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Abstract 

Background Biodiversity is declining worldwide as ecosystems are increasingly threatened by multiple stressors 
associated with anthropogenic global change. Stressors frequently co-occur across scales spatially and temporally, 
resulting in joint effects that are additive or non-additive, i.e., antagonism or synergism. Forecasting and counteract-
ing threats from intensifying stressors requires improved mechanistic understanding of joint effects, which is currently 
relatively low. To date, research on multiple stressors has been biased toward simplified scenarios, emphasized classi-
fication of interactions over realized joint effects, and mostly ignored adaptation (i.e., phenotypic plasticity or evolving 
life-history traits) of organisms. To investigate if more a realistic scenarios design incorporating complex spatiotem-
poral stressor profiles and adaption change joint effects and interactions of multiple stressors compared to simplified 
scenarios, we modified a spatially explicit meta-population model for a generic freshwater insect. We used the model 
to simulate different, hypothetical spatiotemporal profiles of a continuous and a discrete stressor and evaluated their 
joint effects and interactions. Agricultural land use represented the continuous stressor impacting meta-population 
patch quality and network connectivity and related scenarios implied different trajectories. Climatic events repre-
sented the discrete stressor impacting all patches simultaneously by temporary mortality events, with related sce-
narios implying different event severity. Adaptation mitigated the effects of climatic events based on previous events.

Results Excluding adaptation, we found that at higher levels of the discrete stressor (i.e., strong and frequent 
climatic events) it strongly dominates the joint effects, while at a low level (i.e., weak and infrequent climatic events) 
of the discrete stressor, the continuous stressor (i.e., land use) dominates. Yet, the continuous stressor always defined 
the interaction type, with decreasing land use stress leading to antagonism, and increasing land use stress leading 
to synergism. Adaptation reduced joint effects under decreasing land use stress, yet had little compensatory influ-
ence under increasing land use stress. Moreover, adaptation changed interaction sizes inconsistently across the dif-
ferent land use and climate scenarios, with change depending on the climate scenario. Here, interactions decreased 
in the moderate scenario but increased in the severe and intense scenarios.

Conclusions We highlight that realistic stressor scenarios accounting for potential adaptation are critical for a mech-
anistic understanding of how species respond to global change. To our knowledge, this is the first modeling study 
to show that stressor interactions depend on complex spatiotemporal stressor profiles and adaptation, following gen-
eral principles.
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Background
Worldwide terrestrial, marine and freshwater biodiver-
sity is declining at an accelerating rate [1, 2]. Many eco-
systems and their species are threatened by intensifying 
stressors associated with anthropogenic global change, 
including climate and land use change [3]. Climate 
change threatens biodiversity by changes in mean climate 
parameters (e.g., annual temperatures or precipitation) 
but also in their variance, hence altering the frequency 
and intensity of climate extremes (e.g., floods or heat-
waves). Land use change, typically through agriculture 
expansion, threatens biodiversity by habitat degrada-
tion and loss of connectivity, but also by agrochemical 
changes (e.g., pollution or eutrophication) [4]. Further-
more, interactions between co-occurring climate and 
land use change related stressors are common (e.g., land 
cover affects local climate change effects or land struc-
ture influences species’ dispersal in response to changing 
climatic conditions) [5]. Nevertheless, the interactions 
between stressors are largely poorly understood, which 
hampers the development of appropriate conservation 
strategies in the face of future changes, despite poten-
tially large consequences for biodiversity [4, 5].

Global change related stressors frequently co-occur at 
different spatial and temporal scales, resulting in joint 
effects on ecosystems [6]. Spatially, stressors may occur 
locally (e.g., pollution by point sources), regionally (e.g., 
droughts), or globally (e.g., ocean acidification) [7]. Tem-
porally, stressors may have many profiles ranging from 
discrete events (e.g., single climatic extremes) to contin-
uous (e.g., constant discharge of toxic chemicals) [3, 8]. 
Multiple co-occurring stressors can interact in additive 
effects (joint effect = sum of individual effects), but also in 
non-additive effects, i.e., antagonisms (joint effect < sum 
of individual effects) or synergisms (joint effect > sum of 
individual effects) [4, 9]. However, research on multiple 
stressors has been criticized for emphasizing interaction 
classification but neglecting mechanistic understanding 
of joint effects [10, 11]. Although for toxins and environ-
mental stressors for which a full dose–response relation-
ship was available, effects were largely non-additive and 
could be explained by the stressor addition model [12], 
a qualitative meta-analysis of 15 meta-analyses of experi-
mental studies with multiple stressors by Côté et  al. [9] 
indeed yielded few consistent results. Partly, this owes to 
a bias in previous experimental studies toward simplified 
scenarios resulting in distorted, if not false, assessments 
of joint effects and interactions when extrapolated to 
real-world scenarios [6, 13, 14].

Non-additive effects from multiple co-occurring stress-
ors can result from mechanistic stressor interactions, 
i.e., one stressor alters organisms’ response to a second 
stressor [9], but also from other factors, like nonlinear 

stressor-response relationships, e.g., stressor alterations 
trigger a disproportionate response [12, 15], the choice of 
the null model to predict the joint effect [16], or experi-
mental duration [17].

The prevalence of additive and non-additive interac-
tions is forecasted to change significantly in response 
to global anthropogenic changes [6, 18]. Notably, syn-
ergisms, considered to produce rapid, disproportionate 
losses of biodiversity and ecosystem functions [9, 19, 20], 
are forecasted to occur more frequently and with higher 
intensity in the future [21]. Nevertheless, the capacity 
to forecast, and counteract the threats from intensifying 
stressor regimes requires a robust mechanistic under-
standing of joint effects, which is currently relatively low 
[9, 22, 23].

Process-based simulation models can simulate realistic 
spatiotemporal stressor profiles and, thereby, significantly 
contribute to a better mechanistic understanding of joint 
effects and related interactions across scales [6, 24, 25]. In 
addition, they support the development of correspond-
ing theory [11, 26]. Compared to data-based models, 
which rely on empirical information, often are very spe-
cific, and make fewer assumptions, process-based models 
have a high general predictive power, yet also structural 
uncertainty and associated risk of bias, e.g., potentially 
resulting from inappropriate assumptions [27, 28]. Pro-
cess-based models support predictions beyond the range 
of observed stressors and allow for broader extrapola-
tion, as they can simulate alternative developments and 
parts of real-world systems; they can also be applied to 
study hypothetical scenarios, whose design can be very 
complex with a high number of parameters [29] focus-
ing on the identification of general principles [26, 28, 30]. 
Nevertheless, process-based models in multiple stressor 
research are rare, although related studies can support 
future management and thereby optimize species con-
servation by assessing and predicting joint effects and 
related interactions [17, 28, 31].

By contrast, large-scale empirical experiments with 
multiple stressors are technically difficult to realize [11, 
32]. Therefore, in experiments, multiple stressors have 
commonly been implemented with static profiles, where 
stressors are temporally constant or synchronous in 
pulses, and spatially homogeneous [6, 33]. However, at 
the landscape scale and beyond, multiple stressors typi-
cally occur discontinuously, i.e., intensities vary in space 
and time [25, 34]. Complex spatiotemporal stressor 
regimes [32, 35] and thus associated complex patterns of 
joint effects and interactions emerge [6, 20]. For exam-
ple, a variable spatial intensity of a continuous stressor 
such as habitat fragmentation together with another, 
regionally uniform discrete stressor such as drought 
events created locally dissimilar joint effects on insect 
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populations [4]. Yet, biotic exchange processes between 
patches within ecological networks, e.g., driven by the 
dispersal of organisms, can in turn compensate for local 
differences over time [36, 37]. Changes in the tempo-
ral stressor intensity, in the interval between or the fre-
quency of stress events, can also modify the joint effects 
by e.g. altering the available recovery time [9, 38]. The 
majority of ecosystems are exposed to a variety of stress-
ors occurring at different times, hence investigations of 
stressor dynamics are required to better understand 
overall impacts [39]. For example, studies have shown 
that the sequence of occurrence of two discrete stressors 
can strongly modify their joint effects, which may turn 
from non-significant to non-additive [40, 41].

Another shortcoming in multiple stressor research 
is that adaptation processes of organisms to stressors, 
likely modifying their effects and interactions, have been 
largely unconsidered in most previous experimental and 
modeling studies [35, 42, 43]. Adaptation through pheno-
typic plasticity [44] or the evolution of life-history traits 
[43] can enable species to cope with changing stressor 
regimes. Consequently, future stress of similar intensity 
may have a lower effect on adapted individuals, popula-
tions, and communities, respectively [6, 31]. Moreover, 
adaptation can determine the response to additional 
stressors, for instance, through co-tolerance [45], trade-
offs [46], or maladaptation [47].

We aimed to identify how complex spatiotemporal 
stressor profiles and adaptation influence the joint effects 
and thereby interactions of multiple stressors at the land-
scape scale compared to simplified scenarios. Hereto, we 
used a spatially explicit, process-based meta-population 
model [48, 49] to simulate hypothetical scenarios of two 
stressors considering potential adaptation to one stressor. 
Agricultural land use and climatic events were imple-
mented as continuous and discrete stressors, respectively, 
as these are key global change stressors likely to have 
strong future impacts on ecosystems [50, 51]. Agricul-
tural land use-related stress continuously affected patch 
qualities and was incorporated with multiple temporal 
profiles; i.e., steady ramping, and abrupt stepwise (posi-
tive or negative). Climate scenarios resulted in numerous, 
irregularly timed mortality events, with the frequency 
and intensity of events randomly drawn from three 
skewed normal probability distributions. Adaptation was 
considered as different levels of adaptability to climatic 
events based on previous events. Finally, we determined 
the response (i.e., joint effect and interaction size and 
type) of meta-populations to multiple combinations of 
stressors and adaptation levels.

Following recent conceptual studies [6, 20], we hypoth-
esize that scenarios incorporating complex spatiotempo-
ral stressor profiles and adaptation profoundly change 

joint effects and interactions of multiple stressors com-
pared to simplified scenarios, specifically altering the 
frequency of additive and non-additive effects. Given 
the lack of data, we had no specific expectations regard-
ing the directional change of the joint effects concerning 
the multiple, interacting model parameters, which in iso-
lation most likely either increase (the two stressors) or 
decrease (adaptation) the meta-population response.

Methods
We used a process-based, spatially explicit meta-pop-
ulation model for a generic hemimetabolous freshwater 
insect, parameterized based on traits of the European 
damselfly Coenagrion mercuriale [48, 49], to simulate 
hypothetical scenarios incorporating complex, dynamic 
spatiotemporal profiles of a continuous (land use) and 
a discrete stressor (repetitive climatic events of mortal-
ity), considering adaptation to the latter. Hemimetabol-
ous freshwater insects complete their larval development 
in streams but primarily disperse and mate on land [52]. 
They the largest group of aquatic insects. However, meta-
population models for these insects are lacking, given 
most existing models are largely restricted to terrestrial 
or freshwater species. This limits our capacity for pre-
dicting the effects of changing environmental conditions 
on hemimetabolous species [49].

In the following, we provide an overview of the model 
utilized, i.e., the set-up of meta-population networks 
and the simulation process of population dynamics 
(i.e., reproduction and dispersal) within these, as well as 
introduce the stressor scenarios and the implementa-
tion of adaptation. The technical details of the model are 
described in Streib et al. [48], respectively, the software-
framework as well as supplementary data and mate-
rial used for the present study is provided in a GitHub 
repository.

Meta‑population networks and population dynamics
Meta‑population networks
Meta-population networks form the basis for the simu-
lation process and were set up on a 12.5  km × 12.5  km 
landscape raster and consist of quality-assigned patches 
and interpatch connections. The landscape raster was 
extracted from real-world geospatial data, i.e., land cover 
data [53] around a stream network section [54] from 
South-West Germany. We classified the land cover data 
into three terrestrial types ‘Urban’ (LT1), ‘Forestry’ (LT2), 
and ‘Agriculture’ (LT3) and assigned the cells intersect-
ing the stream network as the aquatic land cover type 
‘Stream’ (LT4) (Fig.  1A). Each type was associated with 
(numeric) dispersal costs (LT1 = 100, LT2 = 75, LT3 = 50, 
LT 4 = 25), based on a literature review described in 
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detail in Streib et  al. [49], representing species-specific 
landscape permeability for Coenagrion mercuriale.

The meta-population patches were defined by ran-
domly selecting 10% of LT4 cells from the inner 
10  km × 10  km landscape area as suitable meta-popula-
tion patches (Fig.  1B). The (most cost-efficient) inter-
patch connections (Fig. 1C) were identified based on the 
patches and the LT-specific dispersal costs in the land-
scape raster using least-cost path analysis [55], consider-
ing only connections below a maximum connectivity cost 
threshold [49]. To minimize bias because of the random 
patch distributions along the stream network, we created 
a total of ten meta-population networks for simulation.

To capture the land use scenario, simulating different 
shifts of ‘Agriculture’, starting from an initial 50/50 split 
of LT3 into intensive (LT3-i) and extensive (LT3-e) use, 
patch quality was determined time-step specific. Thereto, 
we considered the terrestrial land cover composition in 
the complete upstream catchment AP Total and set the 
specific quality for a patch QP to its maximum 1.0 in the 
absence of ‘Urban’ and intensive ‘Agriculture’; else, we 
linearly reduced the QP as a function of proportion to a 
minimum value of 0.0 for 100% LT1 and LT3-i land cover 
in the catchment of a patch AP:

Population dynamics
Within each meta-population network, we simulated the 
following population dynamics: (1) Reproduction in each 
patch up to the maximum carrying capacity KP, and (2) 
inter-patch dispersal based on positive density-depend-
ent emigration. KP depended on time-step specific patch 
quality and linearly increased with quality from 0 to 100 

(1)QP = 1− (APLT1 + APLT3−i)/APTotal

individuals (i.e., KP = QP × 100). If patches were extinct or 
not fully colonized, i.e., were below their maximum KP 
due to prior mortality by climatic events, recovery within 
the meta-population proceeds. Recovery was based on 
reproduction within a patch and on density-dependent 
dispersal within the network, i.e., the emigration of indi-
viduals into (directly) connected patches. The outcome of 
dispersal was determined by connection costs: dispersal 
mortality increased with cost, which represented higher 
risks and reduced energy reserves, and more dispersers 
were emitted to patches with lower costs when multiple 
patches were connected (based on higher colonization 
probability).

Stressor scenarios and adaptation
Agricultural land use scenarios
Agricultural land use (for simplicity hereafter referred 
to as ‘land use’) represented a continuous stressor. We 
assumed that intensification or extensification of agri-
cultural land use in a catchment results in reduced or 
increased patch qualities, respectively, and thereby 
reduced or increased carrying capacities of patches [4]. 
As we aimed to show general patterns, we implemented 
four different, hypothetical scenarios of agricultural land 
use change based on simple temporal profiles of a con-
tinuous stressor as suggested in Jackson et al. [6]: steady 
ramping shifts (Fig. 2), or abrupt stepwise shifts (Fig. 7) 
to 100% extensive agricultural land use (LT3-e), which 
decreases land use stress over time, or to 100% intensive 
agricultural land use (LT3-i), which increases land use 
stress over time, starting from 50% LT3-e and 50% LT3-i 
agricultural land use in the landscape raster.

For both profiles, results were highly similar at the end 
of the simulation. Therefore, we mainly present results 

Fig. 1 Flow of the set-up of meta-population networks—A Landscape raster extracted from real-world geospatial data, with following land 
cover types: grey = ‘Urban’ (LT1), green = ‘Forestry’ (LT2), white = ‘Agriculture’ (LT3), and blue = ‘Stream’ (LT4). B Random patch arrangement scenarios 
along LT4 of the landscape raster, patches are represented as ‘black’ points. C Meta-population networks determined via least-cost path analysis 
based on (A) and (B); networks consist of patches, represented by ‘black’ points, and the most cost-efficient connections, represented as ‘black’ lines
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for the ‘ramping’ scenarios, and differences for the ‘step-
wise’ scenarios profile are discussed only briefly (see 
Appendix A—Figs. 8 and 9).

Climate scenarios
We implemented climate scenarios as discrete stressor 
events of mortality resulting in population declines (i.e., 
reduction by an integer number of individuals) in a colo-
nized meta-population patch, assuming the same effect is 
present at the regional scale, uniformly across all meta-
population patches.

We used normal probability distribution functions 
(PDFs; Figueiredo and Gomes [56]) with different skew-
ness α to sample event mortality M in a range from 0 
to 100 individuals for every time step. The PDFs pro-
vided probability weights for M sampling based on a 
logarithmic vector between log(0.01) and log(10) with 
e as the base and values rounded to integers. Three sce-
narios were simulated: (1) ‘moderate’ (α = 0), (2) ‘severe’ 
(α = − 2.5), and (3) ‘intense’ (α = − 5) (Fig. 3). Thus, event 
mortality increased on average with the scenarios.

To minimize bias, we sampled ten random sequences 
of climatic events (i.e., mortalities per time-step over the 
simulation) per climate scenario.

Adaptation
Adaptation comprises evolutionary or non-evolutionary 
processes and phenotypic plasticity by which species can 
possibly adapt to changing environmental conditions [6, 
57]. We implemented adaptation in a greatly simplified 
form as a generic concept, excluding potential negative 
trade-offs (e.g., maladaptation). Based on a hypothetical 
approach, climatic event-induced mortality M for a time 
step t was buffered on the basis of the mean mortality of 
the last five time steps Mt-5 in percentage terms, with a 
factor A controlling the power of the buffering:

Overall, we simulated three levels of A: ‘no’ adaptation 
(A = 0), ‘low’ adaptation (A = 0.5), and ‘high’ adaptation 
(A = 1).

Simulation process
The simulation included the population dynamics under 
different land use and climate scenarios as well as adapta-
tion to the latter (Fig.  4). 75 time steps were simulated, 
starting from a fully colonized meta-population network, 
i.e., an initial population of 100% of the carrying capac-
ity K of all patches. Land use scenarios and the resulting 
changes in patch qualities were simulated between time 
steps 25 and 50. Accordingly, patch qualities remained 
stable in the first and the last 25 time steps, so a stable 
initial and final state was achieved. The latter was done 
to capture long-term land use impacts, i.e., whether joint 
effects remain stable over time. Climate scenario-induced 

(2)MtA = int

(

Mt ∗

(

1− A ∗
Mt−5

100

))

Fig. 2 Temporal profile associated with the land use scenario for the ‘ramping’ scenario. Here, the red lines show the trend of intensive agriculture 
(LT3-i), and the green lines show the trend of extensive agriculture (LT3-e)

Fig. 3 Probability density functions to sample event mortality 
associated with the climate scenarios. Here, curves represent 
the skewed normal probability density functions; the lightgreen 
curve shows the ‘moderate’ climate scenario with a skewness α 
of 0, the orange curve the ‘severe’ climate scenario with a skewness 
α of − 2.5, and the red curve the ‘intense’ climate scenario 
with a skewness α of − 5. The bar chart below shows the mortality 
corresponding to the respective probabilities in a range from 0 to 100
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mortality events were simulated over the entire simula-
tion process and reduced the patch populations depend-
ing on the adaptation level.

In total, we ran 4500 simulations based on 10 meta-
population networks, 5 land use scenarios, 10 sequences 
for each of the 3 climate scenarios, and 3 adaptation 
levels. Accordingly, 100 runs (10 meta-population net-
works × 10 climate scenario sequences) were simulated 
for each combination of land use and climate scenario 
and adaptation, and the mean value was determined.

Data analysis
Quantification of joint effects
The joint effect E for a scenario combination S (i.e., land 
use × climatic events × adaptation) was calculated as the 
mean change in meta-population size relative to a base-
line. The baseline B was defined as static land use (i.e., 
no land use change), excluding the simulation of climatic 
events and, thus, adaptation. This baseline provided an 
easily interpretable comparison between the discrete 
and continuous stressor. In addition, stressor levels were 
generic and defined to systematically study the effect lev-
els of a discrete and continuous stressor rather than to 
represent a current or past climate scenario.

The meta-population size corresponded to the sum of 
individuals in all patches at the end of a simulated time 
step i. For all 100 simulation runs (i.e., 10 meta-popula-
tion networks × 10 climatic events sequences) related to 
a scenario combination, we determined the deviation of 
the resulting mean population size NS from the mean 
population size of all baseline simulations NB at all simu-
lated time steps i and calculated E(i) as:

Assessment of stressor interactions
The type and size of a stressor interaction for a scenario 
combination S were calculated using the multiplica-
tive null model (also termed Response Addition, Effect 

(3)E(i) = 1−
Ns(i)

NB(i)

Addition, or Independent Action), given mortality as 
the ecological response [9, 16]. Hereto, we compared the 
simulated effect E(i) of a land use and climate scenario 
combination to predicted effects P(i), i.e., the probabilis-
tic sum of their individual effects:

where Ec and Ed of a scenario combination S are the indi-
vidual effects of the continuous (i.e., simulated for one 
specific land use scenario without climatic events) and 
discrete (i.e., simulated for one specific climatic event-
scenario and the ‘static’ land use scenario) stressor alone.

Following the concept of model deviation ratio MDR 
[58], we defined interactions I(i) by the ratio of predicted 
to simulated effect [i.e., (1 + P(i))/(1 + E(i))]. A ratio of 1.0 
corresponds to an additive, a ratio > 1.0 to an antagonis-
tic, and a ratio < 1.0 to a synergistic interaction. Conse-
quently, the magnitude of non-additive (antagonistic or 
synergistic) interactions increases with departure from 
1.0.

Results
The present study intended to identify how complex 
spatiotemporal profiles of a continuous and a discrete 
stressor, with potential adaptation to one stressor influ-
ence joint effects and interactions on meta-populations. 
Agricultural land use represented the continuous stressor 
impacting meta-population patch quality and network 
connectivity, while climatic events of temporary mortal-
ity represented the discrete stressor; adaptation reduced 
time-specific mortality based on past climatic events.

Excluding adaptation, we found that the discrete 
stressor (i.e., climatic events) primarily dominated joint 
effects, whereas the continuous stressor (i.e., land use 
change) always dominated the interaction type. Adap-
tation lowered joint effects but changed interaction 
sizes and, thereby, classification inconsistently across 
land use and climate scenarios; for decreasing land 
use stress, adaptation (partly considerably) reduced 

(4)P(i) = Ec(S)+ Ed(S)− Ec(S) ∗ Ed(S)

(See figure on next page.)
Fig. 4 Flowchart of the stylized simulation process for one meta-population network. START: the initial population size N per meta-population 
patch P is set to its carrying capacity  KP. SIMULATION: population dynamics and dispersal, discrete mortality events based on one climate scenario 
are simulated over 75 time steps t or until an entire meta-population is extinct (i.e., ΣNt =  = 0); between time steps 25 and 49, land use scenario 
related shifts in agricultural land ‘LT3’ use are simulated. The event mortality  MAt of a time step is buffered over the respective adaptation level 
A and subtracted from a patch population  NPt-1. Based on the resulting  NPt (logistic) population growth is simulated; in the time steps concerned, 
the land use scenario modifies the carrying capacity KP via the patch quality  QP, determined as a function of the proportion of ‘urban’  AP LT1 
and intensive ‘agricultural’  AP LT3-i land use in a catchment  AP Total. Dispersal-driven processes are next simulated and result in changes in  NPt 
based on the difference of immigrants  NEMt from directly connected patches and emigrants  NIMt; for clarity, the processes to calculate immigration 
and emigration are not shown here—these are described in detail in Streib et al. [49]. STOP: Store and export the results for subsequent data 
analysis
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Fig. 4 (See legend on previous page.)
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meta-population declines, yet had little effect for increas-
ing land use stress. Details are presented below.

Joint effects
In the absence of adaptation, severe and intense climate 
stress dominated the joint effects in any related scenario 
combination, with major declines or extinctions of the 
meta-population (Fig.  5). Even for decreasing land use 
stress (i.e., decreasing intensive agriculture), the joint 
effects were only slightly lower at 0.8 (i.e., 80% meta-pop-
ulation size reduction) than for increasing land use stress 
(i.e., increasing intensive agriculture) at 0.95. However, 
for moderate climate stress, the land use scenario domi-
nated the joint effects.

Adaptation had negligible influence on the trajectory 
of joint effects in the moderate scenario, but significant 
influence in the severe and intense climate scenarios 
(Fig. 5). Here, adaptation slowed down meta-population 
decline for increasing land use stress, yet declines over 
time were still severe, virtually resulting in extinction. 
For decreasing land use stress, however, adaptation had 
a pronounced positive influence; high adaptation even 
yielded a slight recovery close to the baseline in the mod-
erate climate scenario.

The land use scenarios of the ‘stepwise’ profile 
showed qualitatively similar patterns in the long term, 

resulting in comparable levels of meta-population sizes 
at the end of the simulation (Fig. 7).

Interactions
In general, we found that non-additive interactions 
emerged over time triggered by land use change (Fig. 6); 
however, no and low adaptation resulted in additive 
interactions for the intense climatic scenario or close 
to additive interactions for the severe climatic scenario. 
Antagonistic interactions progressively developed with 
increasing land use stress and synergistic interactions 
with decreasing land use stress. For any given stressor 
combination, adaptation changed the interaction sizes, 
but changes depended on the climate scenario. The 
interactions inconsistently decreased in the moderate 
climate scenario with adaptation levels but increased 
in the severe and intense. As a result, for severe cli-
mate stress low adaptation resulted in a similarly strong 
antagonism as high adaptation and severe climate 
stress at decreasing land use stress, but in much lower 
synergism at increasing land use stress (Fig.  6, I5). By 
contrast, in low climate scenarios, the interaction size 
of synergism and antagonism decreased consistently 
across land use scenarios with adaptation levels.

Fig. 5 Development of joint stressor effects (y-axis) compared to the baseline B (black line) over the simulation period (x-axis) for all stressor 
scenarios-adaptation level combinations, with lines corresponding to the mean over 100 simulation runs per combination. Joint effects sizes > 0.0 
imply a lower mean population size compared to B, and < 0.0 imply a higher mean population size compared to B. The climate scenario is labeled 
at the top of the figure, and the land use scenario at the right, where ↗ represents ‘ramping’ increasing extensive agricultural land use, and ↘ 
‘ramping’ decreasing extensive agricultural land use. The adaptation level is coded by the line color: red is ‘no’, orange is ‘low’ adaptation, and green 
is ‘high’ adaptation
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Discussion
We simulated two stressors (i.e., agricultural land use 
and climate) with complex spatiotemporal profiles in 
varying scenarios and evaluated their effect on meta-
populations of a freshwater insect. Compared to a static 
baseline scenario, we found that joint effects and inter-
actions developed fairly differently over time, depending 
on the stressor levels and dynamics. Adaptation to cli-
matic stress reduced the realized joint effects, but partly 
increased the strength of interactions, which resulted in 
a change in stressor classification from additive to non-
additive, supporting previous calls to place less emphasis 
on stressor classification.

To our knowledge, this is the first modeling study to 
show that interactions depend on spatiotemporal stressor 
profiles and adaptation. We conclude that static stressor 
scenarios over short periods, as often used in experi-
ments, without including potential adaptation, may be 
insufficient to reliably predict the joint effects and inter-
actions of multiple stressors under real-world conditions.

Below we discuss our results in detail.

Relevance of discrete and continuous stressors 
under dynamic scenarios in the absence of adaptation
We found that moderate climate stress had no or only 
negligible long-term impact on meta-populations, yet 
became dominant for severe and intense stress. For 
moderate climate stress, land use dominated the joint 
effects and a relatively strong antagonism developed 
with increasing land use stress, whereas decreasing land 
use stress resulted in synergism. Here, the two temporal 
profiles of the continuous stressor (i.e., ‘steady ramping’ 
and ‘stepwise’) were clearly reflected in the result, how-
ever, similar joint effects develop over time. For severe 
and intense climate stress, the joint effects were largely 
or completely disjointed from land use (regardless of the 
simulated profile), thus only minor non-additive (‘severe’ 
scenario) or additive (‘intense’ scenario) interactions 
emerged.

Côté et  al. [9] showed that management of a regional 
continuous stressor to seagrass populations in multiple 
stressor environments lowered mortality and thereby led 
to higher populations, in turn resulting in antagonism. 

Fig. 6 Interaction size (y-axis) over the simulation period (x-axis) for all stressor scenarios-adaptation level combinations, with lines corresponding 
to the mean over 100 simulation runs per combination. Interaction sizes > 1.0 indicate antagonism, and < 1.0 synergism. The climate scenario 
is labeled at the top of the figure, and the adaptation level is at the right and color-coded: red is ‘no’, orange is ‘low’ adaptation, and green is ‘high’ 
adaptation. For the land use scenario, ↗ represents ‘ramping’ increasing extensive agriculture (i.e., decreasing land use stress), and ↘ ‘ramping’ 
decreasing extensive agriculture (i.e., increasing land use stress)
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Consequently, higher continuous stress likely can have 
the opposite effect, i.e., synergism via higher mortality 
and thus lower population sizes. Furthermore, optimiz-
ing land use can mitigate long-term impacts from more 
severe extreme events and thereby strong joint effects, as 
shown in a review of climate and land use change feed-
backs [4]. However, positive benefits from land use opti-
mization are only to expect if climatic stress remains 
below a certain level and sufficient time for recovery is 
provided, as shown in a study on dry coniferous forests in 
western North America under rapid climate change and 
altered disturbance regimes [38]. Otherwise, the discrete 
stressor dominates, resulting in additive interactions as 
the benefits of managing a continuous stressor become 
minimal [9]. This matches also a recent review on abrupt 
changes in ecological systems, indicating that in multi-
ple stressor environments, a strong increase of a discrete 
stressor likely results in additive interactions [19].

Under moderate climate stress, the dominant role of 
land use for the joint effects is explained by intensive 
agriculture in the catchment, determining the mean 
patch quality in the meta-population networks. Posi-
tive land use change resulted in antagonism, whereas 
negative land use change resulted in synergism, as higher 
patch qualities produced higher meta-populations based 
on increased carrying capacities, while lower qualities 
produced lower meta-populations. Comparable to the 
results of a laboratory experiment by Bible et  al. [39] 
which showed that recovery can neutralize synergistic 
effects of multiple stressors on the survival of Olympia 
oysters, we found that extreme climatic events resulted 
only in temporal population declines. Here, mean event 
mortality was on average low and, simultaneously, meta-
populations had sufficient time to fully recover between 
events (Bruder et al. [36]). For details on underlying gen-
eral processes, see Streib et al. [48]. Accordingly, the two 
temporal land use profiles are clearly reflected in the 
results during the simulation period (i.e., between time 
steps 25 and 50); however, as 100% of extensive agricul-
tural land use (LT3-e) or intensive agricultural land use 
(LT3-i), respectively, is reached thereafter, the results are 
very similar. For severe and intense climate stress recov-
ery after individual events may be incomplete and insuffi-
cient to survive subsequent events, given that with more 
intense climatic extreme events: (1) mean event mor-
tality increased and (2) time to the next intense events 
decreased; notably, a random event sequence, compared 
to a synchronous, non-realistic sequence, can result in 
very short intervals [6]. This produced strong joint effects 
that were predominantly or entirely driven by climate 

stress, as events became so severe that even improved 
patch quality with decreasing land use stress failed to 
prevent the extinction of most or all patches over time 
(Figs. 10 and 11). Consequently, weak non-additive inter-
actions emerged for severe climate stress and additive 
interactions emerged for intense climate stress, as meta-
populations became extinct or were reduced to almost 
zero.

Role of adaptation on joint stressor effects and interactions 
under dynamic scenarios
Adaptation reduced the joint effects for all scenario 
combinations. Consequently, non-additive interactions 
decreased with adaptation for the moderate climate sce-
nario, as the dominant impact of land use became even 
stronger. However, non-additive interactions increased 
or emerged for the severe and intense scenarios and joint 
effects were strongly reduced, because under adaptation 
climate stress no longer dominated; so the temporal land 
use profile is also reflected in the results during the simu-
lation period (i.e., between time steps 25 and 50). Here, 
antagonistic interactions based on decreasing land use 
stress increased more than synergistic interactions based 
on increasing land use stress, indicating that land use 
optimization may provide more positive outcomes than 
to expect.

Our findings support the idea that adaptation needs to 
be considered in predicting joint effects and interactions 
of multiple stressors [34, 43]. As theoretically outlined by 
Bush et al. [44] or Jackson et al. [6], reduced joint effects 
by adaptation are expected when ecosystems or species 
have sufficient time to adapt to single or multiple changed 
environmental stressors. In the best case, stressor effects 
are even reduced despite more intense events. Hughes 
et  al. [34] showed empirically that adaptation alleviated 
the effects of marine heat waves on coral reefs. Adapted 
corals were significantly less affected by a second heat 
wave, albeit this was more intense. The effect of joint 
stressors may be overestimated if not considering adap-
tation as demonstrated in a modeling study on fruit flies 
[44]. Furthermore, beneficial impacts by management, 
e.g., land use optimization, may be missed. Our second 
major finding, that adaptation produces higher inter-
actions in intensified stressor regimes despite strongly 
reduced joint effects, is initially surprising yet supported 
by a recent study by Orr et al. [43]. Using data from an 
evolutionary experiment with the rotifer Brachionus cal-
yciflorus, they showed that higher interaction sizes can 
emerge if adaptation reduces both individual and joint 
effects compared to control. A change in interactions 
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from antagonism to synergism followed when the reduc-
tion in individual effects was greater than the reduction 
in joint effects. For management, this implies that actions 
should focus on reducing joint effects based on a mech-
anistic, predictive understanding of interactions [28], 
rather than automatically seeking to prevent synergies 
[16, 43]. However, adaptation to new stressor regimes is 
difficult to predict [44, 59], making predictions of joint 
stressor effects and thus interactions challenging [44, 59]. 
While adaptation may occur in many species, the speed 
and strength of adaptation remain unclear [60]. Addi-
tionally, adaptation to one specific stressor can result in 
trade-offs in terms of increasing sensitivity to additional 
stressors [4]. For example, pesticide-adapted popula-
tions of Gammarus pulex were more sensitive to tem-
perature increases, possibly reflecting the fitness cost of 
genetic adaptation to pesticides [46]. However, species 
may also respond positively to an increasing stressor if 
the environment shifts toward their niche optimum, or if 
competition or predation is reduced by removing more 
vulnerable species, thereby increasing their robustness to 
other stressors [45, 61]. However, local adaptation may 
prove detrimental if environments change rapidly, i.e., 
maladaptation, which likely to become more frequent in 
the future with global change [62, 63]. For example, mal-
adaptation was demonstrated for the rotifer Brachionus 
calyciflorus, where adaptation to stressors shifted popu-
lations’ environmental optimum, resulting in a higher 
fitness costs when returning to the original environment 
[47].

The changes observed in joint effects and interac-
tions are explained by the reduced extreme event mor-
tality associated with adaptation. Notably under severe 
and intense climate stress, meta-populations were more 
resilient as single patches survived short intervals of 
high mortality more frequently and in higher numbers 
when adaptation is present allowing them and, subse-
quently, the meta-population to recover. Compared to 

the absence of adaptation, it turns out that the recovery 
potential is highly dependent on land use, as improved 
patch quality now prevents more patches from extinction 
over time with decreasing (Fig.  10) than with increas-
ing land use stress (Fig.  11). Consequently, (both under 
‘low’ and ‘high’) adaptation produced relatively stronger 
reductions in joint effects and thereby stronger non-addi-
tive interactions for reduced land use stress.

Conclusions
We provide theoretical evidence that scenarios of com-
plex spatiotemporal dynamics and adaptation are criti-
cal to understanding how species respond to modified 
multiple stressor regimes under global change. Albeit the 
approach is primarily hypothetical we are confident that 
this work contributes to the mechanistic understanding 
of how multiple stressors in real-world environments act 
across space and time by demonstrating and explaining 
general principles.

Analysis of simplified static regimes at local scales over 
short periods is likely insufficient for reliable prediction 
of future joint effects and interactions, notably since 
recovery processes are not sufficiently considered. More-
over, adaptation likely reduces joint effects and, thereby, 
can alter interactions with inconsistent direction and 
size. We expect that these findings could be tested in an 
experimental setting with moderate effort.

Consequently, regarding management, actions should 
focus on reducing the strongest individual or joint effects, 
rather than placing too much emphasis on interactions. 
Not considering adaptation can result in overestimating 
joint effects and potentially missing beneficial manage-
ment outcomes.

Appendix A
See Figs. 7, 8, 9, 10, 11

Fig. 7 Temporal profile associated with the land use scenario for the ‘stepwise’ scenario. Here, the red lines show the trend of intensive agriculture 
(LT3-i), and the green lines show the trend of extensive agriculture (LT3-e)
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Fig. 8 Development of joint stressor effects (y-axis) compared to the baseline B (black line) over the simulation period (x-axis) for all stressor 
scenarios-adaptation level combinations, with lines corresponding to the mean over 100 simulation runs per combination. Joint effects sizes > 0.0 
imply a lower mean population size compared to B, and < 0.0 imply a higher mean population size compared to B. The climate scenario is labeled 
at the top of the figure, and the land use scenario at the right, where ↑ represents ‘stepwise’ increasing extensive agricultural land use, and ↓ 
‘stepwise’ decreasing extensive agricultural land use. The adaptation level is coded by the line color: red is ‘no’, orange is ‘low’ adaptation, and green 
is ‘high’ adaptation

Fig. 9 Interaction size (y-axis) over the simulation period (x-axis) for all stressor scenarios-adaptation level combinations. Interaction sizes > 1.0 
indicate antagonism, and < 1.0 synergism. The climate scenario is labeled at the top of the figure, and the adaptation level at the right 
and color-coded: red is ‘no’, yellow is ‘low’ adaptation, and green is ‘high’ adaptation. For land use scenario, ↑ represents ‘stepwise’ increasing 
extensive agriculture (i.e., decreasing land use stress), and ↓ ‘stepwise’ decreasing extensive agriculture (i.e., increasing land use stress)
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Fig. 10 Exemplary representation of A total population size N and B rate of colonized patches (y-axis) over time i (x-axis; i.e., 75 time steps) 
for one meta-population network simulated for one sequence of the severe climate scenario and the ‘ramping’ land use scenario with decreasing 
intensive agriculture ↗. Event mortality M (secondary y-axis; i.e., population decline per patch in the range of 0 to 100) per time step is represented 
by black lines vertically downward from the top. In A the red line shows the results for N with ‘no’ adaptation, the orange line with ‘low’ adaptation, 
and the green line with ‘high’ adaptation. In B the red area shows the rate of colonized patches in the range between 0 and 1 with ‘no’ adaptation, 
the orange area with ‘low’ adaptation, and the green area with ‘high’ adaptation; note that the red area is displayed in front of the orange area, which 
is displayed in front of the green area

Fig. 11 Exemplary representation of A total population size N and B rate of colonized patches (y-axis) over time i (x-axis; i.e., 75 time steps) 
for one meta-population network simulated for one sequence of the severe climate scenario and the ‘ramping’ land use scenario with increasing 
intensive agriculture ↘. Event mortality M (secondary y-axis; i.e., population decline per patch in the range of 0 to 100) per time step is represented 
by black lines vertically downward from the top. In A the red line shows the results for N with ‘no’ adaptation, the orange line with ‘low’ adaptation, 
and the green line with ‘high’ adaptation. In B the red area shows the rate of colonized patches in the range between 0 and 1 with ‘no’ adaptation, 
the orange area with ‘low’ adaptation, and the green area with ‘high’ adaptation; note that the red area is displayed in front of the orange area, which 
is displayed in front of the green area
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Notes on the graphs shown in Figs. 10, 11
Successive mortality events with low to medium mor-
tality in the first time steps result in only small changes 
in the meta-population size (~ − 80%) and rate of colo-
nized patches (~ − 50%). However, without adaptation, 
a high mortality event in time step 19 sharply reduces 
meta-population size and the rate of colonized patches, 
with levels remaining relatively constant in the follow-
ing; with adaptation, reduction in meta-population size 
and the number of colonized patches is less severe, 
with a partial recovery following (more pronounced 
for ‘high’ relative to ‘low’). The effects of the land use 
scenarios simulated from time step 25 to time step 50 
are only pronounced with adaptation. Here, despite a 
high mortality event on time step 40, decreasing inten-
sive agriculture (Fig.  10) generally results in progres-
sively increasing meta-population size and a constant 
colonization rate (both, ‘low’ and ‘high’ adaptation), 
while increasing intensive agriculture (Fig.  11) results 
in decreasing meta-population size and colonization 
rate (both, ‘low’ and ‘high’ adaptation). Consequently, 
without adaptation population sizes and colonization 
rates are comparable for both land use scenarios, but 
with adaptation they are clearly higher under decreas-
ing land use stress. After time step 50, the long-term 
effects of the land use scenarios become clear, i.e., high 
mortality events in time steps 64 and 73 result in meta-
population extinction under increasing land use stress, 
whereas the meta-populations survive and recover sub-
sequently under decreasing land use stress.
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