A, Suryotomo AP, Mulyani A, Apriyanto A, Hidayat A, 
Sumawinata B, Kartiwa B, Taniwiryono D, Sadono D, Fahamsyah E, Widi-
astuti H, Hermantoro, Pulunggono HB, Ismail I (2022) Gambut, Sawit, 
dan Lingkungan. Bogor: IPB Press. ISBN: 978-623-256-855-6, eISBN: 
978-623-467-377-7

 3. Besag J (1974) Spatial interaction and the statistical analysis of lattice 
systems. J Roy Stat Soc Ser B (Methodol) 36(2):192–225. https:// doi. 
org/ 10. 1111/j. 2517- 6161. 1974. tb009 99.x

 4. Borovkova S, Lopuhaä HP, Ruchjana BN (2008) Consistency and asymp-
totic normality of least squares estimators in generalized STAR models. 
Stat Neerl 62(4):482–508. https:// doi. org/ 10. 1111/j. 1467- 9574. 2008. 
00391.x

https://doi.org/10.1186/s12302-024-00979-6
https://doi.org/10.1186/s12302-024-00979-6
https://bit.ly/PulangPisauWaterLevel
https://doi.org/10.1038/s41598-018-36594-8
https://doi.org/10.1038/s41598-018-36594-8
https://doi.org/10.1111/j.2517-6161.1974.tb00999.x
https://doi.org/10.1111/j.2517-6161.1974.tb00999.x
https://doi.org/10.1111/j.1467-9574.2008.00391.x
https://doi.org/10.1111/j.1467-9574.2008.00391.x


Page 15 of 15Mukhaiyar et al. Environmental Sciences Europe          (2024) 36:180  

 5. Cobb AR, Harvey CF (2019) Scalar simulation and parameterization 
of water table dynamics in tropical peatlands. Water Resour Res 
55(11):9351–9377. https:// doi. org/ 10. 1029/ 2019W R0254 11

 6. Hooijer A, Silvius MJ, Woesten HAB, Page SE (2006) PEAT-CO2. Assess-
ment of CO2 emissions from drained peatlands in SE Asia. https:// api. 
seman ticsc holar. org/ Corpu sID: 20130 8974

 7. Horton AJ, Virkki V, Lounela A, Miettinen J, Alibakhshi S, Kummu 
M (2021) Identifying key drivers of peatland fires across Kaliman-
tan’s ex-mega rice project using machine learning. Earth Space Sci 
8(12):e2021EA001873. https:// doi. org/ 10. 1029/ 2021E A0018 73

 8. Huda NM, Imro’ah N (2023) Determination of the best weight matrix 
for the Generalized Space Time Autoregressive (GSTAR) model in the 
Covid-19 case on Java Island, Indonesia. Sp Stat 54:100734. https:// doi. 
org/ 10. 1016/j. spasta. 2023. 100734

 9. Huijnen V, Wooster MJ, Kaiser JW, Gaveau DLA, Flemming J, Parrington 
M, Inness A, Murdiyarso D, Main B, van Weele M (2016) Fire carbon 
emissions over maritime southeast Asia in 2015 largest since 1997. Sci 
Rep 6(1):26886. https:// doi. org/ 10. 1038/ srep2 6886

 10. Ilmi NFF, Mukhaiyar U, Fahmi F (2015) The generalized STAR(1,1) mod-
eling with time correlated errors to red-chili weekly prices of some tra-
ditional markets in Bandung, West Java. AIP Conf Proc 1692(1):020014. 
https:// doi. org/ 10. 1063/1. 49364 42

 11. Januar R, Sari ENN, Putra S (2021) Dynamics of local governance: the 
case of peatland restoration in Central Kalimantan, Indonesia. Land Use 
Policy 102:105270. https:// doi. org/ 10. 1016/j. landu sepol. 2020. 105270

 12. Jonathan R, Yundari N, Nada OYE (2021) Application of GSTAR(1,1) model 
for layer peat soil predicted based on resistivity log data. J Phys: Conf Ser 
2106(1):012031. https:// doi. org/ 10. 1088/ 1742- 6596/ 2106/1/ 012031

 13. Kurnianto S, Warren M, Talbot J, Kauffman B, Murdiyarso D, Frolking S 
(2015) Carbon accumulation of tropical peatlands over millennia: a mod-
eling approach. Glob Change Biol 21(1):431–444. https:// doi. org/ 10. 1111/ 
gcb. 12672

 14. Lewis C, Albertson J, Xu X, Kiely G (2012) Spatial variability of hydraulic 
conductivity and bulk density along a blanket peatland hillslope. Hydrol 
Process 26(10):1527–1537. https:// doi. org/ 10. 1002/ hyp. 8252

 15. Mahdiyasa AW, Large DJ, Icardi M, Muljadi BP (2023) MPeat2D – a fully 
coupled mechanical-ecohydrological model of peatland development 
in two dimensions. EGUsphere 2023:1–31. https:// doi. org/ 10. 5194/ egusp 
here- 2023- 2535

 16. Mahdiyasa AW, Large DJ, Muljadi BP, Icardi M (2023) Modelling the influ-
ence of mechanical-ecohydrological feedback on the nonlinear dynam-
ics of peatlands. Ecol Model 478:110299. https:// doi. org/ 10. 1016/j. ecolm 
odel. 2023. 110299

 17. Mahdiyasa AW, Large DJ, Muljadi BP, Icardi M, Triantafyllou S (2022) 
MPeat—A fully coupled mechanical-ecohydrological model of peatland 
development. Ecohydrology 15(1):e2361. https:// doi. org/ 10. 1002/ eco. 
2361

 18. Masteriana D, Riani MI, Mukhaiyar U (2019) Generalized STAR (1;1) Model 
with Outlier—Case Study of Begal in Medan, North Sumatera. J Phys: 
Conf Ser 1245(1):012046. https:// doi. org/ 10. 1088/ 1742- 6596/ 1245/1/ 
012046

 19. Miettinen J, Shi C, Liew SC (2017) Fire distribution in peninsular 
malaysia, sumatra and borneo in 2015 with special emphasis on 
peatland fires. Environ Manage 60(4):747–757. https:// doi. org/ 10. 1007/ 
s00267- 017- 0911-7

 20. Mimis A (2016) 3D weight matrices in modeling real estate prices. Int 
Arch Photogramm Remote Sens Sp Inform Sci XLII-2/W2:123–125. 
https:// doi. org/ 10. 5194/ isprs- archi ves- XLII-2- W2- 123- 2016

 21. Mukhaiyar U (2015) The goodness of generalized STAR in spatial depend-
ency observations modeling. AIP Conf Proc 1692(1):020008. https:// doi. 
org/ 10. 1063/1. 49364 36

 22. Mukhaiyar U, Huda NM, Sari KN, Pasaribu US (2020) Analysis of general-
ized space time autoregressive with exogenous variable (GSTARX) model 
with outlier factor. J Phys Conf Ser 1496(1):012004. https:// doi. org/ 10. 
1088/ 1742- 6596/ 1496/1/ 012004

 23. Mukhaiyar U, Pasaribu US (2012) A new procedure for generalized STAR 
modeling using IAcM approach. ITB J Sci 44(2):179–192. https:// doi. org/ 
10. 5614/ itbj. sci. 2012. 44.2.7

 24. Mukhaiyar U, Bilad BI, Pasaribu US (2021) The Generalized STAR Modelling 
with Minimum Spanning Tree Approach of Weight Matrix for COVID-19 

Case in Java Island. J Phys: Conf Ser 2084(1):012003. https:// doi. org/ 10. 
1088/ 1742- 6596/ 2084/1/ 012003

 25. Mukhaiyar U, Nabilah FT, Pasaribu US, Huda NM (2022) The Space-Time 
Autoregressive Modelling with Time Correlated Errors for The Number 
of Vehicles in Purbaleunyi Toll Gates. J Phys: Conf Ser 2243(1):012068. 
https:// doi. org/ 10. 1088/ 1742- 6596/ 2243/1/ 012068

 26. Nurhayati N, Pasaribu US, Neswan O (2012) Application of generalized 
space-time autoregressive model on GDP data in West European Coun-
tries. J Probab Stat 2012(1):867056. https:// doi. org/ 10. 1155/ 2012/ 867056

 27. Pasaribu US, Mukhaiyar U, Huda NM, Sari KN, Indratno SW (2021) Model-
ling COVID-19 growth cases of provinces in java Island by modified spa-
tial weight matrix GSTAR through railroad passenger’s mobility. Heliyon 
7(2):e06025. https:// doi. org/ 10. 1016/j. heliy on. 2021. e06025

 28. Pasaribu US, Mukhaiyar U, Heriawan MN, Yundari (2022) Generalized 
Space-Time Autoregressive Modeling of the Vertical Distribution of Cop-
per and Gold Grades with a Porphyry-Deposit Case Study. Int J Adv Sci 
Eng Inf Technol 12(5). https:// doi. org/ 10. 18517/ ijase it. 12.5. 14835

 29. Pfeifer PE, Deutsch SJ (1980) A three-stage iterative procedure for space-
time modeling. Technometrics 22(1):35–47. https:// doi. org/ 10. 2307/ 
12683 81

 30. Pramoedyo H, Ashari A, Fadliana A (2020) Application of GSTAR krig-
ing model in forecasting and mapping coffee berry borer attack in 
Probolinggo district. J Phys: Conf Ser 1563(1):012005. https:// doi. org/ 10. 
1088/ 1742- 6596/ 1563/1/ 012005

 31. Salsabila AB, Ruchjana BN, Abdullah AS (2024) Development of the 
GSTARIMA(1,1,1) model order for climate data forecasting. Int J Data Netw 
Sci 8:773–788. https:// doi. org/ 10. 5267/j. ijdns. 2024.1. 001

 32. Tamea S, Muneepeerakul R, Laio F, Ridolfi L, Rodriguez-Iturbe I (2010) 
Stochastic description of water table fluctuations in wetlands. Geophys 
Res Lett. https:// doi. org/ 10. 1029/ 2009G L0416 33

 33. Taufik M, Veldhuizen AA, Wösten JHM, van Lanen HAJ (2019) Explora-
tion of the importance of physical properties of Indonesian peatlands 
to assess critical groundwater table depths, associated drought and fire 
hazard. Geoderma 347:160–169. https:// doi. org/ 10. 1016/j. geode rma. 
2019. 04. 001

 34. Utami R, Nurhayati N, Maryani S (2021) Forecasting the amount of rainfall 
in West Kalimantan using Generalized Space-time Autoregressive model. 
IOP Conf Ser: Earth Environ Sci 746(1):012035. https:// doi. org/ 10. 1088/ 
1755- 1315/ 746/1/ 012035

 35. Young DM, Baird AJ, Morris PJ, Dargie GC, MampouyaWenina YE, Mbemba 
M, Boom A, Cook P, Betts R, Burke E, Bocko YE, Chadburn S, Crabtree DE, 
Crezee B, Ewango CEN, Garcin Y, Georgiou S, Girkin NT, Gulliver P, Lewis 
SL (2023) Simulating carbon accumulation and loss in the central Congo 
peatlands. Glob Change Biol 29(23):6812–6827. https:// doi. org/ 10. 1111/ 
gcb. 16966

 36. Yundari Y, Pasaribu US, Mukhaiyar U (2017) Error Assumptions on General-
ized STAR Model. J Math Fundam Sci 49(2):136–155

 37. Yundari, Pasaribu US, Mukhaiyar U, Heriawan MN (2018) Spatial weight 
determination of GSTAR(1;1) model by using Kernel function. J Phys Conf 
Ser 1028:012223. https:// doi. org/ 10. 1088/ 1742- 6596/ 1028/1/ 012223

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1029/2019WR025411
https://api.semanticscholar.org/CorpusID:201308974
https://api.semanticscholar.org/CorpusID:201308974
https://doi.org/10.1029/2021EA001873
https://doi.org/10.1016/j.spasta.2023.100734
https://doi.org/10.1016/j.spasta.2023.100734
https://doi.org/10.1038/srep26886
https://doi.org/10.1063/1.4936442
https://doi.org/10.1016/j.landusepol.2020.105270
https://doi.org/10.1088/1742-6596/2106/1/012031
https://doi.org/10.1111/gcb.12672
https://doi.org/10.1111/gcb.12672
https://doi.org/10.1002/hyp.8252
https://doi.org/10.5194/egusphere-2023-2535
https://doi.org/10.5194/egusphere-2023-2535
https://doi.org/10.1016/j.ecolmodel.2023.110299
https://doi.org/10.1016/j.ecolmodel.2023.110299
https://doi.org/10.1002/eco.2361
https://doi.org/10.1002/eco.2361
https://doi.org/10.1088/1742-6596/1245/1/012046
https://doi.org/10.1088/1742-6596/1245/1/012046
https://doi.org/10.1007/s00267-017-0911-7
https://doi.org/10.1007/s00267-017-0911-7
https://doi.org/10.5194/isprs-archives-XLII-2-W2-123-2016
https://doi.org/10.1063/1.4936436
https://doi.org/10.1063/1.4936436
https://doi.org/10.1088/1742-6596/1496/1/012004
https://doi.org/10.1088/1742-6596/1496/1/012004
https://doi.org/10.5614/itbj.sci.2012.44.2.7
https://doi.org/10.5614/itbj.sci.2012.44.2.7
https://doi.org/10.1088/1742-6596/2084/1/012003
https://doi.org/10.1088/1742-6596/2084/1/012003
https://doi.org/10.1088/1742-6596/2243/1/012068
https://doi.org/10.1155/2012/867056
https://doi.org/10.1016/j.heliyon.2021.e06025
https://doi.org/10.18517/ijaseit.12.5.14835
https://doi.org/10.2307/1268381
https://doi.org/10.2307/1268381
https://doi.org/10.1088/1742-6596/1563/1/012005
https://doi.org/10.1088/1742-6596/1563/1/012005
https://doi.org/10.5267/j.ijdns.2024.1.001
https://doi.org/10.1029/2009GL041633
https://doi.org/10.1016/j.geoderma.2019.04.001
https://doi.org/10.1016/j.geoderma.2019.04.001
https://doi.org/10.1088/1755-1315/746/1/012035
https://doi.org/10.1088/1755-1315/746/1/012035
https://doi.org/10.1111/gcb.16966
https://doi.org/10.1111/gcb.16966
https://doi.org/10.1088/1742-6596/1028/1/012223

	The generalized STAR modelling with three-dimensional of spatial weight matrix in predicting the Indonesia peatland’s water level
	Abstract 
	Introduction
	The spatial weight matrix
	1) Three-dimensional distance inverse matrix with modifications to the height element
	2) Three-dimensional distance inverse matrix without modification
	Uniform weight matrix

	The GSTAR-Kriging modelling
	Data
	Results and discussion
	Conclusion
	Acknowledgements
	References


