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Abstract 

Background This study aims to tackle the lack of freshwater ecotoxicological effect factors (EFs) crucial for determin-
ing freshwater ecotoxicity characterization factors (CFs) using the widely accepted scientific consensus USEtox model 
for ecotoxicity impact characterization. The objectives are: (1) to offer a collection of experimental EFs to support 
USEtox ecotoxicity characterization factor computations and (2) to contrast ecotoxicity data produced by various 
quantitative structure–activity relationship (QSAR) models against experimental data.

Results Experimental ecotoxicity data were gathered from the REACH database and CompTox Version 2.1.1, which 
includes toxicity information from ToxValDB v9.4. QSAR-driven ecotoxicity data were extracted from ECOSAR v1.11 
and T.E.S.T. v5.1.2. The experimental and estimated data underwent a harmonization process to ensure consistency. 
Subsequently, aquatic ecotoxicological EFs were determined. The merged REACH and CompTox databases list EFs 
for 11,295 substances, each identified by a unique CAS number. Among these, the USEtox database already catalogs 
2426 substances with freshwater ecotoxicological EFs. This study expanded on that by calculating EFs for an addi-
tional 8869 substances. Using estimated data, EFs were determined for 6029 chemicals based on ECOSAR data 
and 6762 chemicals using TEST data.

Conclusions This study calculated EFs for an additional 8869 substances, thereby broadening their inclusion 
in LCA evaluations. When integrated with the USEtox EFs database, this research encompasses 11,368 chemicals. 
The high correlation observed between experimental EFs and those in the USEtox database lends significant confi-
dence to the calculations for chemicals not listed in USEtox. Conversely, the low correlation between estimated EFs 
and those in USEtox suggests limited confidence in calculations based on estimated data. Furthermore, the disparity 
in correlations between EFs calculated using ECOSAR and TEST indicates that different QSARs can yield varied results. 
This discrepancy underscores the need for caution when relying on estimated data. Given that EFs are contingent 
on data availability, it is imperative to periodically update EFs as new data emerges.

Keywords Ecotoxicity, USEtox, Characterization factor, Ecotoxicological effect factor

Background
In the current era of rapid global development and 
escalating consumption, there is a growing reliance on 
chemicals essential to nearly all manufacturing prod-
ucts [19, 51]. This has fueled population growth and 

advancements in sectors, such as energy and food pro-
duction, yet it also poses significant risks to human and 
ecological health, including toxic pollution and species 
extinction [3, 5, 29, 51]. In European waters, organic 
chemicals are major contributors to biodiversity loss 
and ecosystem service degradation [24, 55]. Despite 
recognizing chemical pollution as a critical threat to 
sustainability, our understanding of its full impact is 
still emerging [10, 54]. Furthermore, this issue com-
pounds other global challenges, such as climate change 
and biosphere integrity, with recent assessments 
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indicating that the pace of chemical production and 
emission outstrips our capacity to manage [29, 34, 46].

Since the 1800s, the Chemical Abstracts Service (CAS) 
has documented over 204 million substances, with 
approximately 350,000 chemicals or combinations listed 
in national or regional inventories; notably, the European 
Chemicals Agency (ECHA) has over 26,500 chemical 
registrations [8, 11, 54]. Increasing production and use 
of chemicals raises concerns, as lessons from legacy pol-
lutants such as PCBs and mercury highlight the risks of 
widespread chemical use [28]. Internationally, the Glob-
ally Harmonized System (GHS) has been adopted for 
consistent chemical classification and labeling, catego-
rizing chemicals by properties, health impacts, and envi-
ronmental hazards [32]. Moreover, the rising concern 
over Per- and polyfluoroalkyl substances (PFAS) has led 
to calls for their class-wide regulation. PubChem, one of 
the world’s largest chemical databases, now includes over 
7 million PFAS compounds following the OECD revised 
definition [45].

Frameworks for chemical management and assess-
ment, such as life cycle impact assessment (LCIA), 
chemical alternatives assessment (CAA), comparative 
risk screening, and risk assessment, play a crucial role in 
assessing the toxicological effects of chemical exposures 
[4, 14, 27]. Life Cycle Assessment (LCA) tools, adhering 
to standards, such as ISO 14040, are increasingly rec-
ognized for quantifying potential toxicity throughout a 
product’s lifecycle [13, 22, 35, 47]. However, comprehen-
sive toxicity quantification relies on having characteriza-
tion factors (CFs) for every chemical emission [16]. To 
determine CFs, modeling chemical environmental fate, 
exposure, and effects is crucial [36]. The USEtox model 
offers a fate-exposure-effect matrix framework for calcu-
lating freshwater ecotoxicity CFs, integrating fate factors 
(FF), exposure factors (XF), and effect factors (EF) [12]. 
USEtox uses chronic ecotoxicological data, typically the 
HC50, to calculate quantitative EFs for chemicals [12, 
35].

Although numerous chemicals pose risks to ecosys-
tems, only a small percentage have been thoroughly 
assessed for LCA, resulting in significant inaccuracies 
and gaps [37]. This is highlighted by the vast difference 
between the 145,299 substances listed by the ECHA 
(ECHA, 2023a) but only 3104 substances (3077 organic 
and 27 inorganic) detailed in the USEtox database (ver-
sion 2.01) [12]. With USEtox providing freshwater eco-
toxicity EFs for only 2499 substances, a large number 
of chemicals remain uncharacterized, primarily due to 
scarce EC50 chronic data.

In recent years, the USEtox consortium and the Euro-
pean Commission have made significant efforts in refin-
ing the methodology for calculating EFs and expanding 

the range of chemicals within the LCA framework by 
computing EFs for a broader array of chemicals [30, 38]. 
Such advancements have broadened the chemical scope 
within the Product Environmental Footprint (PEF), facili-
tating more comprehensive comparative life cycle analy-
ses in Europe [41–43]. Saouter et al. [39, 40] highlighted 
the influence of selecting ecotoxicological data sources 
and toxicological endpoints on the USEtox EFs, under-
scoring the need for improved substance information 
within USEtox. Furthermore, Saouter et al. [41] incorpo-
rated aquatic toxicity hazard values from REACH, EFSA, 
and PPDB, yielding HC20 values from REACH/EFSA 
for 6764 chemicals and from PPDB for 1316 chemicals. 
However, this newly derived HC20 data has yet to be 
integrated into USEtox version 3.0, which currently relies 
on chronic EC50-based data.

The emergence of online experimental databases, par-
ticularly REACH and CompTox, offers access to ecotox-
icity data for thousands of chemicals to calculate EFs as 
demonstrated by recent publications. However, in the 
absence of experimental data, QSAR models are increas-
ingly employed to bridge data gaps [18]. These models 
correlate chemical structures with compound proper-
ties, using chemical descriptors for predictions [20]. Over 
time, their accuracy and reliability have grown, boosting 
their application. This trend is particularly significant as 
regulatory frameworks are progressively leaning towards 
minimizing animal testing [44]. Yet, millions of animals 
are still used annually for regulatory testing, a figure pro-
jected to rise given the ever-expanding use of chemicals 
in society [9, 23]. Prominent QSAR-based methods in use 
include ECOSAR, VEGA, and T.E.S.T. [6, 25, 26]

To effectively incorporate the available ecotoxicologi-
cal data into CF calculations, the derivation of EFs is cru-
cial. This study endeavors to leverage existing ecotoxicity 
data for such calculations. The objectives of this study are 
twofold: first, to develop a rigorous approach for ecotox-
icity data harmonization, facilitating the determination 
of experimental EFs, and second, to compare ecotoxic-
ity data from various QSAR models with experimental 
findings.

Materials and methods
Aquatic ecotoxicity data collection
Data on aquatic ecotoxicity were gathered from a vari-
ety of open-access sources to form an extensive data set. 
The primary experimental data were obtained from the 
REACH databases, which has substantial data on aquatic 
ecotoxicology [33]. This was further enriched by incor-
porating data from the CompTox version 2.2.1 database, 
which includes data from ToxValDB v9.4 [1]. A targeted 
approach was employed to secure experimental data spe-
cifically concerning aquatic environments from these 
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sources. The REACH data were retrieved in August 2020, 
and the CompTox data were collected in July 2023. Given 
the regular updates to the CompTox database by the 
US EPA, the most recent ToxValDB version 9.4 was uti-
lized, rather than the initial data set of ToxValDB version 
9.1.1 released in 2022. However, the REACH raw data, 
acquired from another research project, has not been 
updated due to time and resource constraints.

The REACH database is structured into sections 
that detail specific study results. This study concen-
trated on the "ecotoxicological information" section, 
more precisely the "aquatic toxicity" subsection. In 
this each study provides a specific tested concentra-
tion value, supplemented with comprehensive details 
such as the endpoint, testing methodology, environ-
mental conditions, species examined, and the dura-
tion of the test. The data from the CompTox database 
was derived from the U.S. EPA’s ToxValDB (version 
9.4), a vast repository of experimental toxicity data 
aggregated from 49 distinct public sources, exclud-
ing any data from REACH. Within this collection, 10 
sources are particularly focused on ecotoxicity data, 
including COSMOS, DOE ECORISK, DOE Wildlife 
Benchmarks, ECHA IUCLID, ECOTOX, EFSA, Envi-
roTox_v2, HAWC Project, HEAST, and HPVIS.

Estimated aquatic ecotoxicity data were gathered 
from two quantitative structure–activity relation-
ships (QSARs): ECOSAR™ Version 1.11 through EPI 
Suite v4.11 [6, 50] and the US EPA Toxicity Estima-
tion Software Tool (TEST) [26, 48], both accessed in 
August 2023. Estimated ecotoxicity data were first, 
sourced from ECOSAR™ Version 1.11 via EPI Suite 
v4.11 [6, 50]. ECOSAR encompasses organic and 
inorganic chemicals but omits organometallic chemi-
cals and polymers. QSAR model applicability is con-
strained by the scope of its training set, which can 
lead to potential uncertainties when applied to sub-
stances beyond its intended domain. Consequently, 
any results generated by a QSAR tool for substances 
outside its domain were treated with caution due to 
these significant uncertainties. For this study, the har-
monized experimental data set was processed through 
ECOSAR, estimating endpoints like fish LC50 96  h, 
daphnia LC50 48 h, and green algae EC50 96 h. More 
than 100 ECOSAR classes emerged from the analysis. 
For chemicals that aligned with several classes, both 
in terms of endpoints and species, a geometric mean 
was used to aggregate the data, resulting in a singular 
concentration value per endpoint and species. Second, 
ecotoxicity data estimates were obtained using the US 
EPA T.E.S.T. v5.1.2 [26, 48]. The estimated endpoints, 
derived from the consensus model in TEST, included 

fathead minnow LC50 96  h, daphnia magna LC50 
48 h, and tetrahymena pyriformis IC50 48 h.

Selection and harmonization of experimental 
and estimated ecotoxicity data
A data harmonization strategy was formulated in this 
study to streamline both experimental and estimated 
ecotoxicological effect data. The primary objective was to 
harmonize the gathered ecotoxicity data, to ensure uni-
formity and comparability across crucial aspects like test 
organisms, endpoints, exposure duration, and ecotoxicity 
concentration values. Chemicals with uncertain or miss-
ing details were omitted. This approach was built upon 
four steps, as shown in Fig. 1: chemical substance iden-
tification, data quality assessment, data harmonization, 
and consistency verification.

Data harmonization begins with the first step of chemi-
cal identification, which ensures that each data point is 
distinctly linked to its corresponding chemical. Following 
this initial step, the second step focuses on data quality 
assessment, emphasizing the importance of data reliabil-
ity. This involves utilizing the database metadata to filter 
out lower quality datapoints from the overall data set. 
The third step of data harmonization ensures uniform-
ity across several key aspects, including the naming and 
classification of test species, endpoint classification, units 
of study duration, exposure duration categories, and eco-
toxicity concentration units. The process concludes with 
the final step of consistency checking, which scrutinizes 
the metadata for each data point to verify its complete-
ness and the uniqueness of the collected data, alongside 
the removal of duplicates. Detailed descriptions of each 
of these steps are provided in the Supplementary Infor-
mation in Table S2.

Ecotoxicity effect factors calculation strategy
This study focuses on the computation of ecotoxicity EFs, 
which are required to determine freshwater ecotoxicity 
CFs using USEtox tool. In USEtox, EFs are determined 
by calculating the linear slope along the concentration–
response relationship of the HC50 [kg  m−3] up to the 
point where the PAF (potentially affected fraction of spe-
cies) is 0.5 [12]. This relationship is quantified using the 
equation: EF = 0.5/HC50 [PAF  m3  kg−1]. The HC50 rep-
resents the concentration at which half of the species in 
a freshwater ecosystem are exposed above their EC50 
value, derived from the geometric mean of chronic EC50s 
for various freshwater species whereas, the EC50 repre-
sents the concentration at which 50% of the exposed spe-
cies population exhibits an effect. All equations involved 
in calculating USEtox EFs are detailed in the official 
USEtox documentation [12]. In this study, the calcula-
tion of log  HC50EC50eq begins with the extrapolation of 
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endpoints to chronic EC50 values (if needed), employing 
species group-specific extrapolation factors [2]. This step 
is followed by aggregating the extrapolated harmonized 
data at the species level utilizing the geometric mean for 
each chemical. Finally, calculating the average of log-val-
ues per chemical, resulting in the  logHC50EC50eq, which is 
utilized in the USEtox framework to calculate EFs based 
on  HC50EC50eq for individual chemicals.

Building on the collaborative work of the Ecotoxicity 
Task Force and insights from the SETAC Pellston work-
shop, a new method for calculating USEtox EFs was pro-
posed by Owsianiak et  al. [30]. Traditionally, CFs relied 
on chronic EC50 values, but the recommendation advo-
cated for an  HC20EC10eq based approach. HC20 repre-
sents the environmental concentration affecting 20% of 
species, with the effect on individual species determined 
using chronic EC10 equivalent ecotoxicity data. This 
relationship is quantified using the equation: EF = 0.2/
HC20EC10eq [PAF  m3  kg−1]. Owsianiak et al. [30] empha-
sized the importance of utilizing experimentally deter-
mined chronic EC10 data for the calculation of HC20, 

acknowledging the scarcity of such data. To bridge this 
gap, extrapolation factors were suggested [41]. Following 
these updated recommendations, this study also employs 
this methodology to calculate EFs based on  HC20EC10eq, 
thereby aligning with the latest guidelines for calculating 
EFs.

Comparing ecotoxicity effect factors
The calculated log10 transformed EFs are used for the 
comparative analysis. Whenever there was at least one 
chemical shared between the compared data sources, 
EFs were plotted for analysis. Pairwise correlations were 
employed to evaluate the linear relationship between 
these log10 transformed EFs, with the correlation coef-
ficient, r, indicating both strength and direction of 
the relationship. Further evaluation of the correlation 
strength involved performing linear regression analyses 
with unrestricted slopes. The coefficient of determination 
 (R2) was then used to determine the robustness of the 
observed relationships.

Fig. 1 Decision tree for experimental and estimated ecotoxicity data harmonization strategy
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The comparisons were conducted in several stages. 
Initially, this study compared the EFs derived from this 
study’s experimental data with the existing USEtox EFs 
from the USEtox organic substances database (version 
2.01). In this study, the EFs calculated were classified 
in three groups, starting with EFs based on  HC50EC50eq 
using all the toxicity data after extrapolation to EC50 
chronic equivalent denoted as EF  (HC50EC50eq), All data. 
Secondly, using only EC50 chronic datapoints denoted 
as EF  (HC50EC50eq), EC50chronic data only and thirdly 
using both EC50 chronic and EC50 acute extrapolated 
to chronic, denoted as EF  (HC50EC50eq), EC50 data only. 
Then, this study proceeded to compare the EFs derived 
from this study estimated data with the USEtox EFs. Fol-
lowing this, this study compared experimental EFs with 
those calculated using ECOSAR and TEST. Addition-
ally, this study compared the EFs derived from this study 
experimental data using two different methodologies for 
calculating EFs. One method is based on the USEtox 2.13 
documentation, and the other follows the recommenda-
tions by Owsianiak et al. [30], as described in Sect. "Eco-
toxicity effect factors calculation strategy". To evaluate 
the consistency of the relationship, this study utilized the 
 R2 coefficient obtained from log-transformed regression 
analysis.

Results and discussion
Aquatic ecotoxicity data collected
The ecotoxicity data used in this study were gath-
ered from two primary sources: experimental data 
obtained from REACH and CompTox, and estimated 
data extracted from ECOSAR and TEST. This collected 
data set underwent a harmonization process to create 
a harmonized ecotoxicity data set for EF calculations. 
From the REACH database, this study retrieved 225,517 

ecotoxicity datapoints spanning 12,411 chemicals, each 
associated with an European Commission (EC) Number. 
In parallel, the CompTox database contributed 517,067 
ecotoxicity datapoints encompassing 8640 chemicals, 
each identified by its CAS number. On the estimated data 
side, ECOSAR data provided 27,354 toxicity datapoints 
for 6029 chemicals, while the US EPA T.E.S.T. database 
accounted for 17,055 datapoints spanning 6762 chemi-
cals. It is important to note that chemical identification in 
these sources relied on CAS numbers.

Ecotoxicity data selection and harmonization results
The data harmonization strategy, as described in 
Sect.  "Selection and harmonization of experimental and 
estimated ecotoxicity data", is applied to both experi-
mental and estimated ecotoxicity data. The results of 
this process at various steps of the ecotoxicity data har-
monization strategy, across different data sources, are 
presented in Table 1 and further detailed in the supple-
mentary information in Table  S3. Table  2 provides an 
overview of the distribution of harmonized ecotoxicity 
data points and the corresponding number of chemi-
cals across various data sources and endpoint clas-
sifications, illustrating the number of datapoints and 
chemicals at different endpoints. Following harmoniza-
tion, the REACH data set was refined to include 72,705 
data points for 5318 chemicals, while the CompTox data 
set retained 364,434 datapoints for 7464 chemicals. The 
aggregation of these two data sets and a subsequent 
duplicate verification step resulted in the elimination of 
an additional 2485 data points from the consolidated data 
set. As a result, this study compiled a harmonized data 
set of experimental datapoints comprising 434,654 data-
points for 11,295 chemicals, as shown in Tables 1 and 2. 
Each datapoint in the final combined data set is distinctly 

Table 1 Overview of ecotoxicity data harmonization results at different steps of ecotoxicity data harmonization strategy across various 
data sources

Number of datapoints (number of chemicals)

Steps Step description REACH CompTox ECOSAR TEST

Ecotoxicity raw data set 225,517 (12411) 517,067 (8640) 27,354 (6029) 17,055 (6762)

Step 1 Chemical substance identification 177,296 (9035) 515,803 (8639) 27,354 (6029) 17,055 (6762)

Step 2 Data quality assessment 153,751 (8854) 504,355 (8549) 19,719 (6029) 17,055 (6762)

Step 3 Data harmonization 153,751 (8854) 504,355 (8549) 19,719 (6029) 17,055 (6762)

Step 3.1 Numeric qualifiers 110,502 (7333) 477,063 (8217) 19,719 (6029) 17,055 (6762)

Step 3.2 Tested species naming and classification 101,541 (6780) 467,909 (7936) 19,719 (6029) 17,055 (6762)

Step 3.3 Exposure duration classification 91,630 (6728) 434,742 (7704) 19,719 (6029) 17,055 (6762)

Step 3.4 Endpoint classification 90,849 (6719) 412,939 (7464) 19,719 (6029) 17,055 (6762)

Step 3.5 Effect concentration unit 90,849 (6719) 412,939 (7464) 19,719 (6029) 17,055 (6762)

Step 4 Consistency checking 72,705 (5318) 364,434 (7464) 19,719 (6029) 17,055 (6762)

Harmonized data set 434,654 (11295) 19,719 (6029) 17,055 (6762)
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identified by its CAS, species name, species group, expo-
sure classification, and endpoint classification. The final 
data sets for ECOSAR and TEST stood at 19,719 data-
points for 6029 chemicals and 17,055 datapoints for 6762 
chemicals, respectively, as shown in Tables 1 and 2.

Ecotoxicity effect factors results
The harmonized ecotoxicity data in this study underwent 
an aggregation process, as outlined in Sect.  "Ecotoxicity 
effect factors calculation strategy" to ensure data integ-
rity and relevance for EF calculations in accordance with 
USEtox guidelines. Initially, for the calculation of log 
 HC50EC50eq begins with the extrapolation of endpoints 
to chronic EC50 values employing species group-specific 
extrapolation factors [2]. This step is followed by aggre-
gating the extrapolated harmonized data at the species 
level, producing 59,195 (n = 11,295) aggregated effect 
concentration data points for the experimental data set, 
with minor changes in the ECOSAR data set resulted in 
16,456 (n = 6029) aggregated datapoints but no altera-
tions in the TEST data set. Lastly, chronic EC50 data 
underwent further aggregation, utilizing the average of 
logarithmic values to calculate log  HC50EC50eq [kg  m−3]. 
This data set was then utilized in the USEtox model to 
compute EFs based on  HC50EC50eq for each chemical.

In this study, EFs were derived by combining experi-
mental EC50 chronic values with extrapolated endpoints 
to EC50 chronic values, resulting in EFs for 11,295 chem-
icals. While USEtox advocates for the exclusive use of 
EC50 chronic data for reduced uncertainty, this study also 
computed EFs solely from EC50 chronic data for 5047 
chemicals. Furthermore, the analysis extended to encom-
pass EFs derived from EC50 endpoints, both chronic and 
extrapolated acute, for 9543 chemicals, broadening the 
chemical coverage but introducing the uncertainty inher-
ent in relying on a single endpoint. As for the estimated 
data, EFs were computed for 6029 chemicals using ECO-
SAR and 6762 chemicals using TEST. In contrast, USE-
tox provides EFs for 2499 chemicals, with 2426 chemicals 
overlapping with the experimental data in this study. 

Comprehensive statistics, including data points, species 
groups, log HC50 (log mg/L), and EF [PAF.m3.kg−1], are 
presented in Table 3.

Following recommendations proposed by Ows-
ianiak et al. [30], this study also calculated EFs based on 
 HC20EC10eq, as outlined in Sect.  "Ecotoxicity effect fac-
tors calculation strategy" thereby aligning with the lat-
est guidelines for calculating EFs. The calculation of log 
 HC20EC10eq begins with the extrapolation of endpoints 
to chronic EC10 values employing species group-specific 
extrapolation factors [2]. This step is followed by aggre-
gating the extrapolated harmonized data at the species 
level, producing 59,195 (n = 11,295) aggregated effect 
concentration data points for the experimental data set. 
Finally, chronic EC10 data underwent further aggrega-
tion, utilizing the procedure given in Owsianiak et al. [30] 
to calculate log  HC20EC10eq [kg  m−3]. The equation used 
is  logHC20EC10eq = SSDμlogEC10eq +  z0.2.SSDσlogEC10eq. 
This data set was then utilized to compute EFs based 
on  HC20EC10eq for each chemical using the equation: 
EF = 0.2/HC20EC10eq [PAF  m3  kg−1].

For substances with only one species toxicity data, 
 HC20EC10eq was calculated following the procedure out-
lined in Saouter et  al. [41]. This involves assuming that 
if there is only one EC10eq, then this value is equivalent 
to an HC50. Subsequently, an extrapolation equation is 
applied to convert the HC50 into an estimated HC20. 
In this study, the extrapolation equation was derived by 
comparing log-transformed values of  HC50EC10eq [mg/l] 
and  HC20EC10eq [mg/l] across chemicals with data from 
at least three species, encompassing 4563 chemicals. The 
regression analysis, as shown in Fig. 2, revealed a robust 
correlation, with an  R2 value of 0.93, indicating a strong 
consistency between the compared values. The resulting 
extrapolation equation is log  HC20EC10eq = -0.5 + 1.04*log 
 HC50EC10eq, with the default extrapolation factor set as 
 HC20EC10eq = 0.31*  HC50EC10eq.

It is important to note that not all scientists endorse the 
USEtox approach, and ongoing improvements are being 
made to the methodology. These include recommen-
dations by Owsianiak et  al. [30] to introduce additional 

Table 2 Overview of the distribution of harmonized ecotoxicity datapoints and corresponding number of chemicals across various 
data sources and endpoint classifications

Number of datapoints (number of chemicals)

Data Source EC10 acute EC10 chronic EC50 acute EC50 chronic NOEC acute NOEC chronic Total

REACH 7373 (751) 10,745 (1986) 22,631 (3661) 9495 (2745) 10,307 (2834) 12,154 (2764) 72,705 (5318)

CompTox 33,830 (2046) 37,099 (2203) 172,505 (5937) 28,618 (2826) 43,101 (3095) 49,281 (2499) 364,434 (7464)

Combined 41,170 (2702) 47,677 (3904) 193,611 (8513) 37,839 (5047) 53,206 (5430) 61,151 (4730) 434,654 
(11,295)

ECOSAR – – 19,719 (6029) – – – 19,719 (6029)

TEST – – 17,055 (6762) – – – 17,055 (6762)
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environmental compartments and adjust ecotoxicity 
effect modeling to reflect more environmentally relevant 
conditions by shifting focus from EC50 to EC10. USEtox 
also faces reliability issues with specific chemical groups 
such as PFAS, prompting Holmquist et al. [17] to develop 
a PFAS-adapted version of USEtox (version 2.1), which 
incorporates several enhancements for assessing PFAS 
ecotoxicity impacts. Adjustments were also made to eco-
toxicological EFs considering species richness, follow-
ing the LC-Impact method [15, 53]. For nanomaterials, 
USEtox is not suitable because its parameters do not sup-
port multimedia fate modeling of nanomaterials [7, 31]. 
Additionally, the method for including transformation 
products in CF calculations is not well-defined; Van Zelm 
et al. [52] suggested adjusting the parent compound CFs 
in proportion to the CFs of its transformation products. 
Related to risk assessment, Saouter et al. [39] noted the 

Table 3 Overview of the summary statistics of different ecotoxicity data sources

a In USEtox version 2.13, under the Effect Factor (EF) Input Data section, the number of data points and species groups are not available for all 2426 chemicals; 
therefore, they are not included in the table

Data Source Statistics Chemicals Mean Std Dev Sum Minimum Maximum

All experimental data, EC50eq Datapoints 11,295 38.48 235.50 434,654 1 13,727

Species 11,295 5.24 15.47 – 1 579

Species groups 11,295 2.31 1.73 – 1 12

log  HC50EC50eq (log mg/L) 11,295 0.56 1.20 – −7.00 5.90

EF [PAF.m3.kg−1] 11,295 5.3E + 05 4.7E + 07 – 6.0E-04 5.0E + 09

Only EC50 chronic experimental data Datapoints 5047 7.50 29.13 37,839 1 937

Species 5047 2.14 3.93 – 1 113

Species groups 5047 1.47 1.04 – 1 11

log HC50 EC50eq (log mg/L) 5047 0.62 1.41 – −6.60 9.18

EF [PAF.m3.kg−1] 5047 7.6E + 05 3.0E + 07 – 3.3E-07 2.0E + 09

Only EC50 experimental data Datapoints 9543 24.25 142.33 231,450 1 7285

Species 9543 4.85 13.39 – 1 449

Species groups 9543 2.23 1.64 – 1 12

log HC50 EC50eq (log mg/L) 9543 0.53 1.25 – −6.45 6.23

EF [PAF.m3.kg−1] 9543 2.6E + 05 1.5E + 07 – 3.0E-04 1.4E + 09

All experimental data, EC10eq Datapoints 11,295 38.48 235.50 434,654 1 13,727

Species 11,295 5.24 15.47 – 1 579

Species groups 11,295 2.31 1.73 – 1 12

log  HC20EC10eq (log mg/L) 11,295 −0.50 1.22 – −8.37 5.37

EF [PAF.m3.kg−1] 11,295 4.4E + 06 4.4E + 08 – 9.0E-04 4.7E + 10

ECOSAR data Datapoints 6029 2.73 0.60 16,456 1 3

Species groups 6029 2.73 0.60 – 1 3

log HC50 EC50eq (log mg/L) 6029 0.70 1.69 – −6.39 5.69

EF [PAF.m3.kg−1] 6029 1.1E + 06 2.8E + 07 – 1.0E-03 1.2E + 09

TEST data Datapoints 6762 2.52 0.68 17,055 1 3

Species groups 6762 2.52 0.68 – 1 3

log HC50 EC50eq (log mg/L) 6762 0.63 1.23 – −5.42 4.45

EF [PAF.m3.kg−1] 6762 5.5E + 04 2.2E + 06 – 1.8E-02 1.3E + 08

USEtox  dataa log HC50 EC50eq (log mg/L) 2426 0.63 1.42 – −5.21 4.44

EF [PAF.m3.kg−1] 2426 1.1E + 05 2.4E + 06 – 1.8E-02 8.2E + 07

Fig. 2 Regression analysis of log  HC20EC10eq [mg/l] versus log 
 HC50EC50eq [mg/l] for chemicals with data from at least 3 species, 
exhibiting a high correlation (n = 4563,  R2 = 0.93, r = 0.96)



Page 8 of 16Aggarwal  Environmental Sciences Europe          (2024) 36:127 

importance of aligning the ranking of chemicals by their 
ecotoxicity impacts in LCA with hazard characterizations 
used in risk assessment. Saouter et al. [39] compared the 
ecotoxicity approaches in LCA and chemical risk assess-
ment and observed that these approaches could dif-
fer significantly, with discrepancies up to four orders of 
magnitude for the chemicals compared. LCA toxicity 
indicators cover various aspects of a chemical’s ecotoxic-
ity potential, with USEtox aiming to assess the potential 
overall toxicity impact of substances on humans and eco-
systems rather than focusing solely on hazard identifica-
tion, which is central to risk assessment [40]. USEtox is a 
scientific consensus model used to screen, not necessar-
ily to identify the chemical of concern according to risk-
assessment approach [40]. This discrepancy underscores 
the critical need to establish a consensus between risk 
assessment methodologies and USEtox-based LCA cal-
culations to optimize resource use and enhance the sus-
tainable management of chemicals.

The calculated freshwater EFs exhibit a significant 
range, spanning between 11 to 16 orders of magnitude, 
as depicted in Table  3 and elaborated in supplementary 
information in Table S1. To visually illustrate this varia-
tion, Fig. 3 presents box plots categorizing EFs based on 

the type of data considered and EF calculation method 
used. These graphical representations effectively show-
case the distribution of EFs, highlighting the considerable 
diversity in values across the different data categories.

Comparison of ecotoxicity effect factors
The initial comparison involved contrasting the EFs 
based on  HC50EC50eq derived from experimental data in 
this study with the existing USEtox EFs available in the 
USEtox organic substances database (version 2.01), as 
illustrated in Fig.  4 and Table  4. This assessment cov-
ered EFs for 2426 chemicals already present in the USE-
tox database, recalculated using experimental data. The 
results of the regression analysis were indicative of a 
robust correlation, with an  R2 value of 0.84, demonstrat-
ing a strong alignment between recalculated values and 
those in USEtox.

In line with the USEtox guideline prioritizing EC50 
chronic data, this study conducted a separate analysis 
comparing EFs calculated solely with this data against 
USEtox EFs. This yielded an  R2 value of 0.64, indicating 
a moderate correlation. However, when EFs derived from 
both chronic EC50 and extrapolated acute EC50 data 
were compared to USEtox EFs, the  R2 value substantially 

Fig. 3 Box plots of calculated EFs from experimental and estimated data in the freshwater compartment for different types of data
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increased to 0.85, signaling a strong correlation. This 
improvement suggests that incorporating extrapolated 
data significantly enhances data coverage and species 
group representation, resulting in normalized values 
closely aligned with USEtox. The notably high correlation 
observed between recalculated and USEtox EFs provides 
confidence that the EFs computed in this study for chem-
icals absent from the USEtox database adhere to USEtox 
calculation criteria. This underscores the reliability of the 
EFs generated for chemicals not originally included in 
USEtox.

The second comparison involved contrasting the EFs 
based on  HC50EC50eq derived from estimated data in 

this study with the pre-existing USEtox EFs available in 
the USEtox organic substances database (version 2.01), 
as illustrated in Fig.  5. In this assessment, EFs for 2165 
chemicals from ECOSAR and 2098 chemicals from 
TEST, which were already listed in USEtox, were recalcu-
lated using their respective estimated data.

The regression analysis between USEtox and ECOSAR 
EFs revealed an  R2 value of 0.42, indicating a relatively 
weak correlation. A similar analysis between USEtox and 
TEST EFs yielded an  R2 value of 0.55, suggesting a slightly 
stronger but still weak correlation when compared to 
ECOSAR. However, when EFs from ECOSAR were com-
pared against TEST EFs, the  R2 value increased to 0.57, 

Fig. 4 Regression analysis of pre-calculated log transformed USEtox 2.13 database EFs [PAF  m3  kg−1] in freshwater ecosystem versus log 
transformed EFs [PAF  m3  kg−1] calculated in this study based on  HC50EC50eq with experimental ecotoxicity data: all (left), EC50 chronic (middle), 
and EC50 (right), with correlation: moderate (n = 2426,  R2 = 0.84, r = 0.92), low (n = 1418,  R2 = 0.64, r = 0.80), and high (n = 2406,  R2 = 0.85, r = 0.92) 
respectively

Table 4 Overview of the regression analysis of log transformed EFs based on  HC50EC50eq calculated in this study versus pre-calculated 
log transformed USEtox 2.13 database [PAF  m3  kg−1]

Variable By variable Correlation Rsquare Root mean 
square error

Covariance Count Lower 95% Upper 95%

log EF, USEtox log EF, All 0.92 0.84 0.56 1.52 2426 0.91 0.92

log EF, USEtox log EF, EC50 chronic 0.80 0.64 0.84 1.67 1418 0.78 0.82

log EF, USEtox log EF, EC50 0.92 0.85 0.55 1.61 2406 0.92 0.93

Fig. 5 Regression analysis between pre-calculated log transformed USEtox 2.13 database EFs, ECOSAR EFs, and TEST EFs [PAF  m3  kg−1] in freshwater 
ecosystem: USEtox vs ECOSAR (left), USEtox vs TEST (middle), and ECOSAR vs TEST (right), with correlation: weak (n = 2165,  R2 = 0.42, r = 0.65), weak 
(n = 2098,  R2 = 0.55, r = 0.74), and weak (n = 4930,  R2 = 0.57, r = 0.76) respectively
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signifying a relatively stronger, yet still weak, correlation. 
This observed increase in the  R2 value may be attributed 
to the inclusion of more data points, which can lead to 
values that align more closely with each other.

The low correlation between recalculated EFs using 
estimated data and USEtox EFs implies that the EFs 
for chemicals with estimated data do not align well 
with USEtox effect data. This suggests a lower degree 
of confidence in the EFs calculated for chemicals 
based on estimated data. Table  5 provides summary 
statistics of the regression analysis, presenting log-
transformed pre-calculated USEtox 2.13 database EFs, 
ECOSAR EFs, and TEST EFs. Furthermore, the EFs cal-
culated in this study with ECOSAR and TEST exhibit 
relatively low correlation, indicating that estimations 
from different QSARs can lead to differing results. 
It is important to note that QSAR models have a lim-
ited applicability domain, determined by their training 
data, making them more suitable for certain substance 
groups but not universally applicable. Typically, QSARs 

provide acute data for specific endpoints, covering a 
limited range of species groups. This data often requires 
extrapolation to the necessary endpoints and aggrega-
tion to calculate the EF for each chemical, introducing 
an additional layer of uncertainties. Therefore, when 
utilizing QSAR-based tools for calculating toxicity data 
to determine EFs, it is crucial to carefully understand 
the associated uncertainties and exercise caution. Users 
should take into account the applicability domain of 
QSARs for specific chemicals and avoid prioritizing 
QSAR derived EFs over experimental EFs, except in 
cases where experimental data are unavailable. This is 
supported by the findings presented in Table  5, which 
show a generally low correlation between experimental 
and estimated data based EFs.

The third comparison focused on contrasting the EFs 
based on  HC50EC50eq derived from the experimental data 
in this study with the calculated EFs from ECOSAR, as 
illustrated in Fig. 6 and Table 6. In this investigation, 6029 

Table 5 Overview of the regression analysis between log transformed pre-calculated USEtox 2.13 database EFs, ECOSAR EFs, and TEST 
EFs [PAF  m3  kg−1]

Variable By variable Correlation Rsquare Root mean 
square error

Covariance Count Lower 95% Upper 95%

log EF, USEtox log EF, ECOSAR 0.65 0.42 1.02 1.35 2165 0.63 0.68

log EF, USEtox log EF, TEST 0.74 0.55 0.94 1.25 2098 0.72 0.76

log EF, ECOSAR log EF, TEST 0.76 0.57 1.04 1.35 4930 0.75 0.77

Fig. 6 Regression analysis of ECOSAR EFs [PAF  m3  kg−1] in freshwater ecosystem versus log transformed EFs [PAF  m3  kg−1] calculated in this study 
with experimental ecotoxicity data: all (left), EC50 chronic (middle), and EC50 (right), with correlation: very weak (n = 6030,  R2 = 0.26, r = 0.51), very 
weak (n = 2964,  R2 = 0.26, r = 0.51), and very weak (n = 5409,  R2 = 0.30, r = 0.55) respectively

Table 6 Overview of the regression analysis of log transformed EFs versus calculated log transformed ECOSAR EFs [PAF  m3  kg−1]

Variable By variable Correlation Rsquare Root mean 
square error

Covariance Count Lower 95% Upper 95%

log EF, ECOSAR log EF, All 0.51 0.26 1.45 1.00 6029 0.49 0.53

log EF, ECOSAR log EF, EC50 chronic 0.51 0.26 1.41 1.13 2964 0.48 0.53

log EF, ECOSAR log EF, EC50 0.55 0.30 1.37 1.07 5408 0.53 0.56
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chemicals were found in common between ECOSAR and 
the experimental data from this study.

The regression analysis between ECOSAR EFs and all 
the experimental data showed an  R2 value of 0.26, indi-
cating a very weak correlation. Adhering to the USEtox 
guideline of prioritizing EC50 chronic data, a separate 
analysis compared EFs calculated using only these data 
with ECOSAR EFs, resulting in an  R2 value of 0.26, 
pointing to a very weak correlation. However, when EFs 
derived from both chronic EC50 and extrapolated acute 
EC50 were compared against ECOSAR EFs, the  R2 value 
increased to 0.30, signifying a very weak correlation, but 
relatively stronger than the previous comparisons.

The low correlation between the experimental EFs 
and the ECOSAR EFs implies that the estimated values 
for chemicals do not align well with experimental values 
in general. This results in a low degree of confidence in 
the EFs calculated with estimated data. Table 6 provides 
summary statistics of the regression analysis, presenting 
log-transformed EFs calculated in this study versus log-
transformed ECOSAR EFs.

The fourth comparison centered on contrasting the EFs 
based on  HC50EC50eq derived from the experimental data 
in this study with the calculated EFs from TEST, as illus-
trated in Fig. 7 and Table 7. In this research, 6762 chemi-
cals were common between TEST and the experimental 
data.

The regression analysis between TEST EFs and all the 
experimental data showed an  R2 value of 0.34, indicating 

a very weak correlation. Following the USEtox guideline, 
which prioritizes EC50 chronic data, a separate analysis 
compared EFs calculated using only this data with TEST 
EFs. This yielded an  R2 value of 0.31, pointing to a very 
weak correlation. However, when EFs derived from both 
chronic EC50 and extrapolated acute EC50 were com-
pared against TEST EFs, the  R2 value increased to 0.38, 
signifying a very weak correlation, but relatively stronger 
than the previous comparisons.

The low correlation between the experimental EFs 
and the TEST EFs implies that the estimated values for 
chemicals do not align well with experimental values. 
Consequently, there is a low degree of confidence in the 
EFs calculated with estimated data. Table  7 provides 
summary statistics of the regression analysis, presenting 
log-transformed EFs calculated in this study versus log-
transformed TEST EFs.

The fifth comparison focused on evaluating the EFs 
based on  HC50EC50eq derived from the experimental data 
in this study, considering different endpoint inclusions, 
as illustrated in Fig. 8. The regression analysis conducted 
between EC50 chronic data, and all experimental data 
yielded an  R2 value of 0.82, indicating a strong correla-
tion. Likewise, when comparing combined chronic EC50 
and extrapolated acute EC50 against all experimental 
data, a high  R2 value of 0.94 was observed, signifying a 
robust correlation.

However, when EFs derived from both chronic EC50 
and extrapolated acute EC50 were compared against 

Fig. 7 Regression analysis of TEST EFs [PAF  m3  kg−1] in freshwater ecosystem versus log transformed EFs [PAF  m3  kg−1] calculated in this study 
with experimental ecotoxicity data: all (left), EC50 chronic (middle), and EC50 (right), with correlation: very weak (n = 6762,  R2 = 0.34, r = 0.58), very 
weak (n = 2994,  R2 = 0.31, r = 0.56), and very weak (n = 5794,  R2 = 0.38, r = 0.62) respectively

Table 7 Overview of the regression analysis of experimental log transformed EFs versus calculated log transformed TEST database EFs 
[PAF  m3  kg−1]

Variable By variable Correlation Rsquare Root mean 
square error

Covariance Count Lower 95% Upper 95%

log EF, TEST log EF, All 0.58 0.34 1.01 0.88 6762 0.56 0.60

log EF, TEST log EF, EC50 chronic 0.56 0.31 0.93 0.88 2994 0.53 0.58

log EF, TEST log EF, EC50 0.62 0.38 0.93 0.94 5794 0.60 0.64
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EC50 chronic data EFs, the  R2 value remained strong at 
0.86, suggesting that while the inclusion of different end-
points has an effect, it is not a significant determinant 
of the correlation strength. This implies a high degree of 
confidence in the EFs calculated when considering both 
chronic EC50 and extrapolated acute EC50 data. Table 8 
provides summary statistics of the regression analysis, 
presenting log transformed EFs calculated in this study 
for all experimental data, all EC50 chronic data, and 
EC50 data.

The final comparison focused on contrasting the EFs 
derived from the experimental data in this study based on 
 HC50EC50eq with the calculated EFs based on  HC20EC10eq, 
as illustrated in Fig. 9 and Table 9.

The regression analysis with all the experimental data 
showed an  R2 value of 0.93, indicating a very strong cor-
relation. Adhering to the USEtox guideline of prioritiz-
ing EC50 chronic data, a separate analysis compared 
EFs calculated using only this data with EFs based on 
 HC20EC10eq, resulting in an  R2 value of 0.75, pointing to 
a moderate correlation. However, when EFs derived from 
both chronic EC50 and extrapolated acute EC50 were 
compared against EFs based on  HC20EC10eq, the  R2 value 
increased to 0.88, signifying a strong correlation.

The strong correlation between the experimen-
tal EFs based on  HC50EC50eq and the EFs based on 
 HC20EC10eq implies that data can be used to calcu-
late extrapolation factor to convert EF  (HC50EC50eq) 

Fig. 8 Regression analysis of EFs [PAF  m3  kg−1] in freshwater ecosystem between log transformed EFs [PAF  m3  kg−1] calculated in this study 
with experimental ecotoxicity data: all vs EC50 chronic (left), all vs EC50 (middle), and EC50 chronic vs EC50 (right), with correlation: moderate 
(n = 5047,  R2 = 0.82, r = 0.91), high (n = 9543,  R2 = 0.94, r = 0.97), and high (n = 5047,  R2 = 0.86, r = 0.93) respectively

Table 8 Overview of the regression analysis between log transformed EFs calculated with all experimental data, all EC50 chronic data, 
and EC50 data [PAF m3 kg-1]

Variable By variable Correlation Rsquare Root mean 
square error

Covariance Count Lower 95% Upper 95%

log EF, All log EF, EC50 chronic 0.91 0.82 0.47 1.41 5047 0.90 0.91

log EF, All log EF, EC50 0.97 0.94 0.28 1.38 9543 0.97 0.97

log EF, EC50 chronic log EF, EC50 0.93 0.86 0.52 1.58 5047 0.93 0.93

Fig. 9 Regression analysis of log transformed EFs [PAF  m3  kg−1] based on  HC20EC10eq in freshwater ecosystem versus log transformed EFs [PAF 
 m3  kg−1] based on  HC20EC50eq calculated in this study with experimental ecotoxicity data: all (left), EC50 (middle), and EC50 chronic (right), 
with correlation: high (n = 11,295,  R2 = 0.93, r = 0.97), moderate (n = 5047,  R2 = 0.75, r = 0.86), and high (n = 9543,  R2 = 0.88, r = 0.94) respectively
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to EF  (HC20EC10eq) for chemicals with available EF 
 (HC50EC50eq). In this study, the extrapolation equation 
was derived by comparing log-transformed values of 
EF  (HC50EC50eq) and EF  (HC20EC10eq) across chemicals 
with data from at least three species groups, encom-
passing 3827 chemicals. The regression analysis, as 
shown in Fig.  10, revealed a robust correlation, with an 
 R2 value of 0.93, indicating a strong correlation between 
the compared values. The resulting extrapolation equa-
tion is log EF  (HC20EC10eq) = 0.75 + 0.9897*log EF 
 (HC50EC50eq), with the default extrapolation factor as EF 
 (HC20EC10eq) = 5.33*EF  (HC50EC50eq).

In this research, ecotoxicity data from REACH and 
CompTox version 2.2.1 underwent a systematic har-
monization process as discussed in the method sec-
tion, aligning with USEtox guidelines to ensure data set 
integrity and relevance for EF calculations. This thor-
ough harmonization procedure led to a 37% reduction 
in data points. However, the study encountered limita-
tions due to expertise constraints and information gaps 
inherent in ecotoxicity data with gaps and uncertainties. 
Challenges arose from the absence of a globally recog-
nized standard for species naming and categorization in 
ecotoxicity, prompting the use of the US EPA ECOTOX 
knowledgebase [49]. Exposure classifications, as provided 

by Aurisano et  al. [2], were employed as the best avail-
able estimates for algae tests due to a lack of clear acute/
chronic differentiation in typical 72-h exposure. End-
point classification complexities, especially within lower 
species sensitivity distributions, made distinguishing 
between NOEC, LOEC, and EC 1–10 values difficult [21]. 
Inconsistent units across endpoints resulted in the exclu-
sion of endpoints that were unconvertible. Additionally, 
the variety of effects studied for a specific endpoint, spe-
cies, and exposure type introduced further complexity, 
given varying sensitivities and data limitations. The study 
aimed to offer a close approximation rather than an accu-
rate representation of the situation, acknowledging the 
influence of numerous identified and unidentified factors 
on ecotoxicity test outcomes and derived EFs.

Additionally, analyzing results for specific subgroups 
of chemicals could enhance our understanding. Never-
theless, a limitation of this study is that chemicals have 
not been categorized into distinct subgroups such as 
organic, inorganic, elemental, organometallic, and petro-
leum products, among others. This limitation stems from 
the absence of available extrapolation factors needed to 
convert various endpoints to chronic EC50 and chronic 
EC10 for different chemical subgroups. This study main 
aim was to provide EFs that aid in calculating CFs for 
chemicals, rather than facilitating comparisons between 
distinct chemical subgroups. However, investigating 
how different subgroups of chemicals exhibit varying 
ranges of EFs represents a potential direction for future 
research. While such a comparative analysis of chemical 
groups aligns with the future scope of this study, it falls 
outside the limited scope of the current study.

In terms of applications, USEtox CFs are typically 
useful for a first-tier assessment in potential toxicity 
assessment. However, if a substance appears to signifi-
cantly contribute to the toxicity impact scores, it is rec-
ommended to verify and improve the reliability of the 
chemical-specific input data whenever possible. USEtox 
classifies ecotoxicity CFs as indicative or recommended 
based on data coverage across species and trophic levels. 
Recommended CFs require effect data from at least three 
different species covering at least three different trophic 
levels [12]. The scarcity of toxicity data points per chemi-
cal for various species at desired endpoints is a notable 

Table 9 Overview of the regression analysis between log transformed EFs calculated using two different methodologies [PAF  m3 
 kg−1]

EF based on  HC20EC10eq EF based on  HC50EC50eq Correlation Rsquare Root Mean 
Square Error

Covariance Count Lower 95% Upper 95%

log EF  (HC20EC10eq), All log EF, All 0.97 0.93 0.31 1.41 11,295 0.97 0.97

log EF  (HC20EC10eq), All log EF, EC50 chronic 0.86 0.75 0.58 1.41 5047 0.86 0.87

log EF  (HC20EC10eq), All log EF, EC50 0.94 0.88 0.39 1.34 9543 0.94 0.94

Fig. 10 Regression analysis of log EF  (HC20EC10eq) versus log EF 
 (HC50EC50eq) for chemicals with data from at least 3 species groups, 
exhibiting a high correlation (n = 3827,  R2 = 0.93, r = 0.96)
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limitation in deriving EFs. To address this, Table S1 in the 
supplementary information of this study details the num-
ber of data points, species, and species groups per chemi-
cal, highlighting the uncertainties associated with each 
EF due to limited data availability. Moreover, uncertainty 
can also arise when the available data require conversion 
to the desired format through extrapolation methods, 
such as changing from acute to chronic exposure classes 
or changing endpoints. The available extrapolation and 
conversion factors are derived from limited data, contrib-
uting further to the uncertainty of the results.

Conclusions
The escalating use of chemicals presents both opportu-
nities and dilemmas. While their benefits are evident, 
concerns about their potential environmental and health 
impacts are growing, prompting questions about the sus-
tainability of current practices. This underscores the need 
to transition from a preliminary lifecycle perspective to 
a comprehensive LCA that quantifies the environmental 
concerns of chemicals. Central to this is the availability of 
EFs for chemical emissions. While risk assessment tools 
have been employed for years, generating vast data, there 
is a pressing need to consolidate this information for 
LCA applications. Drawing from the REACH and Comp-
Tox databases, this study identified 11,295 unique chem-
icals, of which only 2426 are currently cataloged in the 
USEtox database. To address this, this study calculated 
EFs for an additional 8869 chemicals, enhancing their 
representation in LCA studies. In total, this research cov-
ers 11,368 chemicals, with 2426 overlapping with USE-
tox. However, data scarcity posed challenges, leading to 
employing QSAR models like ECOSAR and TEST for 
estimating ecotoxicity data.

The strong correlation between the experimental EFs 
and those in the USEtox database underscores a high 
degree of confidence in the calculations for chemicals 
not yet included in USEtox. However, discrepancies 
arise when comparing USEtox EFs values with derived 
EC50 chronic values, likely due to variations in founda-
tional ecotoxicity data. This correlation improves when 
both chronic and extrapolated EC50 data are considered, 
emphasizing the value of extrapolated data in broaden-
ing the data set and species representation. Conversely, 
the weak correlation between estimated EFs and those 
in USEtox, as well as between EFs derived from ECO-
SAR and TEST, suggests that different QSAR models 
yield varied results. This divergence between estimated 
and experimental data from REACH and CompTox data-
bases underscores the need for caution when relying on 
estimated data. As chemical data continues to evolve, EFs 
should be periodically updated to remain current and 
accurate, underscoring their dynamic nature in reflecting 

the most recent data. There is also a recognized need to 
enhance consensus between risk assessment and USEtox-
based LCA calculations. Achieving this alignment would 
optimize resources and allow for the reliable use of both 
methodologies in quantifying the toxicity impacts of 
chemicals.
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